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Abstract— The purpose of this study is to develop and validate a learning motivation and creative problem-solving MCPS instructional 

model for non-majors in a computing liberal arts course. This study aimed to propose a specific method for conducting a computing 

liberal arts class tailored for non-majors. The research was divided into two phases: model development and model application studies. 

In the model development study, we formulated the MCPS instructional model and lesson design by integrating Papert's 

constructionism learning principles, addressing the challenges in computing education for non-majors, and incorporating various 

teaching methods identified from related research. In addition, to improve the completeness of the instructional model, we developed 

an evaluation rubric that considered both content and evaluation aspects through expert review. In the model application study, we 

validated the effectiveness of this instructional model by implementing it in a university class. We employed various research analysis 

methods to derive further insights and implications. Research suggests that the traits of Papert's constructionism learning theory can 

enhance learner engagement and foster creative problem-solving in computing education when utilizing the MCPS instructional model. 

This model, as proposed in the study, can effectively serve as a pedagogical approach for delivering semester-long or more extensive 

computing liberal arts courses tailored for non-majors in college. We anticipate that the outcomes of this study will contribute to the 

establishment of robust computing education programs in universities, particularly at a time when the demand for computing education 

among non-majors is increasing, and its significance is growing. 
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I. INTRODUCTION

The world is undergoing a digital transformation driven by 

software and artificial intelligence. Accordingly, many 

countries worldwide, including Korea, are proactively 
fostering creative talent that utilizes digital competencies to 

solve problems in the digital era, marking it as a central policy 

priority [1], [2]. For instance, the Korean government has 

prepared a comprehensive plan for fostering digital talents 

and aims to foster 1 million digital talents [1], [2]. 

Additionally, within university education, initiatives such as 

the software-centered university project initiated in 2015 

underscore the importance of computing education. This 

mandate extends beyond computing majors, encompassing 

non-majors and professionals in the field, and is tailored to 

reflect the specific characteristics of each academic major and 

department [3]. 

In contrast to elementary and secondary education, where 

computing education is deemed essential and systematically 

integrated into the curriculum [4], universities often face 

challenges in effectively delivering computing education to 

non-majors. These challenges stem from a lack of experience 

and expertise in catering to the diverse needs of non-major 
students. Consequently, ineffective education practices may 

arise, such as implementing uniform curricula irrespective of 

students' majors or capabilities or overly focusing on 

programming grammar without adequately assessing 

students' proficiency levels and interests [5]. In the non-

majors cases, if computing education is conducted without 

motivation, class participation and educational effectiveness 
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decrease [5], [6]. Unlike majors, it isn't easy to expect results 

regarding learning effectiveness with the same teaching 

methods as majors because they are not familiar with 

computer use. Therefore, it is necessary to research 

computing teaching methods for non-majors [7], [8]. 

In this regard, Shin [9] argued for the necessity of a 

computing education model to stimulate learners' motivation 

and cultivate creative problem-solving skills. Kim [10], Park 

and Choi [11] proposed that, in computing education for non-

majors, it's crucial to emphasize discovering functions 
through self-exploration or peer-based learning grounded in 

constructionist principles rather than simply teaching 

command usage. 

In particular, to improve the computational thinking of 

non-majors, it is necessary to focus on enhancing creativity 

and problem-solving skills rather than acquiring computing 

skills [11]. Creative problem-solving skills and learning 

motivation are pivotal variables in non-majors competency 

[12]. Hence, it is necessary to apply an instructional model 

that integrates various variables related to creativity, such as 

motivation and problem-solving skills, to enhance the 
creativity of college students in educational innovation [13]. 

Furthermore, Papert [14] transformed learning into an 

exciting and enjoyable experience through programming 

tools. His insights, proposed over 40 years ago, remain 

relevant today more than ever amidst large-scale educational 

innovations. They are closely related to our reality, 

particularly in the current context of the educational 

revolution. 

Based on Papert’s constructionism learning principles and 

relevant research on computing education, this study 

presented specific methods to enhance learning motivation 
and creative problem-solving skills in a computing literacy 

course for non-majors. We developed an instructional model 

for non-major computing literacy courses (MCPS, 

Motivation, and Creative Problem Solving) and validated its 

applicability through expert review and field application. 

II. MATERIAL AND METHOD 

A. Studies Related to Computing Liberal Arts Courses for 

Non-majors  

The term “computing” encompasses the academic 
discipline and is also employed globally in similar contexts, 

such as informatics or information and communication 

technology (ICT). CC2020 proposes using the term 

computing education to mitigate concerns regarding 

terminological interpretation and promote universalization. 

Additionally, it proposes a global standard curriculum for 

computing education at the higher education level [15]. 

Domestic and foreign universities also recognize the 

importance of cultivating the computing thinking skills 

necessary for university students to live in the modern era. 

Computing education is being implemented across various 
countries to develop future competencies for all students, 

although the curriculum and education forms are different 

[14]. In the case of domestic universities, computing 

education for non-majors is being established and gradually 

expanded in alignment with the global trend, starting with the 

software-centered university project. We reviewed research 

on computing education for non-majors to glean insights into 

effective educational methodologies and challenges 

encountered in computing classes. 

Park and Choi[11] suggested that block programming, 

which has easy grammar and is simple to handle, is utilized as 

a computing liberal arts class in universities. It aims to 

improve creativity and problem-solving skills rather than 

acquiring computing skills. Also highlighted the primary 

challenge in implementing such curricula: lacking motivation 

for computing education.  Kim [16] asserted that while the 

number of students exposed to computing education is 
growing, it often lacks relevance to their majors and is 

challenging to access. Therefore, concerted efforts are 

necessary to promote understanding and recognition of the 

importance of computing. Additionally, Kim [10] stated that 

students frequently encounter difficulties with programming 

terminology and principles, and preliminary research should 

be conducted before implementing computing education. 

Kang [17] advocated a need for computing education and 

exposure to computational thinking regardless of major. Still, 

there are relatively few opportunities to encounter such 

systems compared to majors. In the educational field, 
following pre-prepared code differs from student-centered 

problem-solving learning [18].  

Oh et al. [19] analyzed the effectiveness and changes in 

perception after conducting a Scratch programming class for 

non-majors. The results showed that it is essential to make 

non-majors aware of the need for programming classes before 

conducting them. In addition, in a study on computing 

education models for non-majors, Kim [20] developed a test-

driven problem-solving learning model (CT-TDPS) that 

applies agile development methods to address the limitations 

of the waterfall model from a software engineering 
perspective. Sohn [21] developed a design-based software 

education model (DBSEM) to improve the difficulties 

encountered in the process of acquiring programming 

languages, and Jeon [22] developed a SW-AI teaching and 

learning model (SAGE) in which learning stages are designed 

around changes in learner schemas to improve the creative 

convergence capabilities of preservice teachers. In addition, 

Choi [23] developed a computational thinking-centered 

multiple project-based computing education model (CT-

MPB) by deploying three stages of projects. Choi emphasized 

that most existing studies in this domain are biased toward 

elementary and secondary education, highlighting the 
necessity for more extensive cases and research focused on 

universities. 

While numerous universities have implemented courses to 

enhance the effectiveness of computing education, there 

remains a critical need for research on computing education 

models tailored to address operational challenges in 

computing liberal arts classes for non-majors. Specifically, 

there is a pressing need to develop models that foster creative 

problem-solving skills among students. 

B. Papert’s Constructionism  

Various studies and examples of computing education have 

been published recently, but most of them lack an exploration 

of the pedagogical background, and a discussion of 

constructionism approaches [24]. The educational paradigm 

of the knowledge information society emphasizes the value of 

individual learners' needs and characteristics and learner-
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centered learning [25]. Constructionism learning theories 

have been gaining traction in school settings due to changing 

perceptions of the nature of learning [26]. 

A mathematician, computer scientist, and educator, Papert 

expanded on developmental psychologist Piaget's 

Constructivism educational philosophy to formulate the 

Constructionism learning theory. Papert developed an early 

educational programming language called the computer 

language Logo [27]  and used the analogy of teaching a new 

language to a Logo turtle to introduce the programming 
concept.  Later, the MIT Media Lab, led by his student 

Resnick, developed Scratch based on Papert’s 

constructionism. 

Commonalities emerge when comparing Papert’s 

constructionism to the previously established constructivism 

of Piaget and Vygotsky. These include knowledge inseparable 

from context and real-world challenges, constant reflection, 

and reflexivity, essential as learners build on their own 

experiences. Collaboration with other learners to solve new 

problems is also necessary. However, they are differentiated 

by a spirit of continuous challenge without fear of failure, 
encouragement and emphasis on failure as a productive 

opportunity to improve problems through the concepts of 

"bugs" and "debugging," enjoyment to achieve challenging 

goals, and proper use of time to accomplish significant things 

[27], [28], [29], [30], [31]. In the constructionism approach, a 

paradigm of education in the information age, Papert 

emphasized that expressing inner feelings and ideas into 

concrete objects is critical to learning [32], [33]. 

C. Learning Motivation and Creative Problem Solving 

Learning motivation is "the force that initiates learning, 

determines its direction, and determines the continuity and 

intensity of learning." A learner's motivation is a significant 

variable to consider in a teaching-learning situation because it 

is the driving force for learning to occur [12]. In other words, 

learners who are not motivated in a teaching-learning 

situation will lose direction, so motivation is essential for 

learner behavior [14]. Creative problem-solving is “a process 

in which creative thinking occurs through the interaction of 

divergent and convergent thinking in three stages: 

understanding the problem, generating ideas, and planning 
and executing actions” [32]. Learning creative problem-

solving is essential in computing education because Korean 

students are proficient at solving problems. Still, they often 

struggle with identifying and exploring issues independently. 

Generating solutions through computational thinking 

involves active and creative work, offering an opportunity to 

enhance traditional passive forms of education [34]. 

Studies on the relationship between creativity, problem-

solving, and motivation in college students have shown that 

problem-solving and learning motivation are essential for 

increasing overall creativity. Therefore, for practical 
computing classes for college students, it is necessary to 

develop a class model and research various instructional 

methods to foster computational thinking skills, learning 

motivation, and creative problem-solving. 

D. Effective Teaching and Learning Methods for Non-majors 

Although interest in computing education has expanded to 

include non-majors, it isn't easy to expect non-majors 

unfamiliar with computers to learn effectively using the same 

teaching methods as existing majors [7], [8]. Various 

instructional methods are needed to facilitate understanding 

because of the lack of basic programming knowledge and its 

connection to significant subjects [35]. 

The most popular instructional method is a universally 

recognized way of conveying knowledge to students, in which 

the lecturer demonstrates knowledge while the students listen 

and learn. This method can effectively transfer linguistic 

information and cognitive knowledge [32]. Cognitive 
apprenticeship theory is an instructional method that involves 

a process of modeling in which the teacher performs a task, 

and then the learner observes and imitates. It can be applied 

in all areas of learning, but it is especially helpful in primary 

areas that require complex cognitive strategies, such as 

science, math, and information [32]. 

Problem-based learning is a constructive instructional 

method that simultaneously teaches subject matter 

knowledge, skills, and problem-solving strategies by 

presenting complex, real-world, unstructured problems that 

require learners to find meaningful solutions to problems or 
tasks [32], [36]. Project-based learning is a method of 

performing multiple learning activities in which the learner's 

mind creates concrete and tangible outputs in the process of 

solving problems related to real life [37]. When applied to 

computing education, this method addresses the challenge of 

teaching simple programming languages and grammar that 

lack relevance to real-life contexts [38]. In team projects, 

students with different programming abilities can help each 

other to complete more challenging tasks. Constructive 

evaluation activities that allow for sharing opinions and 

feedback can lead to improved outputs [39]. 
The CT-CPS (Computational Thinking-based Creative 

Problem Solving) instructional model integrates each element 

of computational thinking into the creative problem-solving 

phase. When applied to computing education, it offers a 

learning experience where students discover problems on 

their own and creatively and actively solve them using 

computers [34]. Therefore, an effective instructional method 

for non-majors should differ from that of majors and employ 

various processes according to the context of computing 

education. 

E. The Development of the MCPS Instructional Model  

This study suggested a specific method of computing 

liberal arts classes for non-majors to improve their learning 

motivation and creative problem-solving skills. To this end, 

the Motivation and Creative Problem Solving (MCPS) model 

for non-majors was developed based on Papert’s 

constructionism learning principles, the challenges 

encountered in computing classes for non-majors, and the 

insights gleaned from other instructional models. The model 

was then reviewed and refined through expert evaluation to 
ensure its appropriateness, leading to the development of a 

final version.  

1)   Principles of Design for Developing Instructional 

Model: Some principles of the instructional model design 

developed in this study. First, we explored the approach of 

constructionism, which is an educational paradigm in the 

information age, and designed based on Paper’s learning 

principles of constructionism [16], [24], [25], [26], [27], [29], 
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[30], [31], [32], [33]. Second, we analyzed the issues of 

computing classes for non-majors through previous studies 

and devised a solution to enhance them by employing the 

modeling process [5], [10], [11], [16], [18], [23], [31], [38]. 

Third, to enhance the learning effectiveness of computing 

education for non-majors, we applied various teaching 

methods for each stage to foster interest in learning, 

encourage active class participation, and develop skills for 

creative problem-solving [32], [34], [36], [37], [38], [39]. 

Table 1 shows the details of the design principles for 

developing models for instruction. 

TABLE I 

DESIGN PRINCIPLES AND DETAILS OF THE MCPS INSTRUCTIONAL MODEL. 

Principles of design Details 

Reflection on Papert’s 

constructionism learning 
principles 

A. Use technology, digital technology, as a tool for thinking [27], [33]. 
B. Help students learn how to learn rather than teach them everything they need to know [27]. 
C. Use programming to organize thinking and problem-solving [27]. 
D. Allow them to learn through experience [16], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33]. 
E. Allow them to explore what interests them most [27], [28], [33]. 
F. Allow learners to bring out their inner feelings and ideas [27], [29], [30], [31]. 
G. Allow them to learn from failure [27], [33]. 
H. Allow them to express their ideas concretely [28], [32]. 

I. Make ideas materialize [28], [32]. 
J. Go through a process of proofreading their ideas [27], [28], [32]. 
K. Evaluate each other's ideas. Share ideas so that they can communicate with each other [27], [28], [32]. 
L. The result is an activity of constructing knowledge based on concrete objects [27], [28], [32], [33]. 
M. They can engage in an iterative process of developing their tools and media [27], [28], [32]. 
N. Allow learners to manage their learning process [28], [32], [33]. 
O. Help them understand how ideas are shaped and transformed when they are expressed through different 
media and when they are realized in specific contexts [27], [28], [32]. 

P. Making learning easy, fun, and engaging [27]. 

Challenges encountered in 
computing classes 

a. Lack of motivation in computing education [5], [11], [38]. 
b. Investigation of learners' characteristics and difficulties before computing education [10], [16]. 
c. Prerequisite understanding of computers [5], [11], [10], [16]. 
d. Difficulty with programming languages and terminology [10], [11], [16]. 
e. A variety of learner-centered curricula and teaching and learning methods [11],[31]. 
f. Spreading educational systems and organizing educational environments to provide various computing 
experiences and opportunities [11], [18], [23]. 

Reflection of other 
instructional models 

① Principles of lecture-based learning [32]. 

② Principles of cognitive apprenticeship [32]. 

③ Problem-based learning principles [32], [36]. 

④ Project-based learning principles (individual, team) [37], [38], [39]. 

⑤ Principles of computational thinking-based creative problem solving (CT-CPS) [34]. 

2)   Draft of MCPS Instructional Model: To develop a 

draft of the instructional model, we used the principles and 

details of instructional design in Table 1 to establish the stages 

of a class, considering when they can be applied. We 

developed a draft instructional model, as shown in Table 2.  

TABLE Ⅱ 

DRAFT OF THE MCPS INSTRUCTIONAL MODEL 

Instructional models Step-by-step design principles 

Steps Details Papert’s 

constructionism 

learning principles 

Challenges 

encountered in 

computing classes 

Other 

instructional 

models 

Step 1. 
motivation and 
preparation 

1.1 Learning motivation (relevance to major, need for 
computing education) 
1.2 Identifying learner’s characteristics and difficulties 
in computing education (online survey) 

1.3 Identifying the antecedents of computing education  

A, B a, b, c ① ,② 

Step 2. 
building of basic 
knowledge 

2.1 Learning motivation (find related current IT issues) 
2.2 Demonstration (explain programming grammar) 
2.3 Support (using real-life examples) 
2.4 Stop helping (extend practice) 

A, B, C, D, P a, b, c, d 

Step 3. 
application of basic 
knowledge 

3.1 Learning motivation (build expectations by 
introducing computing skills) 
3.2 Problem settings 

3.3 Derive a solution to the problem 
3.4 Share solutions 

A, B, C, D, E, F, G, P a, b, c, d, e ② ,④ 
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Instructional models Step-by-step design principles 

Step 4. 
planning outputs 
and execution 

4.1 Exploring ideas 
4.2 Ideation 
4.3 Design and share ideas 

4.4 Implementing ideas 
  4.4.1 Proofread ideas 

4.4.2 Share Concrete Outputs 
4.5 Evaluation 

A, B, C, D, E, F, G, 
H, I, J, K, L, M, N, P 

a, b, c, d, e ③ ,⑤ 

Step 5. 
development 

5.1 Learning motivation (identify challenges and 
confidence boosts) 
5.2 Applying digital technology 
5.3 Express ideas through various media 

A, O, P a, f online/offline 

 

In step 1, ‘Motivation and Preparation,’ we acknowledged 

the relevance of the major and the need for computing 

education to address the issue of insufficient learning 

motivation. We addressed this by integrating it across all 

stages, utilizing the identification of learner characteristics 

and comprehension of computers to sustain motivation. In 

step 2, ‘Building of Basic Knowledge,’ expert instructors 

demonstrate the problem-solving process to assist learners 

with programming grammar and terminology difficulties. 

This is further enhanced with real-world examples, gradually 

reducing support as learners independently solve problems. In 
Step 3, ‘Application of Basic Knowledge,’ a learner-centered, 

problem-based learning environment is established to 

alleviate the burden on learners and allow them to practice 

before engaging in team projects as part of a mini-project. In 

step 4, ‘Planning and producing products,’ we emphasize the 

process of correction and communication through intra- and 

inter-team sharing activities so that intangible ideas can be 

materialized. It is organized to manage the learning process 

by using the experience of failure as a learning opportunity. 

Step 5, ‘Development,’ is designed to provide an environment 

and opportunities for learners to develop their sense of 
challenge and confidence as an extension of the classroom 

rather than ending with producing and evaluating concrete 

objects. 

3)   MCPS Instructional Model Appropriateness Review:  

To ensure the appropriateness of the proposed MCPS 

instructional model, the first Delphi survey was conducted to 

assess the Content Validity Ratio (CVR), followed by the 

second Focus Group Interview (FGI) for expert review. In the 

first expert review, a validity review was conducted on the 

appropriateness of the instructional model, such as the 

purpose of development of the model, class steps, and 

applicability. A Likert 5-point scale was used for responses, 

with five indicating 'very appropriate' and one indicating 'not 

at all appropriate.' Suggestions for the MCPS instructional 

model were freely written in an open format. 

The validity analysis method was calculated using the CVR 

of Lawshe (1975), as shown in Equations [40]. 

CVR =  

 

: Number of "essential" 

respondents 

N : Total number of respondents 
(1) 

The experts involved in the review comprised 27 

individuals, including university professors and lecturers 

specializing in computer education and educational 

technology, as well as in-service teachers and researchers. 

Based on the number of participating experts, the criterion for 

ensuring content validity was established at a CVR of .407 

[40]. Table 3 presents detailed results of the expert evaluation, 
including response outcomes and research items, from the 

initial expert review. 

TABLE Ⅲ 

CVR VERIFICATION RESULT FOR EACH QUESTIONNAIRE 

Division Contents of question 

Number of 

Responses (N=27) M SD CVR 

5 4 3 2 1 

Purpose of 

development 

1 Do you think the ‘purpose of development’ of the MCPS instructional model is 

appropriate? 
12 15 0 0 0 4.4 0.51 1.00 

Steps of class 2 It is appropriate to base the instructional steps of the study model on Papert's 

constructionism learning principles and the problem of improving computing 

classes. 

16 9 1 1 0 4.5 0.75 0.85 

3 The instructional steps in the model are appropriate. 14 11 1 1 0 4.4 0.75 0.85 
4 The detailed instructional steps in step 1, ‘Motivation and preparation,’ are 

appropriate. 
14 9 3 1 0 4.3 0.83 0.70 

5 The detailed lesson steps for Step 2, ‘building Basic knowledge,’ was set 

appropriately. 
12 14 1 0 0 4.4 0.57 0.93 

6 the class steps for Step 3, ‘apply basic knowledge,’ are set appropriately. 12 13 2 0 0 4.4 0.63 0.85 
7 The class steps for Step 4, ‘Planning Outputs and Execution,’ are set appropriately. 15 11 1 0 0 4.5 0.58 0.93 
8 The class steps for ‘Step 5 ‘development’ are set appropriately. 15 10 2 0 0 4.5 0.64 0.85 

Applicability 9 The study model is appropriate for use in a project-based programming class for 

non-majors. 
10 14 2 1 0 4.2 0.75 0.78 

10 The study model would help design computing course content for non-majors. 14 11 2 0 0 4.4 0.64 0.85 

Overall average 4.5 
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The results of the CVR validation showed that all the 

survey items were above .407, which ensured the overall 

validity of the items. The overall average was 4.5, which was 

a favorable evaluation result. However, the applicability (4.2) 

of item 9 showed a slightly lower response result. As an open-

ended opinion related to this, it was observed that it could be 

difficult for non-majors and that step integration and 

simplification were necessary. It was also observed that this 

can be very effective for non-majors in a macroscopic aspect 

if the class difficulty and task level are well adjusted and 
operated by analyzing the learners’ characteristics in step 1.  

The validity of the MCPS instructional model was 

investigated through a first-order Delphi study—the results of 

descriptive opinions and open-ended responses to items were 

valid for all items.  In addition, interviews were conducted 

with four university professors and researchers majoring in 

educational engineering and related to teaching-learning 

theory and instructional design to gather more in-depth and 

professional opinions from an educational engineering 

perspective on whether the development of the instructional 

model and the composition of the instructional design in this 
study were organized correctly to meet the goals.  

To summarize the first and second expert opinions, it is 

necessary to distinguish the model development from existing 

models by clearly presenting the instructional model and 

instructional design components separately and providing 

detailed activities and strategies for each step. Additionally, it 

was noted that the study would be enhanced if the 

instructional design clearly outlined the instructional goals 

and evaluation methods and if these were reflected in the field 

application. Therefore, in this study on the development of the 

MCPS instructional model, an additional investigation was 
conducted to create a learner evaluation rubric based on the 

MCPS instructional model to enhance its comprehensiveness. 

This rubric considers content and evaluation aspects by 

explicitly outlining the lesson objectives. 

4)    Developing a Finalized Instructional Model: The 

instructional model was modified to reflect its validity 

verification, expert open review, and FGI survey results. The 

final version of the MCPS instructional model was developed, 

as shown in TABLE 4, by supplementing the teaching and 

learning activities and strategies. 

TABLE Ⅳ 

MAPS INSTRUCTIONAL MODEL 

Steps Details 

Step 1. 
Motivation 
and 

preparation 

1.1 Learning motivation (relevance to major, 
need for computing education) 
1.2 Identifying learner’s characteristics and 

difficulties in computing education (online 
survey) 
1.3 Identifying the antecedents of computing 
education  

Step 2. 
Building of 
basic 
knowledge 

2.1 Learning motivation (find related current IT 
issues) 
2.2 Demonstration (explain programming 
grammar) 

2.3 Support (using real-life examples) 
2.4 Stop helping (extend practice) 

Step 3. 
Application 
of basic 
knowledge 

3.1 Learning motivation (build expectations by 
introducing computing skills) 
3.2 Problem settings 
3.3 Derive a solution to the problem 

Steps Details 

3.4 Share solutions 
Step 4. 
Planning 
outputs and 
execution 

4.1 Exploring ideas 
4.2 Ideation 
4.3 Design and share ideas 
4.4 Implementing ideas 
  4.4.1 Proofread ideas 

4.4.2 Share Concrete Outputs 
4.5 Evaluation 

Step 5. 
Development 

5.1 Learning motivation (identify challenges and 
confidence boosts) 
5.2 Applying digital technology 
5.3 Express ideas through various media 

5)   Differentiation from the Existing Instructional Model:  

The MCPS instructional model developed in this study has the 

following characteristics compared to previous studies.  

Firstly, based on Papert’s constructionism learning theory, 

learner level and pace were adjusted. The preparatory step 

was organized based on learner characteristics to provide 

learners with many opportunities to make choices and reflect 

on them so that non-majors can feel satisfaction and 

achievement.  

Secondly, most of the existing instructional models only 

motivate students initially; the MCPS instructional model 

fosters continuous motivation throughout all steps. 

Furthermore, it offers activities such as finding relevance and 

providing related information from stage 2 to stage 5. By 
enabling non-major students to sustain and enhance their 

learning motivation at every stage—through reminders of 

their goals and progress checks—the significant issue of lack 

of motivation has been addressed and improved.  

Thirdly, while most existing instructional models are 

designed for short-term (or single-session) classes, the MCPS 

instructional model is designed for semesters or longer by 

applying practical learning principles for non-majors.  

Fourthly, in traditional computing classes, the product 

project typically follows the learning of programming, 

serving as a task or a means of evaluation. In contrast, the 

MCPS instructional model is designed to facilitate systematic 
learning by incorporating the entire process of planning and 

producing applications and project outputs within the 

framework of essential knowledge formation in the 

instructional model.  

Fifthly, integrating extracurricular activities fosters a sense 

of challenge and self-confidence, with the instructional model 

extending beyond the mere production and evaluation of 

existing outputs. Moreover, it can be flexibly configured and 

operated to align with school events and schedules.  

F. The Development of an Evaluation Rubric for the MCPS 

Instructional Model  

1)   Principles of Developing an Evaluation Rubric for the 

MCPS Model: Based on related studies [23], [34], [41], [42], 

[43], [44], [45], there are some principles for developing an 
evaluation rubric for the MCPS model. First, include 

cognitive and definitional domains, encompassing theory and 

practice, as well as individual and collaborative outputs. 

Second, based on process-oriented evaluation comprises 

formative evaluation (classroom practice, assignments), 

summative evaluation (short answer, narrative, practical 

evaluation, product plan, and report), and collaborative 
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evaluation. Third, it is not limited to computational thinking 

skills. The process of producing output by solving real-life 

(major) related problems by themselves is organized and 

evaluated as an educational goal. Fourth, the scores are 

subdivided to enable reliable evaluation. Fifth, clear criteria 

should be provided based on the MCPS instructional model's 

step-by-step objectives. 

2)   Evaluation rubric factors:  The steps of the MCPS 

lesson model were matched with the evaluation factors from 

the relevant research in columns.  Rows are the objectives for 

each step in the MCPS instructional model. The evaluation 

factors for each step in the MCPS instructional model 

included knowledge, skill, and attitude domains, resulting in 

the evaluation factors shown in Table 5. 

TABLE Ⅴ 

RESULTS OF DERIVING EVALUATION FACTORS FOR AN EVALUATION RUBRIC 

MCPS Instructional Model 

Steps [6] 
Evaluation Factors Knowledge Skills Attitudes 

Step 1. Motivation and 
preparation 

1.1 Basic principles and concepts of computers 
1.2 Recognition of the relevance of computing to major fields 
1.3 Design real-world computing algorithms 

○ 

○ 

○ 

 
 

 

○ 

 
 

○ 

○ 

Step 2. Building of basic 
knowledge 

2.1 The concept of programming Elements 
2.2 Executing code with programming elements 
2.3 Executing code to solve real-world problems 

○ 

○ 

○ 

  
 

○ 

○ 

 
 

 

○ 

Step 3. Application of basic 
knowledge 

3.1 Analyzing code to solve real-world(major-related) problems 
3.2 Execute code to solve a real-world(major-related) problem 
3.3 Expressing a Solution 

○ 

○ 

○ 

 

○ 

○ 

 
 

 

○ 

Step 4. Planning outputs and 
execution 

4.1 Exploring real-world problems 
4.2 Appropriateness of data collection and analysis 
4.3 Decompose the problem into solvable units 
4.4 Design a solution 
4.5 Implement the solution 
4.6 Refine through testing and debugging 
4.7 Feedback through sharing and collaboration 

4.8 Representing the results of collaborative output 

○ 

○ 

○ 

○ 

○ 

○ 

○ 

○ 

  

○ 

○ 

○ 

○ 

○ 

○ 

○ 

 

 

 

 
 

 

 

 
 

○ 

○ 

Step 5. development 5.1 various expressions of ideas 
5.2 share your impressions of participating in computing classes 

○ 

○ 

○ 

○ 

○ 

○ 

3)   Rubric appropriateness review: A validity study was 

conducted with experts on the draft MCPS instructional 

model learner evaluation rubric. The validity analysis method 

was based on the CVR calculation formula [Equation (1)], and 

the CVR was set at .538 (number of experts: 13) according to 

the number of responding experts. We conducted a CVR 
review of the learner evaluation rubric development's 

evaluation factors and evaluation levels. First, we checked the 

validation results of the evaluation elements, and all of them 

were above .538, which ensured the validity of all items. 

However, after discussing the borderline value of Step 5.2, 

"Sharing experiences and reflections on participation in 

computing classes (0.54)", it was removed because it is part 

of the "Expressing ideas in a variety of ways" step in Step 5.1. 

The overall rating was 4.50, which is a positive result. The 

results of the expert review on the appropriateness of the 

evaluation level based on the evaluation factors showed that 
some items had a slightly lower CVR value of 0.54. Still, all 

survey items had a CVR value of .538 or higher, ensuring the 

validity of all items. Although the overall rating of 4.53 was 

positive, the ratings of Step 1.2, "Recognizing the relevance 

of computing to the major field (4th Industrial Revolution)," 

and Step 1.3, "Designing computing algorithms in real life," 

were somewhat lower than the other items. However, the 

ratings of 4.2 were positive; it can be observed that it is 

essential that non-majors have activities that are not only 

related to their major but also related to real life to motivate 

them. In addition, we observed that the evaluation of outputs 
should include the process and set evaluation criteria and that 

evaluation and feedback from instructors and evaluation of 

self-evaluation and peer evaluation are needed. 

4)   Develop a finalized version of the evaluation rubric:   

Based on the expert review comments above, the draft learner 

evaluation rubric was revised and refined to develop a 

finalized version. Step 1 was to evaluate learners' attitudes 
before programming classes and their ability to recognize the 

need for computing education and to write real-life 

algorithms. In Step 2, the students were asked to understand 

the concepts of programming elements, follow the code of 

real-life examples, and evaluate whether they could write and 

extend them by adding their ideas. Step 3 is constructing a 

solution to a real-world or major-related problem and 

presenting a finalized solution. Step 4, the output process was 

evaluated on whether the team explored and analyzed the 

idea, broke it down into solvable units, designed and 

implemented it, and evaluated the output together to provide 
feedback. Step 5 was organized to assess the attitude of 

reaffirming the need for computing and gaining confidence 

through sharing experiences and feelings about various 

expressions of ideas. The learner evaluation rubric for the 

MCPS instructional model developed in this study will offer 

a more objective and reliable assessment by furnishing a 

precise evaluation criterion that assesses both the process of 

learning programming and the completion of creative output.  

G. Application of MCPS Instructional Models 

1)   Purpose and hypothesis:  We developed and 

implemented a computing course utilizing the MCPS 
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instructional model to enhance learning motivation and foster 

creative problem-solving skills in a college-level computing 

liberal arts class for non-majors. Subsequently, we evaluate 

its efficacy through result analysis. To validate the 

effectiveness via a comparison between the group utilizing the 

MCPS teaching model and the group undergoing traditional 

computing classes in liberal arts for non-majors. The research 

hypotheses for application and effectiveness analysis of the 

MCPS instructional model are as follows: 

[Learning Motivation – Inter-group] 

a. [Hypothesis A1] In a college-level computing liberal 

arts class for non-majors, the MCPS class model group 

will exhibit significant differences in intrinsic 

motivational goals compared to the group undergoing 

traditional computing classes. 
b. [Hypothesis A2] In a college-level computing liberal 

arts class for non-majors, the MCPS class model group 

will demonstrate significant differences in extrinsic 

motivational goals compared to the group undergoing 

traditional computing classes. 

c. [Hypothesis A3] In a college-level computing liberal 

arts class for non-majors, the MCPS class model group 

will show significant differences in the control of 

learning beliefs compared to the group undergoing 

traditional computing classes. 

d. [Hypothesis A4] In a college-level computing liberal 

arts class for non-majors, the MCPS class model group 
will display significant differences in self-efficacy 

regarding learning motivation compared to the group 

undergoing traditional computing classes. 

[Creative Problem-solving Skills – Inter-group] 

a. [Hypothesis B1] In a college-level computing liberal arts 

class for non-majors, the MCPS class model group will 

present significant differences in specific areas of 

creative problem-solving skills such as knowledge, 

thinking, skills, and proficiency compared to the group 

undergoing traditional computing classes. 

b. [Hypothesis B2] In a college-level computing liberal arts 
class for non-majors, the MCPS class model group will 

demonstrate significant differences in expansive 

thinking regarding creative problem-solving skills 

compared to the group undergoing traditional computing 

classes. 

c. [Hypothesis B3] In a college-level computing liberal arts 

class for non-majors, the MCPS class model group will 

exhibit significant differences in critical and logical 

thinking regarding creative problem-solving skills 

compared to the group undergoing traditional computing 

classes.  
d. [Hypothesis B4] In a college-level computing liberal arts 

class for non-majors, the MCPS class model group will 

manifest significant differences in motivational factors 

concerning creative problem-solving skills compared to 

the group undergoing traditional computing classes.  

2)   Application design:  This study was conducted with 

non-major students enrolled in the computing course for non-

majors at the University of A in South Korea. The participants 

comprised 91 students from four divisions, with 43 students 

in the experimental group and 48 in the control group. The 

intervention period they lasted from March 1st to December 

21st, 2022, spanning 15 weeks each for the first and second 

semesters. Before the experiment, pre-tests for creative 

problem-solving skills and learning motivation were 

conducted to confirm the homogeneity of the experimental 

and control groups. Following the pre-tests, the experimental 

group received a computing course based on the MCPS class 

model, while the control group received traditional computing 

instruction. Traditional computing instruction refers to 

lecture-based teaching focusing on grammar and end-of-

semester project-centered instruction. Post-tests were 
administered immediately after the course's completion, and 

this application's design is outlined in Table 6.  

TABLE Ⅵ 

APPLICATION DESIGN OF THE RESEARCH 

G1 O1 X1 O3 

G2 O2 X2 O4 

G1: control group 
G2: experimental group 
O1, O2: pre-test (creative problem-solving ability test, learning 
motivation test) 
X1: MCPS-based computing course 

X2: traditional computing course 
O3, O4: post-test (creative problem-solving ability test, learning 
motivation test) 

3)   Test Tool of Learning Motivation: For the learning 

motivation test, a test tool modified by Kang [46] based on 

the Motivation Strategies for Learning Questionnaire 

(MSLQ) produced by Pintrich and his colleagues [47] was 

used. The validity of this test paper was re-verified by one 
teacher and two educational engineering experts [12]. The 

sub-factors of the learning motivation test paper consist of 

‘Internal goals,’ ‘External goals,’ ‘Control of learning 

beliefs’, and ‘Self-efficacy.’ There are 16 items, four for each 

sub-factor, and each item is presented on a 5-point Likert 

scale. Table 7 shows the sub-factors and number of items in 

the learning motivation test tool [15]. 

TABLE Ⅶ 

SUB-FACTORS AND ITEMS OF THE LEARNING MOTIVATION TEST TOOL 

Sub-Factor Question Number of 

Questions 

internal goals 1, 10, 13, 14 4 

external goals 5, 7, 9, 16 4 
control of learning beliefs 2, 6, 11, 15 4 
self-efficacy 3, 4, 8, 12 4 
total 16 

4)   Test Tool of Creative Problem-Solving Ability:  In this 

study, the ‘Simple Creative Problem-Solving Ability Test 

Paper’ developed by the MI Research Team [48] of the 

Psychological Lab at Seoul National University was used 

[44]. This tool was developed based on the ‘Simple Creative 

Problem-Solving ability test development study’ [49] 

published by the Korea Educational Development Institute to 
measure creative problem-solving ability [34]. The sub-

factors of the tool consist of ‘knowledge in a specific area, the 

function of thinking, skill, and mastery,’ ‘divergent thinking,’ 

‘critical and logical thinking,’ and ‘motivational elements. 

There are 20 items, five for each sub-factor, and each item is 

presented on a 5-point Likert scale. Table 8 shows the sub-

factors and number of items in the creative problem-solving 

ability test tool [15]. 
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TABLE Ⅷ 

SUB-FACTORS AND ITEMS OF THE CREATIVE PROBLEM-SOLVING ABILITY 

TEST TOOL 

Sub-Factor Question Number of 

Questions 

Knowledge in a specific area, 
the function of thinking, skill, 

and mastery 

1, 2, 3, 4, 5 5 

Divergent thinking 6, 7, 8, 9, 10 5 
critical and logical thinking 11, 12, 13, 14, 15 5 
motivational elements 16, 17, 18, 18, 20 5 
total 20 

5)   Extraction of Constructionism Learning 

Characteristics Factors based on Papert: In this study, to 

conduct causal analysis considering the constructionism 

learning characteristics of Papert, we utilized the Class 

Evaluation Items developed by our university. To extract the 

constructionism learning characteristics of Papert, we 

analyzed the validity of the factors by selecting 12 items out 

of a total of 15 items in the class evaluation questionnaire, 
excluding three self-evaluation items, as the subject of factor 

analysis. Statistical analysis was performed using SPSS 26, 

and exploratory factor analysis was conducted on the 

completed items through expert validation. The extraction 

method employed was Principal Component Analysis, and the 

rotation method used was varimax for factor analysis [50].  

In the third round of factor extraction, following the first 

and second rounds, the Kaiser-Meyer-Olkin (KMO) measure 

yielded a value of .850 (> .5), indicating adequacy, and 

Bartlett's test of sphericity resulted in an approximate chi-

square value (significance probability) of 705.178 (.000), 

confirming suitability. A total of 6 items were identified, with 

each factor comprising three items, demonstrating the most 

appropriate conclusion. Additionally, high reliability was 

ensured for Factor 1 and 2, with values of .987 and .990, 

respectively. 

Considering the content and evaluation areas of the items 

ultimately derived from exploratory factor analysis, and after 

review by three experts, the factors were named ‘interest-

based problem-solving’ and ‘communication using digital 

technology.’ Furthermore, a Cronbach's alpha value of .991 

was obtained through reliability analysis, indicating very high 
reliability. The constructivist learning characteristics factors 

and item composition utilized in this study are outlined in 

Table 9. 

TABLE Ⅸ 

CHARACTERISTICS AND ITEMS OF PAPERT'S CONSTRUCTIONIST LEARNING 

Sub-Factor Question 
Number of 

Questions 

Cronbac

h-α 

interest-based problem-
solving 

11, 14, 15 3 
.991 

communication using 
digital technology 

4, 9, 10 3 

total 20  

6)   Instructional Implementation:  In this study, to 

validate the MCPS instructional model's effectiveness, we 

developed a computing course based on the MCPS model and 

conducted expert validation. We intend to apply for this 

course to the experimental group. The control group was 

designed to follow the traditional university computing course 

format. To compare the courses between the experimental and 

control groups, we outlined the weekly course designs for 

each group, as shown in Table 10. 

TABLE Ⅹ 

COMPARISON OF LESSON PLANS BY WEEK BETWEEN THE EXPERIMENTAL GROUP AND THE CONTROL GROUP 

Experimental Group (N=43) (MCPS-based Computing Course) 

Week 

(3 h) 

Control Group (N=48) (Traditional 

Computing Course) 

Application of MCPS Principles Course Topic (App Inventor 

Programming) 

Course Topic (App 

Inventor Programming) 

Teaching Method 

[Step 1] 
� Maintain overall motivation 
� Identify learner characteristics 
� Pre-existing understanding of 
computing 

Orientation and 4th industrial 
revolution, (online survey) 

1 Orientation and 4th Industrial 
Revolution, introduction to 
App inventor 

▸ lecture method+ 
basic examples 

Basic Examples: understanding App 
inventor's essential functions and 
understanding of variables 
(understanding computing) 

2 Understanding app inventor's 
essential functions and 
understanding of variables 

[Step 2] 
� Find motivation and relevance 
� Adaptation of learner characteristics 
from step 1 -> adjusting learning pace 
and level 
� Explanation of syntax followed by 

practice 
� Demonstrating real-life examples 
� Extend with additional ideas 

Understanding conditions 3 Understanding conditions 

Understanding lists 4 Understanding lists 

Understanding loops 5 Understanding loops 

Understanding functions 6 Understanding functions 

Understanding other functions 7 Understanding other functions 

Understanding level check (midterm 
exam) 

8 Understanding level check 
(Midterm exam) 

[Step 3] 
� Find motivation and relevance 
� Set everyday life (major-related) 
problems 
� Find solutions independently 
� Share solutions  

Solving everyday life and major-related 
problems 

9 Solving everyday life and 
major-related problems 

▸ Lecture method 
+ advanced examples 
(including real-life 
related topics) 

[Step 4] Creating apps using maps 
(brainstorming ideas) 

10 Creating apps using sensors 

1542



Experimental Group (N=43) (MCPS-based Computing Course) 

Week 

(3 h) 

Control Group (N=48) (Traditional 

Computing Course) 

Application of MCPS Principles Course Topic (App Inventor 

Programming) 

Course Topic (App 

Inventor Programming) 

Teaching Method 

� Form teams based on learner 

opinions 
� Implementing creative outputs by 
exploring ideas and solving problems 
� [Example: 2nd class, output 
production 1st class conducted 
together or example: 1st class, output 
production 2nd class] 
� [Submit step-by-step plans and 
reports] 

Creating apps using maps creating quiz 

apps (design and share ideas, for 
example) 

11 creating apps using maps 

creating quiz apps (design and share 
ideas, for example) 

12 Creating quiz apps 

Creating apps for convenience in daily 
life (Implementing ideas) 

13 Creating apps for convenience 
in daily life 

▸Problem-based 
learning  

▸Project-based 
learning (team) 

Evaluate outputs (instructor evaluation, 
peer evaluation, self-evaluation) 

14 Apps for college students 
(Output production) 

[Step 5] 
� IoT demonstration 
� Participation in campus exhibitions 
� Computing competitions, etc. 

Spreading ideas 15 Evaluate outputs (instructor 
evaluation, peer evaluation, 
self-evaluation) 

 
In the experimental group's initial session, an online survey 

was conducted to analyze learner characteristics. Based on the 

results of this analysis, adjustments were made to learner 

level, learning speed, and task difficulty starting from MCPS 

class stage 2. Additionally, a team was formed incorporating 

learner feedback, and the class environment was tailored to 

address learner difficulties and preferences before each 

session [51]. 

Comparing the characteristics of the two groups, during the 

first and second weeks, the experimental group discussed the 

necessity of computing and computer comprehension as part 
of a motivation and preparation step. An online survey was 

also conducted to analyze learner characteristics. In contrast, 

the comparison group proceeded directly to the main class 

after an orientation session. 

From weeks 3 to 8, both groups focused on learning 

programming grammar. The experimental group adjusted 

their approach based on learner characteristics, presenting 

topics that overlapped with consideration of learning levels, 

speeds, and task difficulties. Additionally, they engaged in 

activities before each class to connect with current IT issues. 

The instructional approach involved principles of lecture 

methods for explaining and summarizing grammar and 
cognitive apprenticeship principles for demonstration and 

extended activities based on real-life examples. The 

comparison group followed a more traditional grammar-

centered lecture method with basic examples. 

Weeks 9 to 14 saw the experimental group engaging in 

practical exercises to solve real-life or significant problems. 

They explored ideas, designed, implemented, and evaluated 

solutions independently, fostering creativity through team 

collaboration, opinion sharing, and feedback. Meanwhile, the 

comparison group focused on in-depth examples followed by 

producing output, mainly through problem-based learning 
sessions addressing end-of-semester projects. 

The final 15th week it involved a developmental stage and 

idea dissemination activities for the experimental group (such 

as school software exhibitions, idea contests, IoT 

demonstrations, etc.). In contrast, the comparison group 

underwent project evaluation. 

III. RESULTS AND DISCUSSION 

A. Comparison of Pre-Post Tests 

Data analysis and processing in this study were conducted 

using IBM SPSS version 26. To verify the hypothesis of this 

application, a t-test was performed to confirm the 

homogeneity of the experimental and control groups' learning 

motivation and creative problem-solving ability before the 

experiment. The pre-test results for learning motivation and 

innovative problem-solving ability showed that the control 

and experimental groups had similar average values, and the 

significance levels for each factor in the two groups were all 

above .05, showing no significant differences between the 

groups. Therefore, it was confirmed that the control and 
experimental groups were homogeneous in terms of learning 

motivation. Table 11 shows the results of the Learning 

Motivation pretest. 

TABLE ⅩⅠ 

RESULTS OF PRE-TEST FOR LEARNING MOTIVATION(EXPERIMENTAL N=43, 

CONTROL N=48) 

Sub-Factor Group M SD T P 

Internal goals Experimental group 3.56 .557 -1.032 .305 
Control group 3.69 .626 

External goals Experimental group 3.69 .638 -.147 .884 
Control group 3.71 .758 

Control of 
learning beliefs 

Experimental group 3.70 .423 -.486 .628 
Control group 3.76 .571 

self-efficacy Experimental group 3.01 .612 .246 .806 
Control group 2.97 .819 

 

After conducting the pre-test for creative problem-solving 

ability, it was observed that the control group had a slightly 

higher overall average value than the experimental group. 

However, the significance level for each factor was above .05, 

indicating no significant differences between the groups. 

Consequently, it was confirmed that the control and 
experimental groups were homogeneous in terms of creative 

problem-solving ability. The results of the creative problem-

solving ability pre-test are presented in Table 12. 

TABLE ⅩⅡ 

RESULTS OF THE PRE-TEST FOR CREATIVE PROBLEM-SOLVING 

ABILITY(EXPERIMENTAL N=43, CONTROL N=48) 

Sub-Factor Group M SD T P 

Knowledge in a 
specific area, the 

Experimental group 2.71 .597 -.896 .373 
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function of thinking, 

skill, and mastery 

Control group 2.83 .648 

divergent thinking Experimental group 2.73 .716 -.074 .941 
Control group 2.74 .745 

Critical and logical 
thinking 

Experimental group 3.47 .453 -
1.378 

.172 
Control group 3.62 .576 

Motivational 
elements 

Experimental group 3.17 .493 -.617 .539 
Control group 3.25 .684 

1)    Comparison of Post-Test Results between Groups: To 
confirm whether there are significant differences in learning 

motivation and creative problem-solving ability between the 

experimental group and the control group after the 

experimental treatment, a post-test was conducted, and the 

results comparing the post-test of the experimental group and 

the control group using a g independent t-test are shown in 

Table 13. 

TABLE ⅩIII 

COMPARISON OF POST-TEST RESULTS OF THE EXPERIMENTAL AND CONTROL 

GROUPS (EXPERIMENTAL N=43, CONTROL N=48) 

Sub-Factor Paired M SD T P 

L
e
a
rn

in
g

 m
o

tiv
a
tio

n
 

internal goals experimental 

group 

4.02 .733 

2.111 .038*

control group 3.68 .777 

external goals experimental 

group 

3.70 .856 

-.747 .457 

control group 3.83 .735 

control of learning beliefs experimental 

group 

4.02 .486 

.370 .712 

control group 3.97 .617 

self-efficacy pre 3.43 .867 
.573 .568 

post 3.33 .746 

C
re

a
tiv

e
 p

ro
b

le
m

-so
lv

in
g

 

ab
ility

 

knowledge in a specific 

area, the function of 

thinking, skill, and mastery 

experimental 

group 

3.14 .591 

.507 .613 

control group 3.07 .690 

divergent thinking experimental 

group 

3.27 .765 

.765 .446 

control group 3.15 .778 

critical and logical thinking experimental 

group 

3.82 .541 

-.857 .394 

control group 3.91 .503 

motivational elements experimental 

group 

3.51 .658 

-.181 .857 

control group 3.53 .727 

 

As a result of the post-test conducted between groups, the 

average score of the experimental group was generally higher 

than that of the control group. However, this difference was 

statistically significant only in the internal goal area among 

the sub-factors of learning motivation, where the p-value was 
below the significance level of .05. This finding indicates a 

significant difference in learning motivation, specifically in 

the internal goal area among students who participated in 

MCPS model-based computing classes compared to those 

who took traditional computing classes. Nevertheless, no 

significant changes were observed in other learning-

motivation sub-factors and in the creative problem-solving 

ability sub-factors based on the post-test results between 

groups. Consequently, to further examine the average scores 

within the experimental group across different factors, pre-

and post-tests within the group were compared, and additional 

analysis was conducted on the average score of the 
experimental group. 

2)   Comparison of Pre-Post Test Results Within Groups: 

As previously mentioned, to examine the changes in the sub-

factors of learning motivation and creative problem-solving 

ability within each group of the control and experimental 

groups, additional paired sample t-tests were conducted. In 

this regard, the following research hypothesis was formulated 

to verify the effectiveness through comparison within the 

group applying the MCPS instructional model in computing 

general education classes for non-majors. 

[Learning Motivation – Within-group] 

a. [Hypothesis C1] The group of non-majors in university 

computing liberal arts classes where the MCPS 

instructional model is applied will exhibit a significant 

difference in internal goal orientation of learning 

motivation. 

b. [Hypothesis C2] The group of non-majors in university 

computing liberal arts classes where the MCPS 

instructional model is applied will exhibit a significant 
difference in external goal orientation of learning 

motivation. 

c. [Hypothesis C3] The group of non-majors in university 

computing liberal arts classes where the MCPS 

instructional model is applied will exhibit a significant 

difference in perceived control of learning beliefs. 

d. [Hypothesis C4] The group of non-majors in university 

computing liberal arts classes where the MCPS 

instructional model is applied will exhibit a significant 

difference in self-efficacy of learning motivation 

[Creative Problem-solving Skills – Within-group] 

a. [Hypothesis D1] The group of non-majors in university 
computing liberal arts classes where the MCPS 

instructional model is applied will exhibit a significant 

difference in specific areas of knowledge, thinking, 

skills, and expertise related to creative problem-solving 

ability. 

b. [Hypothesis D2] The group of non-majors in university 

computing liberal arts classes where the MCPS 

instructional model is applied will exhibit a significant 

difference in divergent thinking of creative problem-

solving ability. 

c. [Hypothesis D3] The group of non-majors in university 
computing liberal arts classes where the MCPS 

instructional model is applied will exhibit a significant 

difference in critical and logical thinking of creative 

problem-solving ability. 
d. [Hypothesis D4] The group of non-majors in university 

computing liberal arts classes where the MCPS 

instructional model is applied will exhibit a significant 

difference in motivational factors of creative problem-

solving ability. 
First, paired sample t-tests were conducted on the control 

group's pre-test and post-test results, which are shown in 

Table 14. The comparison of pre-test and post-test results for 
each evaluation within the control group revealed a slight 

increase in mean values for all sub-domains of the learning 

motivation evaluation, excluding the internal goal orientation. 

Additionally, within the sub-domains of learning motivation, 

a statistically significant change was observed in the self-

efficacy domain, and within the sub-domains of creative 

problem-solving ability evaluation, significant changes were 

observed in the divergent thinking and critical/logical 

thinking domains, with p-values of .033, .039, and .033, 

respectively, indicating significance at the .05 level. The 
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results of the paired sample t-tests for the experimental group 

are presented in Table 15. 
 

TABLE ⅩIV 

COMPARISON OF PRE-TEST AND POST-TEST RESULTS IN THE CONTROL 

GROUP (CONTROL N=48) 

Sub-Factor Paired M SD T P 

L
e
a
rn

in
g

 

m
o

tiv
a
tio

n
 

Internal goals 
pre 3.74 .633 

.453 .653 
post 3.68 .777 

External goals 
pre 3.73 .774 

-.628 .533 
post 3.83 .735 

Control of learning beliefs 
pre 3.80 .599 

-1.644 .107 
post 3.97 .617 

self-efficacy 
pre 3.03 .837 

-2.191 .033*
post 3.33 .746 

C
re

a
tiv

e
 p

ro
b

le
m

-

so
lv

in
g

 ab
ility

 a
c
tiv

e
 

p
ro

b
le

m
-so

lv
in

g
 

Knowledge in a specific area, the 

function of thinking, skill, and 

mastery 

pre 2.90 .670 

-1.323 .192 post 3.07 .690 

Divergent thinking 
pre 2.83 .779 

-2.118 .039*
post 3.15 .778 

Critical and logical thinking 
pre 3.67 .615 

-2.191 .033*
post 3.91 .503 

Motivational elements 
pre 3.30 .707 

-1.468 .149 
post 3.53 .727 

TABLE ⅩⅤ 

COMPARISON OF PRE-TEST AND POST-TEST RESULTS IN THE EXPERIMENTAL 

GROUP (CONTROL N=43)  

Sub-Factor Paired M SD T P 

L
e
a
rn

in
g
 

m
o

tiv
a
tio

n
 

internal goals 
pre 3.59 .582 

-2.771 .008** 
post 4.02 .733 

external goals 
pre 3.71 .659 

.034 .973 
post 3.70 .856 

control of learning 

beliefs 

pre 3.77 .471 
-2.437 .019* 

post 4.02 .486 

self-efficacy 
pre 3.08 .644 

-2.237 .031* 
post 3.43 .867 

C
re

a
tiv

e
 p

ro
b

le
m

-so
lv

in
g
 

ab
ility

 

knowledge in a 

specific area, function 

of thinking, skill, and 

mastery 

pre 2.73 .587 

-3.224 .002** 
post 3.14 .591 

divergent thinking 
pre 2.77 .706 

-2.981 .005** 
post 3.27 .765 

critical and logical 

thinking 

pre 3.47 .458 
-3.288 .002** 

post 3.82 .541 

motivational elements 
pre 3.19 .458 

-2.294 .027* 
post 3.51 .658 

 
The comparison of pre-test and post-test results for each 

evaluation in the experimental group revealed a significant 

increase in mean values across all domains compared to the 

control group, excluding the external goal orientation domain 

of the learning motivation evaluation. Furthermore, within the 

sub-domains of the learning motivation evaluation, excluding 

the external goal orientation, statistically significant changes 

were observed in three areas with p-values of .008, .019, 

and .031, respectively, indicating significance at the .05 level. 

Additionally, within the sub-domains of the creative problem-

solving ability evaluation, significant changes were observed 

across all domains with p-values of .002, .005, .002, and .027, 
respectively, indicating significance at the .05 level.  

Although no significant difference was found in the post-

hoc comparison analysis between groups for creative 

problem-solving ability, the pre-test and post-test comparison 

within the experimental group revealed a significant increase 

in mean values across all sub-domains, confirming significant 

changes. 

B. Interpretation of Test Comparison Results and Discussion 

The comparison results between groups for learning 

motivation and creative problem-solving ability evaluation, as 

well as factors that showed statistically significant 

improvements in pre-test and post-test comparisons within 

groups, were analyzed. 

Firstly, focusing on learning motivation, the analysis of 

comparisons for each sub-factor between groups revealed 

significant improvements in the internal goal orientation area 

in the post-test comparison. Furthermore, in the pre-test and 

post-test comparison within groups, statistically significant 
improvements were observed in all sub-domains, excluding 

the external goal orientation, for the experimental group. 

Similarly, when examining the results for creative 

problem-solving ability, while no statistically significant 

differences were found in the post-test comparison between 

groups, significant improvements were observed in all sub-

domains within the experimental group in the pre-test and 

post-test comparison. 

Therefore, [Hypothesis A1] was accepted, indicating that 

the group of non-majors in university computing general 

education classes where the MCPS instructional model was 
applied showed a significant difference in internal goal 

orientation of learning motivation compared to the group 

where traditional computing classes were used. However, 

[Hypotheses A2-A4] and [Hypotheses B1-B4] were rejected, 

indicating no significant differences. Additionally, upon 

further analysis of the changes in sub-factors of learning 

motivation and creative problem-solving ability within 

groups, [Hypothesis C2] was rejected, suggesting no 

significant difference, while [Hypotheses C1], [C3-C4], [D1-

D4] were all accepted, indicating substantial differences. 

In summary, the MCPS instructional model-based 
computing education for non-majors in computing general 

education classes demonstrated effectiveness in internal goal 

orientation of learning motivation, perceived control in 

learning beliefs, self-efficacy, and all sub-factors of creative 

problem-solving ability according to within-group 

comparison results. However, although the post-test 

comparison between groups revealed somewhat more 

significant results in the experimental group's sub-factors 

compared to the control group, with only the internal goal 

orientation factor of learning motivation showing substantial 

difference, indicating the need for further analysis with 

diversified methods to understand the relationship among 
factors within the experimental group. 

C. Analysis of Relationships between Each Factor in the 

Application of the MCPS Instructional Model  

1)   First-order correlation analysis between subfactors of 

each test: This study verified the effectiveness of the MCPS 

instructional model for operating computing general 

education classes for non-majors in university settings. In 

addition to assessing effectiveness, the study aimed to derive 

various implications by conducting in-depth analyses of 

correlations and causality among sub-factors. The sub-

domains of the learning motivation and creative problem-

solving ability evaluation tools used in this study were 

analyzed, focusing on seven factors: three sub-factors of 

learning motivation (excluding the external goal orientation) 
and four sub-factors of creative problem-solving ability, 

where statistically significant differences were not observed 
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in the experimental group. Pearson correlation coefficients 

were calculated to analyze the primary correlations among 

these sub-factors. Upon examining the evaluation results, it 

was observed that there were significant correlations between 

two sub-factors of learning motivation (internal goal 

orientation, self-efficacy) and four factors of creative 

problem-solving ability (specific area 

knowledge/thinking/skills and expertise, divergent thinking, 

critical/logical thinking, motivational factors). Therefore, 

additional analysis was conducted to investigate the 

relationships between these sub-factors further. 

2)   First-order causal analysis between each sub-factor:  

To examine the relationship between the sub-factors of 

learning motivation and creative problem-solving ability, a 

primary causal relationship analysis was conducted. Two sub-

domains of learning motivation (internal goal orientation, 

self-efficacy) were set as independent variables, while four 

sub-domains of creative problem-solving ability were set as 

dependent variables [12], [52], [53], [54], [55], [56]. The 

following research hypotheses were formulated to determine 

whether there exists any causal relationship between learning 
motivation and creative problem-solving ability in the group 

of non-majors in university computing general education 

classes where the MCPS instructional model was applied. 

[Primary Causal Analysis - Multiple Regression Analysis] 

a. [Hypothesis E1]: The MCPS instructional model-based 

computing education for non-majors in university 
computing classes will have a causal relationship 

between internal goal orientation of learning motivation 

and specific area knowledge/thinking/skills and 

expertise of creative problem-solving ability. 

b. [Hypothesis E2]: The MCPS instructional model-based 

computing education for non-majors in university 

computing classes will have a causal relationship 

between internal goal orientation of learning motivation 

and divergent thinking of creative problem-solving 

ability. 

c. [Hypothesis E3]: The MCPS instructional model-based 
computing education for non-majors in university 

computing classes will have a causal relationship 

between internal goal orientation of learning motivation 

and critical/logical thinking of creative problem-solving 

ability. 

d. [Hypothesis E4]: The MCPS instructional model-based 

computing education for non-majors in university 

computing classes will have a causal relationship 

between internal goal orientation of learning motivation 

and motivational factors of creative problem-solving 

ability. 

e. [Hypothesis E5]: The MCPS instructional model-based 
computing education for non-majors in university 

computing classes will have a causal relationship 

between self-efficacy of learning motivation, specific 

area knowledge/thinking/skills, and expertise of creative 

problem-solving ability. 

f. [Hypothesis E6]: The MCPS instructional model-based 

computing education for non-majors in university 

computing classes will have a causal relationship 

between self-efficacy of learning motivation and 

divergent thinking of creative problem-solving ability. 

g. [Hypothesis E7]: The MCPS instructional model-based 

computing education for non-majors in university 

computing classes will have a causal relationship 

between self-efficacy of learning motivation and 

critical/logical thinking of creative problem-solving 

ability. 
h. [Hypothesis E8]: The MCPS instructional model-based 

computing education for non-majors in university 

computing classes will have a causal relationship 

between self-efficacy of learning motivation and 
motivational factors of creative problem-solving ability. 

To validate the research model, stepwise regression 

analysis was employed to distinguish factors influencing the 

dependent variable and to present only the independent 

variables that had an effect. The aim was to analyze the impact 

of two areas of learning motivation, set as independent 

variables, on creative problem-solving ability. 

The results were examined after conducting multiple 

regression analyses on the influence of learning motivation on 

creative problem-solving ability. The independent variables, 

internal goal orientation, and self-efficacy, significantly 
influenced the dependent variables: specific area 

knowledge/thinking/skills and expertise, divergent thinking, 

critical/logical thinking, and motivational factors, with p-

values of .000 (p < .05). All other variables were deemed 

insignificant and were consequently eliminated through 

backward elimination. This regression equation demonstrates 

explanatory power of 33%, 47.1%, 22.8%, and 23.9% for 

motivational factors. 

Thus, analyzing the causal relationships between the seven 

factors of learning motivation and creative problem-solving 

ability (as described in hypotheses E1 to E8), it was found that 
internal goal orientation influenced specific area 

knowledge/thinking/skills and expertise, as well as divergent 

thinking. Conversely, critical/logical thinking and 

motivational factors were influenced by self-efficacy. 

3)   Secondary correlation analysis between each sub-

factor:  As observed earlier, the causal relationships between 

the two factors of learning motivation (internal goal 

orientation, self-efficacy) and the four factors of creative 

problem-solving ability (specific area 

knowledge/thinking/skills and expertise, divergent thinking, 

critical/logical thinking, motivational factors) were examined 

in this study. To determine whether Papert's constructionism 
learning characteristics, consisting of two factors (problem-

solving based on interest and understanding, digital-based 

communication), mediate these relationships, Pearson 

correlation coefficients were calculated to analyze the 

secondary correlations among the eight factors.  

The results indicated significant correlations between 
Papert's constructionism learning characteristics, one factor of 

learning motivation (internal goal orientation), and three 

factors of creative problem-solving ability (specific area 

knowledge/thinking/skills and expertise, divergent thinking, 

motivational factors). Hence, additional analysis was 

conducted to investigate the relationships between these sub-

factors further. 

4)   Secondary causal analysis between each sub-factor:  

In the earlier first-order causal analysis, a causal relationship 

was established between learning motivation (internal goals, 
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self-efficacy) and creative problem-solving ability (specific 

area knowledge/thinking/skills, divergent thinking, 

motivational factors). Subsequently, a mediation regression 

analysis was conducted to examine whether there is a 

mediating effect of Papert's constructionism learning 

characteristics (problem-solving based on interest and 

understanding, digital-based communication) on the causal 

relationship between learning motivation and creative 

problem-solving ability. 

The hypotheses set to examine the influence of Papert's 

constructionism learning characteristics (problem-solving 

based on interest and understanding, digital-based 

communication) are as follows: 

[Secondary Causal Analysis - Mediation Regression 

Analysis] 
a. [Hypothesis F1]: In the MCPS instructional model-

based computing education for non-majors, the 

statistical impact of internal goal orientation of learning 

motivation on specific area knowledge/thinking/skills 

and expertise of creative problem-solving ability will be 

mediated by problem-solving based on interest and 

understanding. 

b. [Hypothesis F2]: In the MCPS instructional model-

based computing education for non-majors, the 

statistical impact of internal goal orientation of learning 

motivation on divergent thinking of creative problem-

solving ability will be mediated by problem-solving 
based on interest and understanding. 

c. [Hypothesis F3]: In the MCPS instructional model-

based computing education for non-majors, the 

statistical impact of internal goal orientation of learning 

motivation on specific area knowledge/thinking/skills 

and expertise of creative problem-solving ability will be 

mediated by digital-based communication. 

d. [Hypothesis F4]: In the MCPS instructional model-

based computing education for non-majors, the 

statistical impact of internal goal orientation of learning 

motivation on divergent thinking of creative problem-
solving ability will be mediated by digital-based 

communication. 

The results of the mediation regression analysis indicate 

that the mediator variable 2, ‘digital-based communication, 

has a complete mediating effect on the dependent variable 1, 

specific domain knowledge, thinking, skills, and mastery. The 

Barron and Kenny approach distinguishes between partial and 

complete mediation effects and is commonly used by many 

researchers [57]. However, it is weak in that it does not 

directly test the significance of the indirect effects but rather 

infers based on a series of tests. Hayes' bootstrapping method 

was employed to verify the mediator variables' indirect 
effects. Bootstrapping is a technique for estimating the 

distribution of parameters based on sample data when the 

population distribution is unknown. Indirect effects are 

considered significant at the 5% significance level if the 95% 

confidence interval does not include zero. Therefore, it can be 

interpreted that all paths have mediating effects [58]. The 

results of the indirect effects verification are shown in Table 

16.  

TABLE ⅩⅥ 

INDIRECT EFFECT VERIFICATION RESULTS (BOOTSTRAPPING) 

Route Indirect Effect 

Effect BootSE 
Boot 

LLCI 

Boot 

ULCI 

Internal goal → interest-based 

problem solving → specific 

domain knowledge, thinking, 

skills, and mastery 

.2563 .2242 .0439 .8640 

Internal goal → interest-based 

problem solving → dispersive 

thinking 

.3021 .3012 .0276 1.1198 

Internal goal → digital-based 

communication → specific 

domain knowledge, thinking, 

skills, and mastery 

.3026 .1470 .0181 .6179 

Internal goal → digital-based 

communication → dispersive 

thinking 

.5050 .1921 .0583 .8481 

 

Therefore, these results indicate that MCPS-based 

computing education influences specific domain knowledge, 

thinking, skills, mastery, and divergent thinking through 

higher internal goals via interest-based problem-solving and 

digital-based communication. 

D. Interpretation of causal relationship analysis results and 

Discussion 

The causal relationship analysis results among motivation, 

creative problem-solving ability, and Papert's constructionism 

Figure 1 summarizes learning characteristics factors. In 

summary, the internal goal of motivation partially mediates 

the influence of interest-based problem-solving on specific 

domain knowledge, thinking, skills, mastery, and divergent 

thinking within creative problem-solving. Additionally, 

digital-based communication fully mediates this relationship. 

Moreover, motivation self-efficacy was observed to affect the 
critical and logical thinking and motivational aspects of 

creative problem-solving. 

Therefore, the hypothesis testing results for the 1st causal 

analysis-multiple regression analysis are as follows: 

[Hypothesis E1], [Hypothesis E2] was accepted, indicating 

that in non-major students, there is a causal relationship 

between the internal goal of motivation and specific domain 

knowledge, thinking, skills, and mastery, as well as divergent 

thinking within creative problem-solving in MCPS-based 

computing education. Additionally, [Hypothesis E7] and 

[Hypothesis E8] were accepted, suggesting that in non-major 

students, there is a causal relationship between the self-
efficacy of motivation and critical, logical thinking and 

motivational aspects of creative problem-solving in MCPS-

based computing education. Furthermore, [Hypotheses E3 ~ 

E6] were all rejected, indicating no significant difference. 

The results of the 2nd causal analysis - mediation 

regression analysis are as follows: [Hypothesis F1], 

[Hypothesis F2] was accepted, indicating that in non-major 

students, there is a statistical mediation effect (partial) of 

interest-based problem-solving on the influence of the 

internal goal of motivation on specific domain knowledge, 

thinking, skills, and mastery within creative problem-solving 
in MCPS-based computing education. Additionally, 

[Hypothesis F3] [Hypothesis F4] was accepted, suggesting 

that in non-major students, there is a statistical mediation 

effect (complete) of digital-based communication on the 

influence of the internal goal of motivation on specific 
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domain knowledge, thinking, skills, and mastery, as well as 

divergent thinking within creative problem-solving in MCPS-

based computing education. 
 

 

Fig. 1  Results of causal relationship analysis between sub-factors 

 
To analyze this specifically, to foster specific domain 

knowledge, thinking, skills, mastery, and divergent thinking, 

students should be encouraged to choose challenging tasks 

and persistently perform them, considering learning itself as a 

reward, thus allowing for the cultivation of intrinsic goals. 

The learning environment should be structured to respect 

students' opinions and emphasize learning activities based on 

their interests and understanding, utilizing digital technology 

for communication processes. Such an environment can be 

more effective in fostering these skills. 

Moreover, teaching and learning methods and 

environments should be designed to cultivate critical and 
logical thinking and motivational factors to provide 

satisfaction, interest, successful experiences, and positive 

feedback to develop self-efficacy. Additionally, in Papert's 

constructionism evaluation-based computing education, 

active problem-solving based on interest and understanding, 

along with smooth communication through digital tools, can 

effectively mediate motivation and creative problem-solving 

abilities [50], [59], [60]. 

Therefore, creating a learning environment that encourages 

intrinsic goals, respects students' opinions, utilizes digital 

technology for communication, provides challenging tasks, 

offers positive feedback, and facilitates active problem-

solving can be effective in fostering specific domain 

knowledge, thinking, skills, and mastery, as well as divergent 

thinking, critical and logical thinking, and motivational 

factors in computing education. 

E. Rubric evaluation results of the experimental group 

In this study, we aim to examine the impact of MCPS 

(Modeling, Computing, Problem-Solving) instructional 

framework-based computing classes on non-major students' 

motivation and creative problem-solving abilities. We will 

analyze the evaluation rubric results of the experimental 

group to evaluate their performance. The evaluation rubric 

results of the experimental group are presented in Table 17. 

TABLE ⅩⅦ 

EVALUATION RUBRIC RESULTS OF THE EXPERIMENTAL GROUP 

MCPS Steps[6] Evaluation Type Evaluation Average 
Evaluation 

average 
Points 

Step 1. Motivation and 
preparation 

Midterm (Written) 1.1 Basic principles and concepts of 
computers 

4.19 5 

Assignments & Feedback 1.2 Recognition of the relevance of 
computing to major fields 

4.25 5 

Training 1.3 Design real-world computing algorithms 4.07 5 

Step2. Building of basic 
knowledge 

Midterm exam (written + 
practical) 

2.1 The Concept of Programming Elements 4.70 5 

2.2 Executing code with programming 
elements 

4.08 5 

2.3 Executing code to solve real-world 
problems 

3.84 5 

Step 3. Application of basic 
knowledge 

Lab sessions + assignments 3.1 Analyzing code to solve real-world(major-
related) problems 

7.52 10 

3.2 Execute code to solve a real-world(major-
related) problem 
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MCPS Steps[6] Evaluation Type Evaluation Average 
Evaluation 

average 
Points 

3.3 Expressing a Solution 3 5 

Step 4. Planning outputs and 
execution 

Project evaluation 
(proposal, report) 

4.1 Exploring real-world problems 4.89 5 

4.2 Appropriateness of data collection and 
analysis 

4.3 Decompose the problem into solvable 
units 

4.89 5 

4.4 Design a solution 

4.5 Implement the solution 4.03 5 

4.6 Refine through testing and debugging. 

4.7 Feedback through sharing and 
collaboration 

4.33 5 

4.8 Representing the results of collaborative 
output 

90.20 100 

Step 5. Development Assignments 5.1 Various expressions of ideas 4. 5 

Overall Average 4.27 

 
Upon reviewing the evaluation rubric results of the 

experimental group, it was found that the overall average 

score was 4.27 out of 5 points, indicating positive outcomes. 

However, differences were observed across different stages. 

Among them, the score for Stage 2, ‘2.3 Execution of Code 

for Real-life Problem Solutions (3.84 points)’, was the lowest, 

followed by Stage 3, ‘3.3 Expression of Problem Solutions 

(3.95 points)’.  

This suggests that while students grasp programming 

concepts, they may encounter difficulty executing code or 

expressing solutions. Nevertheless, excluding Stage 4, ‘4.8 
Expression of Collaborative Outputs’, the average score was 

4.54 points, indicating overall positive outcomes. This can be 

attributed to continuous communication and feedback among 

team members while collaborating to express outputs. 

Furthermore, the average scores for real-life applications and 

problem solutions improved as stages progressed, indicating 

a positive influence of the course stages on expressing 

problem solutions. The lower score for ‘Diverse Expression 

of Ideas (4.0 points)’ in Stage 5 was attributed to non-

submissions, resulting in a slightly lower average score. 

F. Analysis of Lecture evaluation Results and Project 

Impressions  

1)   Analysis of Course Evaluation Results: After 

conducting the computing education, the student's overall 
satisfaction with the course evaluation results was higher than 

the overall course average in all categories. Additionally, the 

ratings from the experimental group were higher than those 

from the control group across all items. Notably, the items 

regarding the ‘consistency and progress of course planning 

and content,’ ‘instructor's preparation and teaching ability,’ 

and ‘communication between instructor and learners’ scored 

above 4.50, indicating high satisfaction levels. 

This indicates that, compared to other general education 

courses at the university, computing education received 

higher overall learner satisfaction. Furthermore, it suggests 

that MCPS-based computing education had a more positive 

impact on learner satisfaction. Additionally, it reaffirms the 

importance of teaching methods and the role of instructors in 

learner-centered constructionism-based computing education 

courses. 

2)   Keyword Analysis and Word Cloud of Project 

Impressions:  Next, for qualitative analysis, a word cloud was 

generated using visualization techniques to easily visualize 

the key themes extracted from the reflections in the project 

reports. To achieve this, a part-of-speech tagging module was 

employed in Python programming to assign parts of speech, 

considering the meaning and context of the content. Only 

nouns were extracted, and word frequency was calculated to 

represent the occurrence of each word. 

Among the extracted keywords, 'coding' appeared most 

frequently, with 30 occurrences, followed by 'class' (29 

occurrences), 'project' (25 occurrences), and 'thought' (21 

occurrences). Word frequency was calculated, and the word 

cloud generation results were visualized for straightforward 

interpretation. As shown in Figure 2, keywords such as 
coding, project, and program were central, surrounded by 

terms like interest, solution, experience, interest, opportunity, 

collaboration, achievement, and difficulty, reflecting the 

sentiments expressed in the reflections. 

 

 
Fig. 2  Word visualization 

3)   Topic analysis of project impressions: Topic modeling 

was employed to extract and analyze topics from the 

reflections on the project outcomes and subjective opinions 

on course evaluations of the experimental group. Topic 

Modeling is a technique used to extract critical themes 

(topics) from text-based document data, classify (cluster), and 

analyze documents based on the extracted topics. Latent 
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Dirichlet Allocation (LDA) topic modeling provided by the 

gensim package in Python was used for topic analysis. LDA 

is a prominent machine learning-based technique for topic 

modeling that utilizes the Dirichlet distribution to infer latent 

topics present in the given documents [61]. 

In this study, the results of analyzing the reflections on the 

project outcomes and subjective opinions on course 

evaluations led to the extraction of topics. The number of 

topics to be extracted (k=4) and the number of key words to 

constitute each topic (word=15) were set. Consequently, the 

main 15 words constituting each topic were output along with 

their relevance scores. Table 18 presents the results of the 

topic analysis obtained using the lda_model.print_topics() 

function and the visualization results from pyLDAvis, 

providing the final topic analysis results regarding the topic 

labels. 

TABLE ⅩⅧ 

COMPREHENSIVE TOPIC ANALYSIS RESULTS  

 

In this study, four topics were extracted from the 
reflections on project reports and course evaluations 

submitted by students who took the computing class based on 

the MCPS teaching model. The final topic labels provide 

insights into students' perceptions and evaluations of the 

course.  

First, the topic related to ‘Digital-based idea programming’ 

includes words such as thoughts, coding, programming, 

computer, problem, solution, utilization, and functionality. It 

was observed that initially, students might find it challenging 

to express their ideas through programming, but over time, 

they become more familiar with digital tools and find them 

helpful for learning more accurately and deeply. 
Second, the topic associated with ‘Enhancing creative 

problem-solving skills’ includes words like creativity, 

problem-solving, assistance, programming, learning, 

thoughts, study, progress, and thinking. Students expressed 

that exploring and implementing solutions to real-life 

problems independently, finding and applying unfamiliar 

functions, and continuously improving the app even after 

completion enhanced their fluid thinking and provided a 

refreshing experience. 

Third, the topic related to ‘Improving motivation’ includes 

words such as class, activities, collaboration, progress, 
solution, motivation, enhancement, outcomes, and utilization. 

Students indicated that they gained awareness of the 

importance of computing, demonstrated a sense of 

accomplishment and determination in producing outputs, and 

expressed expectations for further development by integrating 

computing into their majors, leading to a desire to learn more 

computing courses in the future. 

Fourth, the topic concerning ‘Collaborative problem-

solving and interest-based learning’ includes words like logic, 

team members, solution, difficulties, problem, outcomes, 
thoughts, understanding, interest, etc. Students mentioned 

that through collaboration and communication with team 

members, they were able to overcome initial difficulties and 

complete improved outputs, experiencing a different learning 

environment and a sense of achievement compared to 

traditional learning methods. 

IV. CONCLUSION 

In this study, we aimed to propose specific instructional 
model for operating computing liberal arts courses tailored for 

university non-majors to enhance learning motivation and 

creative problem-solving skills. Drawing from research in 

computing education and inspired by Papert's constructionist 

learning principles, we addressed the shortcomings typically 

found in computing courses designed for non-majors. 
Through expert review and application in educational 

settings, we validated the applicability of this course model 

and derived implications.  

The research findings confirm that the MCPS instructional 

model in computing liberal arts classes for non-majors 
enhances creative problem-solving skills by fostering 

learning motivation. Additionally, learning motivation serves 

as a crucial factor in creative problem-solving abilities, acting 

as both the driving force and the sustainer of perseverance 

throughout the problem-solving process. Intrinsic motivation, 

which involves enjoying the creative problem-solving process 

and considering it rewarding, is an essential factor for creative 

problem-solving abilities. Cognitive self-efficacy has also 

been shown to influence creative thinking by encouraging 

individuals to tackle challenges with enthusiasm. These 

results can be seen in the same context as the results of 

existing research conducted on prospective teachers [62]. 

Topic Analysis Results (lda_model.print_topics) and Visualization Results by pyLDAvis 

Final topic label Topic 

number 
Topic-specific words 

Token 

Distribution 

Ratio 

A 
Thinking, coding, program, part, project, problem, utilization, 
programming, first, use, function, computer, though, class, 

course, etc. 

41% Digitally based idea programming 

B 
Problem solving, assignment, help, topic. start. learning. 
creative. apply. study. role. progress. subject. Thinking, flow, 

technology, etc. 

25% 
Helps with creative problem-solving 
skills 

C 

Activity, motivation, cooperation, knowledge, answer, 

question, understanding, environment, improvement, lesson, 
solution, student, progress, fun, etc. 

18.1% Increased motivation 

D 

logic, once, structure, again, game, difficulty, collaboration, 

everyone, for, understanding, existence, bug, part, mood, 
teammate, interest, etc. 

15.9% 

Solving difficulties through 

collaboration and classes based on 
interest and understanding 
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The MCPS instructional model proposed in this study 

could be utilized for systematic computing education in non-

major computing liberal arts courses. Observing that learners 

exhibit motivation and confidence only when they find 

learning easy and enjoyable, adapting the instructional model 

to suit learners' needs by simplifying or appropriately 

modifying it could lead to more effective computing 

education. The more professors dedicate themselves to 

refining their teaching methods, the more likely it is for 

learners to experience successful teaching. Therefore, this 
study is expected to serve as foundational material for 

university computing liberal arts education, as the demand for 

computing education continues to rise. 
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