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Abstract—In the future, 3D food printing may be a fruitful area for the food industry. The presence of this technology opens the public's 

eyes to a revolution in the food sector, where food processing is limited to the conventional. The existence of this technology will also 

make food production much more effective and efficient. However, there is a problem when the 3D Food Printing process is carried 

out; when object defects occur, there will be material waste. This research proposes deep learning-based defect detection for defect and 

non-defect objects. This model mainly uses CNN as a deep learning method. The dataset is taken from the image of the print process 

performed at the time of object creation to be trained and validated to check the effectiveness of the proposed model. The architecture 

used uses pre-trained CNN models namely Inception-V3 and ResNet50 with the hope of classifying images that have a higher viscosity 

of the material. Where the model has been tested with previous datasets and applied with 3D Food Printing datasets with a dataset 

division ratio of 85% which is training data and 15% is validation data. After testing the two proposed scenarios, the accuracy result 

obtained in the test model scenario 1, Inception-V3, is 84.62% and for the test model scenario 2, ResNet50, the accuracy is 93.83%. The 

outcomes also demonstrate that improved accuracy, loss, and classification time may be obtained by applying CNN in conjunction with 

data augmentation. 
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I. INTRODUCTION

Perfection in the form of food is essential for every industry 
in the food industry. Good service in terms of food perfection 
is a crucial factor in getting the primary response from 
customers. 3D Food Printing is here to support food 
technology innovation in all elements. Experts have predicted 
that 3D food printing will become a part of culinary life, both 
in restaurants and at home [1].  

The manufacturer also claims that, unlike mass-produced 
industrial food products, 3D Food Printing will truly improve 
human nutrition, allowing every human to print fresh and 
healthy food right in the kitchen and with maximum 
transparency with minimum time and effort [2]. The shape 
characteristics of 3D Food Printing objects are also important 
for object recognition. Various deep learning algorithms can 
be used to recognize 3D Food Printing objects with shape, 
texture, and other features to have good detection capabilities 
and high accuracy. The remote monitoring system in the 3D 
printing process is also a problem in addition to the perfection 

of the shape of the food printed by the 3D Food Printer 
machine [3]. When the automation process is executed, the 
tendency to avoid defect detection can be done. Although 
extrusion-based 3D food printing technology has advanced in 
the past decade, food layer interlayer imperfections such as 
delamination and warping are still dominant when printing 
complex parts.  

A self-monitoring system was created to categorize various 
degrees of delamination in food printing using real-time 
camera images and deep learning algorithms. In addition, a 
new method incorporating strain measurement was 
established to measure and predict the onset of warping [4]. 
Without human intervention, this self-monitoring system can 
also evaluate other production processes to achieve 
autonomous calibration and pre-diagnose defects. Materials 
are the focus when a monitoring system for defect detection 
is needed—early detection of food-printed objects, making 
the efficient provision of food goods. Several studies show 
that deep learning models can detect various levels of 
delamination [5] and successfully determine the level and 
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trend of defects before they occur in food object prints. Many 
studies have been done on defect detection in conventional 3D 
printing, especially with the help of artificial intelligence 
technology that begins with computer vision methods [6]. 
Baumann and Roller [6] conducted research with computer 
vision to detect fault diagnosis; Baumann divided the defect 
classification into 5 parts, of which 3 were successfully 
detected with false positives with a 60 to 80 percent detection 
rate. 

Research conducted by Baumgartl et al. [7], observing the 
printing process with delamination features obtained an 
accuracy of 96.80%. Then in research conducted by Kadam et 
al [3], a machine learning model was used to detect faults with 
SVM, KNN, Random Forest, Decision Tree, and naïve Bayes 
algorithm models where the highest accuracy uses the SVM 
model with 99.70%. Research conducted by [8] improved 
print results were achieved by analyzing 3D printing fault 
detection using augmentation data on a Convolutional Neural 
network (CNN), which had an accuracy value of 95.45% 
using private datasets. 

So, from this, various research studies were conducted on 
detecting new defects carried out with conventional 3D 
printing, and no one has used a 3D food printing machine. 
Also, because of the voids that occur in 3D Printing [9], voids 
can also be included in the types of defects in 3D Food 
Printing. In 3D Food Printing, defects obtained in the printing 
process are less than in ordinary 3D Printing. This is due to 

the different types of materials used. In 3D Printing, with the 
kind of Polylactic Acid (PLA) material, defect problems often 
occur, namely warping [10], under extrusion, and over 
extrusion. Etc. Research conducted by [11] conducted defect 
detection in 3D Food Printing, but in detail, the technology 
used to detect defects does not yet exist. The research 
undertook only mitigation strategies and characteristic 
properties of defects in 3D Food Printing. Therefore, our 
research will perform a defect detection process with deep 
learning to obtain classification results and accuracy values, 
which can help monitor the printing process in 3D food 
printing.  

II. MATERIALS AND METHOD 
The research method in this study is shown in Figure 1. 

This study has seven main stages, starting with making the 
formation setup and then performing the printing process on 
3D food printing with chocolate material. Next, we take the 
image dataset during printing with defect labeling detection 
from the Obico plugin on the camera captured at one side of 
the corner. After that, the image is preprocessed by resizing 
the dataset and dividing the process data by the training and 
validation data. In the next stage, the image will be trained 
using Inception-V3 and ResNet50 models to get maximum 
results, and in the final stage, the model evaluation will be 
carried out. 

 

 

Fig. 1  Flowchart of the research method 

 

A. 3D Food Printing Material   

By adding fruits, vegetables, and other vitamin sources in 
between the layers created, 3D printing can also encourage the 
general public to consume these foods. This way, the food 
products will be strengthened with nutrients without the 
consumer noticing them [12]Though 3D food printing has 
progressed significantly recently, many obstacles remain in 

the areas of printable ingredients (the printing technique limits 
the types of food that can be printed), process (the process is 
prolonged for mass production), and consumer perception 
(very few people know about food printing and tend to reject 
it) [13]. The search for suitable food materials and the 
adjustment of their printing parameters are the main topics of 
many of the published studies on 3D food printing [14], [15] 
The experiment was conducted using a 3D Printer machine 
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the Ender 3, plus a food extruder tool that can remove printed 
objects, namely the luckybot extruder. A camera is used to 
monitor defect detection that occurs in the printing process 
[16]. 

B. Setup Formation 

Fused Deposition Modeling (FDM) is the 3D printing 
technology employed in this research, and the food 3D printer 
used is the 3D Printer Ender 3. The Luckybot food extruder, 
an additional food printing device, is combined with the 3D 
printer. The printer head, nozzle replacement, and motor cable 
transfer on the Ender 3D Printer machine's motherboard are 
among the components disassembled throughout the machine 
construction process.  It should be noted that our suggested 
approach is currently limited to the printer and printing 
procedure described above. Using cameras to take 
photographs at certain checkpoints, the pieces that are 3D 
printed are monitored [17],[18]. Raspberry Pi also helps the 
connection between monitoring devices to detect PCs with 
LAN/Wi-Fi networks, from camera capture directly 
controlled through octoprint software. 

 

 
Fig. 2  Experimental Setup 3D Food Printing Monitoring 

The Internet of Things is integrated with the camera setup 
procedure, as depicted in Figure 3, and brown printing 
material was employed for this investigation. Chocolate is an 
excellent substance for the 3D food printing machine's 
extrusion concept [19]. The differences significantly 
influence the quality of the product printed with both 
materials in their mechanical qualities [20]. Code to automate 
real-time printing process monitoring has been developed 
using the Obico and Octoprint applications [21]Throughout 
this investigation, we kept the same setup for 3D food 
printing. Some tests were carried out first by taking images of 
the 3D printing process, taking into account the impacts of 
lighting conditions.  

C. Printing Process 

The images taken for analysis underwent a molding process 
with a nozzle temperature of 200°C, sufficient to extract the 
required chocolate ingredients, and a food extruder 
temperature of 35°C. For the bed temperature, a temperature 
of 50°C is required so that the attachment process between the 
chocolate material and the bed is strong. So that the printing 

can have a good shape according to the design. Human 
resources and operators have a significant impact on the 
printing process since different operator skills will result in 
higher-quality prints [22]. 

TABLE I 
PRINTING PROCESS PARAMETER TEST 

Manufacturing 

Parameter 

Value Manufacturing 

Parameter 

Value 

Print direction XYZ  Nozzle 
diameter 
(mm) 

0,4 

Material Chocolate 
Food 

Nozzle 
temperature 
(°C) 

200 

Raster angle 0 Cooling No fan 
cooling 

Layer height (mm) 0,1 Infill (%) 30 
Bed temperature 
(°C) 

50 Filament 
diameter 
(mm) 

2,00 

Print speed 
(mm/min) 

2400 Number of 
layers 

20 

 
As shown in Table 1 using the XYZ direction pattern, 3D 

Food printing follows the direction of the Gcode command 
during the printing process, so alignment between the design 
command and the Gcode command is needed. In this printing 
process, defects occur that can cause material waste. The 
accuracy level of these defects will be analyzed. 

This research takes the dataset from scratch by capturing 
data from the ongoing printing process. With the Obico plugin 
tool and eye observation, the dataset is captured by video 
recording. Then, the image is broken into frames and analyzed 
by deep learning. Therefore, transfer learning techniques are 
used in the classification process. Transfer learning is one of 
the solutions to overcome data limitations when classifying 
images using deep learning [23]. One transfer learning 
process is using a pre-trained model to build a new CNN 
architecture. In this research, two pre-trained models were 
used, namely Inception-V3 and ResNet50. The two pre-
trained models were chosen because they can build CNN 
models on devices with limited resources [24]. 

This study compares the performances of the Inception-V3 
and ResNet 50 models. To increase its accuracy, the 
architecture of the pre-trained model was altered. The neural 
network layer's hyperparameter tuning was used to make 
changes. The research's difficult task is choosing the correct 
parameter values to create a reliable model for mobile device 
picture categorization.  

2085 data is taken to perform the defect detection process 
on 3D Food Printing. 15% of the dataset is used for testing, 
while 85% is used for training. This percentage indicates 1773 
images in the training set and 312 in the testing set. Datasets 
are grouped into defects and no defects. The skin disease 
dataset is displayed. The defective 3D Food Printing dataset 
can be seen in Figure 3.  
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Fig. 3  Defect Class: Defect & No Defect 

 

The dataset is taken while the print process runs and 
detected by the Obico plugin if a defective object occurs. For 
every image recording that arises with a defect label, the 
researcher takes the data from the frames of the recording to 
be used as a dataset. The 2085 data taken are heterogeneous 
data from the chocolate printing process in 3D Food Printing. 
In this research, the dataset consists of several variables 
formed from materials and is grouped into several classes. 
The surface shape and object shape, as in Table 2, are very 
influential on image detection because they can affect the 
precision and accuracy of results when optimized. 

TABLE II 
VARIABLE DATASET 

Variable Data Description 

Materials Couverture 
Callebaut 
Chocolate 

It can be supplemented 
with other materials 
according to the 
characteristics of the 
method used 

Class Defect, Non-
Defect 

In the research 
experiment, the dataset 
was divided into 2 
classes 

Surface Solid, Flat, 
Perforated 

Object printout adjusts 
print parameters 

Object shape Spaghetti, 
Warping, Under 
Extrusion, Poor 
Initial Layer 

Variable over image 
scrapping based on the 
print object that 
appears 

D. Pre-processing Process 

The most challenging step in the procedure is pre-
processing because the data must be normalized. Uniform 
image resolution is how the normalizing process is completed. 
The steps completed in mage Resizing, localization, 
augmentation, and labeling are examples of pre-processing 
[25]. An image prepared for vector processing is the end 
product of pre-processing.  

1) Resize Image: The dataset consists of various-sized 
images. As a result, the image size must be equalized to 
facilitate robot object recognition. This study resizes the 
image so that all processed images have the same 224x224 
size. 

2) Image Augmentation: Five augmentation strategies 
have been used to expand the quantity of datasets. Some 
augmentation techniques include rescaled, rotation, zoom, 
horizontal flipping, and random shift. Through augmentation, 
a new image with the same features as the original is created 
[26]. 

3) Image Splitting: Following the pre-processing phase, 
the image has a consistent size and shape format, ready for 
further processing throughout the feature extraction 
procedure. Photos must be divided into training and validation 
sets to speed up the model validation procedure and begin 
feature extraction. The training and validation sets are 
compared at 85% versus 15%. 

Strong normalization is needed to overcome imbalanced 
data in the pre-processing stages above. In this research, every 
data captured from the camera, the camera capture process 
indeed uses good angle capture techniques to get high-quality 
image data. The 3 points above, namely resizing the image, 
image augmentation image, and splitting, are enough to 
overcome the slightly imbalanced data.  

E. Model Architecture 

This research uses the pre-trained learning CNN model, 
using model because the pre-trained model can detect 
previous models that at least have knowledge that can be 
utilized to detect other objects [27]. For example, the model 
already knows which objects are background which are trees, 
and which are not. We transfer that knowledge to new needs. 
Therefore, we still need to train again (although most training 
processes are much faster because the model is already a bit 
smarter). 

Transfer learning is a deep learning technique that reuses a 
previously prepared model to train a new model for a related 
problem [28]A convolutional neural network with 50 layers 
of depth is called ResNet-50. The three picture blocks that 
makeup RestNet-50 are the architecture: a convolution block 
(in the middle) that modifies the input dimensions and an 
identity block (on the right) that does not. [29] CNN is a kind 
of selective deep architecture made up of a pooling layer and 
a convolution layer on top of each other to create a deep model 
[30]. 

TABLE III 
INCEPTION-V3 BASELINE NETWORK ARCHITECTURE 

Stage Operator Resolution Stride  

1 Convolution 299 × 299 × 3 3 × 3/2 
2 Convolution 149 × 149 × 32 3 × 3/1 
3 Convolution 147 × 147 × 32 3 × 3/1 
4 Pooling 147 × 147 × 64 3 × 3/2 
5 Convolution 73 × 73 × 64 3 × 3/1 
6 Convolution 71 × 71 × 80 3 × 3/2 
7 Convolution 35 × 35 × 192 3 × 3/1 
8 Inception module 35 × 35 × 288 Three 

modules 
9 Inception module 17 × 17 × 768 Five modules 
10 Inception module 8 × 8 × 1,280 Two modules 
11 Pooling 8 × 8 × 2,048 8×8 
12 Linear 1 × 1 × 2,048 Logits 
13 SoftMax 1 × 1 × 1,000 Output 
 
Including a crucial element known as an inception module 

sets the Inception-v3 apart from networks like LeNet and 
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VGG [31]. This module makes use of receptive kernels in 
various sizes. Zero padding maintains consistency in the 
convolution operation's output size. By using filter 
concatenation, the final feature maps are produced. Richer 
features are extracted from the input image with the aid of the 
inception technique. An inception network's structure is 
displayed in Table 3. Deeper networks can be trained with the 
residual network pretty effectively. As Table 4 illustrates, the 
concept of "identity shortcut connection" was established by 
ResNet [32]. 

 � = ���, ��	
� + � (1) 

Consequently, we can create a residual form of a deep 
network by injecting shortcuts. Eq. (1) can be used to 
introduce identity shortcuts when the input and output have 
the same dimension where F(x,{�	}) represents the residual 
mapping and x, y represents the input and output vectors. 
Gradients in ResNet can backpropagate to the prior layers via 
skip connections. 

TABLE IV 
RESNET50 ARCHITECTURE 

Stage Operator Resolution 50 Layer 

1 Conv1 112 × 112 7 x 7, 64 stride 2 
2 Conv2_ � 56 × 56 3 x max pool stride 2 

� 1�1, 643�3, 641�1, 256� ×  3 

3 Conv3_ � 28 × 28 �1�1, 1283�3, 1281�1, 512� ×  4 

4 Conv4_ � 14 × 14 � 1�1, 2563�3, 2561�1, 1024� ×  6 

5 Conv5_ � 7 × 7 � 1�1, 5123�3, 5121�1, 2048� ×  3 

6 Conv3x3, average 
pool, 1000-d FC 

1 × 1 Conv3x3 

 
The numbers of the building blocks for each of these 

structures are layered and displayed in brackets. ResNet50 is 
a residual network that consists of 50 layers.  

F. Model Evaluation 

Accuracy, precision, recall, and F1 scores are computed 
using the confusion matrix in this study to assess model 
performance. Confusion matrix normalization offers more 
details on the relationships between classes and kinds of 
classification mistakes [33]. 

 �������� =  ��� �!�
��! "� "! �!� (2) 

 #�$�%&%'( =  ����
��� "�� (3) 

 )$��** =  ����
��� "!� (4) 

 �1 +�'�$ = 2 � �,-.	/	01 2 3-.455
�,-.	/	01 2 3-.455 (5) 

Furthermore, all experiments were recorded. The 
experimental results were analyzed to determine the most 
accurate (highest accuracy), lightest (fastest training and 
testing time), and most efficient (best combination of all 

metrics) model, as well as the image augmentation that most 
significantly improved the model's performance.  

III. RESULTS AND DISCUSSION 

A. Testing The Use of Learning Rate 

The learning rate is one of the training parameters to 
calculate the weight correction value during the training 
process [34]. This learning rate value ranges from zero (0) to 
(1). The training process will proceed more quickly the higher 
the learning rate value. The network will be less accurate the 
higher the learning rate, and vice versa; if the learning rate is 
lower, the network's accuracy will be higher or rise, which 
will lengthen the training process. Tables 5 and 6 are the 
results of comparing models generated from 4 different 
learning rates.  

TABLE V 
LEARNING RATE COMPARISON OF THE INCEPTION-V3 MODEL 

Learning 

Rate 

Inception-V3 

Accuracy 

(%) 

Precision 

(%) 

Sensitivity (%) 

0.005 76.92 85.45 84.33 
0.001 79.49 87.51 86.53 

0.0005 83.97 90.79 90.04 
0.0001 81.09 88.73 87.83 

 
Table 5 shows data indicating that the Inception-V3 

model's learning rate value of 0.0005 when employing the 
Adam optimizer yields the best results, with an accuracy value 
of 83.97%. The learning rate in the ResNet50 model yields 
the most remarkable results; however, it likewise employs a 
learning rate value of 0.0001 and achieves an accuracy value 
of 89.73%. The outcomes of the ResNet50 learning rate 
comparison are displayed in Table 6. 

TABLE VI 
LEARNING RATE COMPARISON OF RESNET 50 MODEL 

Learning 

Rate 

ResNet50 

Accuracy 

(%) 

Precision 

(%) 

Sensitivity (%) 

0.005 89.20 94.18 93.68 
0.001 79.69 87,78 86,81 
0.0005 87.15 92.90 92.31 
0.0001 89.73 94.50 94.03 

 
Based on Table 6 above, the learning rate value is not too 

small to get good accuracy. The dataset is very influential 
based on the test results, from image preprocessing and 
algorithm analysis. 

B. Training and Validation Results using Inception V3 
Inception-V3 architecture was used in the model's 

development for the training and validation phases. The data 
is divided into training and validation sets with a learning rate 
of 0.0005, with a total of 2085 training sets comprising both 
defect and non-defect images. There are 1773 images utilized 
for training in the training and validation stage, where the ratio 
of training data to validation data is 85:15. To validate the 
relationship between epochs and the accuracy and loss that 
resulted from the training stage, a total of 312 pictures were 
employed. The curves displayed in Figures 4 and 5 display the 
corresponding validations. 
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Fig. 4  The Validation Accuracy using Inception-V3 

 
Inception-V3 accuracy results on training data are shown 

on the blue line, while validation uses red. These results show 
that the best learning rate gets an accuracy value of 84.62% 
with 26 epochs. 

 
Fig. 5  The Validation Loss using Inception-V3 

C. Training and Validation Results Using ResNet 50 
The model further uses the ResNet50 architecture in the 

training and validation stages. With a learning rate 0.0001, the 
data is also grouped into training and validation data, each 
totaling 2085 training data consisting of defect and non-defect 
images. Like the Inception-V3 model, the training and 
validation data ratio is 85:15, and 1773 images were used for 
training. As demonstrated in Figures 6 and 7, 312 images were 
used for validation to examine the link between epochs and 
the accuracy and loss that resulted from the training and 
validation stages. 

 

 
Fig. 6  The Validation Accuracy using ResNet50 

ResNet50 accuracy results on training data are shown on 
the blue line, while validation uses red. These results show the 

best learning rate using 0.0005 with epochs 40 and an 
accuracy value of 93.83%. 

 

 
Fig. 7  The Validation Loss using ResNet50 

D. Comparison of Accuracy Results 
Based on the results of accuracy, Precision, Recall, and F-

1 Score, the ResNet50 Model has the highest accuracy of 
93.83% compared to Inception-V3, which only has 84.62%. 
In Table 7, ResNet50 also achieves the highest Precision with 
96.84%. Another influencing factor is the shape of objects, 
which is difficult to analyze by Inception-V3 and very easy to 
analyze by ResNet50, especially with datasets sourced from 
printed materials with high viscosity.  

TABLE VII 
PERFORMANCE COMPARISON 

Architecture 

CNN 

Performance  

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Inception V3  84.62 91.24 90.51 90.97 
ResNet50 93.83 96.84 96.56 96.70 

TABLE VIII 
PERFORMANCE COMPARISON OF SEVERAL METHOD OF 3D PRINTING 

Method 
Accuracy 

(%) 
Ref 

A deep learning-based model for defect 
detection in laser-powder bed fusion using 
in-situ thermographic monitoring 96.8% [7] 
Fine-Tuned CNN with Data Augmentation for 
3D Printer Fault Detection 95.45% [8] 

Proposed Method (3D Food Printing) 93.83%  

 
Table 8 shows the results of this study compared to previous 

research with a higher accuracy value than last research, with a 
value of 96.80% [7]. This is because the materials and methods 
used are very different. Suppose Hermann Baumgartl's research 
uses conventional 3D printing with laser powder bed fusion. This 
research uses 3D food printing with a distinct chocolate material 
and a higher viscosity than PLA or ABS 3D printing materials. 

Also, in the concept research of [8], with an accuracy value 
of 95.45%, the printout was perfected by analyzing 3D printing 
fault detection using data augmentation on Convolutional 
Neural network (CNN) using private datasets. However, it also 
uses ordinary filament material, which is materially quite good 
with a level of difficulty, unlike 3D Food Printing. 
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IV. CONCLUSION 
Based on the results, the first test model, ResNet50, obtained 

an accuracy of 93.83%, higher than the test model scenario of 
test model 2, Inception-V3, which is 84.62%. The shape of 3D 
food printing between defects and non-defects looks identical. 
Still, in this study, they can be distinguished with the help of a 
trained system using the Convolution Neural Network (CNN) 
algorithm, even though the dataset image material has a high 
viscosity. Numerous factors affect the outcome, such as the 
distribution of the splitting ratio, the number of layers, the 
number of inputs, and the balance of the datasets used. The 
same study topic and dataset should be used in future research, 
and the CNN algorithm should be modified by attempting to 
combine the CNN model with transformers to achieve the best 
possible outcomes. Another research opportunity is the 
application of this pre-trained learning algorithm to other 3D 
printing objects, such as 3D buildings, which also need 
optimization techniques for defect detection in the future. 
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