
Vol.14 (2024) No. 5

ISSN: 2088-5334

The Development and Application of a MCPS (Motivation and

Creative Problem Solving) Instructional Model

in Computing Liberal Arts for Non-Majors

Hee Jung Park a, Yong Ju Jeon b,*
 a Department of Creativity Software, Andong National University, Gyeongdongro 1375, Andong, GyeongBuk, Republic of Korea

b Department of Computer Education, Andong National University, Gyeongdongro 1375, Andong, GyeongBuk, Republic of Korea

Corresponding author: *yyongju@anu.ac.kr

Abstract— The purpose of this study is to develop and validate a learning motivation and creative problem-solving MCPS instructional

model for non-majors in a computing liberal arts course. This study aimed to propose a specific method for conducting a computing

liberal arts class tailored for non-majors. The research was divided into two phases: model development and model application studies.

In the model development study, we formulated the MCPS instructional model and lesson design by integrating Papert's

constructionism learning principles, addressing the challenges in computing education for non-majors, and incorporating various

teaching methods identified from related research. In addition, to improve the completeness of the instructional model, we developed

an evaluation rubric that considered both content and evaluation aspects through expert review. In the model application study, we

validated the effectiveness of this instructional model by implementing it in a university class. We employed various research analysis

methods to derive further insights and implications. Research suggests that the traits of Papert's constructionism learning theory can

enhance learner engagement and foster creative problem-solving in computing education when utilizing the MCPS instructional model.

This model, as proposed in the study, can effectively serve as a pedagogical approach for delivering semester-long or more extensive

computing liberal arts courses tailored for non-majors in college. We anticipate that the outcomes of this study will contribute to the

establishment of robust computing education programs in universities, particularly at a time when the demand for computing education

among non-majors is increasing, and its significance is growing.

Keywords— Motivation; creative problem solving; MCPS instructional model; computing liberal arts; non-majors; computing

education; learning motivation; papert's constructionism.

Manuscript received 5 Dec. 2023; revised 18 Mar. 2024; accepted 2 Jul. 2024. Date of publication 31 Oct. 2024.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

The world is undergoing a digital transformation driven by

software and artificial intelligence. Accordingly, many

countries worldwide, including Korea, are proactively
fostering creative talent that utilizes digital competencies to

solve problems in the digital era, marking it as a central policy

priority [1], [2]. For instance, the Korean government has

prepared a comprehensive plan for fostering digital talents

and aims to foster 1 million digital talents [1], [2].

Additionally, within university education, initiatives such as

the software-centered university project initiated in 2015

underscore the importance of computing education. This

mandate extends beyond computing majors, encompassing

non-majors and professionals in the field, and is tailored to

reflect the specific characteristics of each academic major and

department [3].

In contrast to elementary and secondary education, where

computing education is deemed essential and systematically

integrated into the curriculum [4], universities often face

challenges in effectively delivering computing education to

non-majors. These challenges stem from a lack of experience

and expertise in catering to the diverse needs of non-major
students. Consequently, ineffective education practices may

arise, such as implementing uniform curricula irrespective of

students' majors or capabilities or overly focusing on

programming grammar without adequately assessing

students' proficiency levels and interests [5]. In the non-

majors cases, if computing education is conducted without

motivation, class participation and educational effectiveness

1534

decrease [5], [6]. Unlike majors, it isn't easy to expect results

regarding learning effectiveness with the same teaching

methods as majors because they are not familiar with

computer use. Therefore, it is necessary to research

computing teaching methods for non-majors [7], [8].

In this regard, Shin [9] argued for the necessity of a

computing education model to stimulate learners' motivation

and cultivate creative problem-solving skills. Kim [10], Park

and Choi [11] proposed that, in computing education for non-

majors, it's crucial to emphasize discovering functions
through self-exploration or peer-based learning grounded in

constructionist principles rather than simply teaching

command usage.

In particular, to improve the computational thinking of

non-majors, it is necessary to focus on enhancing creativity

and problem-solving skills rather than acquiring computing

skills [11]. Creative problem-solving skills and learning

motivation are pivotal variables in non-majors competency

[12]. Hence, it is necessary to apply an instructional model

that integrates various variables related to creativity, such as

motivation and problem-solving skills, to enhance the
creativity of college students in educational innovation [13].

Furthermore, Papert [14] transformed learning into an

exciting and enjoyable experience through programming

tools. His insights, proposed over 40 years ago, remain

relevant today more than ever amidst large-scale educational

innovations. They are closely related to our reality,

particularly in the current context of the educational

revolution.

Based on Papert’s constructionism learning principles and

relevant research on computing education, this study

presented specific methods to enhance learning motivation
and creative problem-solving skills in a computing literacy

course for non-majors. We developed an instructional model

for non-major computing literacy courses (MCPS,

Motivation, and Creative Problem Solving) and validated its

applicability through expert review and field application.

II. MATERIAL AND METHOD

A. Studies Related to Computing Liberal Arts Courses for

Non-majors

The term “computing” encompasses the academic
discipline and is also employed globally in similar contexts,

such as informatics or information and communication

technology (ICT). CC2020 proposes using the term

computing education to mitigate concerns regarding

terminological interpretation and promote universalization.

Additionally, it proposes a global standard curriculum for

computing education at the higher education level [15].

Domestic and foreign universities also recognize the

importance of cultivating the computing thinking skills

necessary for university students to live in the modern era.

Computing education is being implemented across various
countries to develop future competencies for all students,

although the curriculum and education forms are different

[14]. In the case of domestic universities, computing

education for non-majors is being established and gradually

expanded in alignment with the global trend, starting with the

software-centered university project. We reviewed research

on computing education for non-majors to glean insights into

effective educational methodologies and challenges

encountered in computing classes.

Park and Choi[11] suggested that block programming,

which has easy grammar and is simple to handle, is utilized as

a computing liberal arts class in universities. It aims to

improve creativity and problem-solving skills rather than

acquiring computing skills. Also highlighted the primary

challenge in implementing such curricula: lacking motivation

for computing education. Kim [16] asserted that while the

number of students exposed to computing education is
growing, it often lacks relevance to their majors and is

challenging to access. Therefore, concerted efforts are

necessary to promote understanding and recognition of the

importance of computing. Additionally, Kim [10] stated that

students frequently encounter difficulties with programming

terminology and principles, and preliminary research should

be conducted before implementing computing education.

Kang [17] advocated a need for computing education and

exposure to computational thinking regardless of major. Still,

there are relatively few opportunities to encounter such

systems compared to majors. In the educational field,
following pre-prepared code differs from student-centered

problem-solving learning [18].

Oh et al. [19] analyzed the effectiveness and changes in

perception after conducting a Scratch programming class for

non-majors. The results showed that it is essential to make

non-majors aware of the need for programming classes before

conducting them. In addition, in a study on computing

education models for non-majors, Kim [20] developed a test-

driven problem-solving learning model (CT-TDPS) that

applies agile development methods to address the limitations

of the waterfall model from a software engineering
perspective. Sohn [21] developed a design-based software

education model (DBSEM) to improve the difficulties

encountered in the process of acquiring programming

languages, and Jeon [22] developed a SW-AI teaching and

learning model (SAGE) in which learning stages are designed

around changes in learner schemas to improve the creative

convergence capabilities of preservice teachers. In addition,

Choi [23] developed a computational thinking-centered

multiple project-based computing education model (CT-

MPB) by deploying three stages of projects. Choi emphasized

that most existing studies in this domain are biased toward

elementary and secondary education, highlighting the
necessity for more extensive cases and research focused on

universities.

While numerous universities have implemented courses to

enhance the effectiveness of computing education, there

remains a critical need for research on computing education

models tailored to address operational challenges in

computing liberal arts classes for non-majors. Specifically,

there is a pressing need to develop models that foster creative

problem-solving skills among students.

B. Papert’s Constructionism

Various studies and examples of computing education have

been published recently, but most of them lack an exploration

of the pedagogical background, and a discussion of

constructionism approaches [24]. The educational paradigm

of the knowledge information society emphasizes the value of

individual learners' needs and characteristics and learner-

1535

centered learning [25]. Constructionism learning theories

have been gaining traction in school settings due to changing

perceptions of the nature of learning [26].

A mathematician, computer scientist, and educator, Papert

expanded on developmental psychologist Piaget's

Constructivism educational philosophy to formulate the

Constructionism learning theory. Papert developed an early

educational programming language called the computer

language Logo [27] and used the analogy of teaching a new

language to a Logo turtle to introduce the programming
concept. Later, the MIT Media Lab, led by his student

Resnick, developed Scratch based on Papert’s

constructionism.

Commonalities emerge when comparing Papert’s

constructionism to the previously established constructivism

of Piaget and Vygotsky. These include knowledge inseparable

from context and real-world challenges, constant reflection,

and reflexivity, essential as learners build on their own

experiences. Collaboration with other learners to solve new

problems is also necessary. However, they are differentiated

by a spirit of continuous challenge without fear of failure,
encouragement and emphasis on failure as a productive

opportunity to improve problems through the concepts of

"bugs" and "debugging," enjoyment to achieve challenging

goals, and proper use of time to accomplish significant things

[27], [28], [29], [30], [31]. In the constructionism approach, a

paradigm of education in the information age, Papert

emphasized that expressing inner feelings and ideas into

concrete objects is critical to learning [32], [33].

C. Learning Motivation and Creative Problem Solving

Learning motivation is "the force that initiates learning,

determines its direction, and determines the continuity and

intensity of learning." A learner's motivation is a significant

variable to consider in a teaching-learning situation because it

is the driving force for learning to occur [12]. In other words,

learners who are not motivated in a teaching-learning

situation will lose direction, so motivation is essential for

learner behavior [14]. Creative problem-solving is “a process

in which creative thinking occurs through the interaction of

divergent and convergent thinking in three stages:

understanding the problem, generating ideas, and planning
and executing actions” [32]. Learning creative problem-

solving is essential in computing education because Korean

students are proficient at solving problems. Still, they often

struggle with identifying and exploring issues independently.

Generating solutions through computational thinking

involves active and creative work, offering an opportunity to

enhance traditional passive forms of education [34].

Studies on the relationship between creativity, problem-

solving, and motivation in college students have shown that

problem-solving and learning motivation are essential for

increasing overall creativity. Therefore, for practical
computing classes for college students, it is necessary to

develop a class model and research various instructional

methods to foster computational thinking skills, learning

motivation, and creative problem-solving.

D. Effective Teaching and Learning Methods for Non-majors

Although interest in computing education has expanded to

include non-majors, it isn't easy to expect non-majors

unfamiliar with computers to learn effectively using the same

teaching methods as existing majors [7], [8]. Various

instructional methods are needed to facilitate understanding

because of the lack of basic programming knowledge and its

connection to significant subjects [35].

The most popular instructional method is a universally

recognized way of conveying knowledge to students, in which

the lecturer demonstrates knowledge while the students listen

and learn. This method can effectively transfer linguistic

information and cognitive knowledge [32]. Cognitive
apprenticeship theory is an instructional method that involves

a process of modeling in which the teacher performs a task,

and then the learner observes and imitates. It can be applied

in all areas of learning, but it is especially helpful in primary

areas that require complex cognitive strategies, such as

science, math, and information [32].

Problem-based learning is a constructive instructional

method that simultaneously teaches subject matter

knowledge, skills, and problem-solving strategies by

presenting complex, real-world, unstructured problems that

require learners to find meaningful solutions to problems or
tasks [32], [36]. Project-based learning is a method of

performing multiple learning activities in which the learner's

mind creates concrete and tangible outputs in the process of

solving problems related to real life [37]. When applied to

computing education, this method addresses the challenge of

teaching simple programming languages and grammar that

lack relevance to real-life contexts [38]. In team projects,

students with different programming abilities can help each

other to complete more challenging tasks. Constructive

evaluation activities that allow for sharing opinions and

feedback can lead to improved outputs [39].
The CT-CPS (Computational Thinking-based Creative

Problem Solving) instructional model integrates each element

of computational thinking into the creative problem-solving

phase. When applied to computing education, it offers a

learning experience where students discover problems on

their own and creatively and actively solve them using

computers [34]. Therefore, an effective instructional method

for non-majors should differ from that of majors and employ

various processes according to the context of computing

education.

E. The Development of the MCPS Instructional Model

This study suggested a specific method of computing

liberal arts classes for non-majors to improve their learning

motivation and creative problem-solving skills. To this end,

the Motivation and Creative Problem Solving (MCPS) model

for non-majors was developed based on Papert’s

constructionism learning principles, the challenges

encountered in computing classes for non-majors, and the

insights gleaned from other instructional models. The model

was then reviewed and refined through expert evaluation to
ensure its appropriateness, leading to the development of a

final version.

1) Principles of Design for Developing Instructional

Model: Some principles of the instructional model design

developed in this study. First, we explored the approach of

constructionism, which is an educational paradigm in the

information age, and designed based on Paper’s learning

principles of constructionism [16], [24], [25], [26], [27], [29],

1536

[30], [31], [32], [33]. Second, we analyzed the issues of

computing classes for non-majors through previous studies

and devised a solution to enhance them by employing the

modeling process [5], [10], [11], [16], [18], [23], [31], [38].

Third, to enhance the learning effectiveness of computing

education for non-majors, we applied various teaching

methods for each stage to foster interest in learning,

encourage active class participation, and develop skills for

creative problem-solving [32], [34], [36], [37], [38], [39].

Table 1 shows the details of the design principles for

developing models for instruction.

TABLE I

DESIGN PRINCIPLES AND DETAILS OF THE MCPS INSTRUCTIONAL MODEL.

Principles of design Details

Reflection on Papert’s

constructionism learning
principles

A. Use technology, digital technology, as a tool for thinking [27], [33].
B. Help students learn how to learn rather than teach them everything they need to know [27].
C. Use programming to organize thinking and problem-solving [27].
D. Allow them to learn through experience [16], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33].
E. Allow them to explore what interests them most [27], [28], [33].
F. Allow learners to bring out their inner feelings and ideas [27], [29], [30], [31].
G. Allow them to learn from failure [27], [33].
H. Allow them to express their ideas concretely [28], [32].

I. Make ideas materialize [28], [32].
J. Go through a process of proofreading their ideas [27], [28], [32].
K. Evaluate each other's ideas. Share ideas so that they can communicate with each other [27], [28], [32].
L. The result is an activity of constructing knowledge based on concrete objects [27], [28], [32], [33].
M. They can engage in an iterative process of developing their tools and media [27], [28], [32].
N. Allow learners to manage their learning process [28], [32], [33].
O. Help them understand how ideas are shaped and transformed when they are expressed through different
media and when they are realized in specific contexts [27], [28], [32].

P. Making learning easy, fun, and engaging [27].

Challenges encountered in
computing classes

a. Lack of motivation in computing education [5], [11], [38].
b. Investigation of learners' characteristics and difficulties before computing education [10], [16].
c. Prerequisite understanding of computers [5], [11], [10], [16].
d. Difficulty with programming languages and terminology [10], [11], [16].
e. A variety of learner-centered curricula and teaching and learning methods [11],[31].
f. Spreading educational systems and organizing educational environments to provide various computing
experiences and opportunities [11], [18], [23].

Reflection of other
instructional models

① Principles of lecture-based learning [32].

② Principles of cognitive apprenticeship [32].

③ Problem-based learning principles [32], [36].

④ Project-based learning principles (individual, team) [37], [38], [39].

⑤ Principles of computational thinking-based creative problem solving (CT-CPS) [34].

2) Draft of MCPS Instructional Model: To develop a

draft of the instructional model, we used the principles and

details of instructional design in Table 1 to establish the stages

of a class, considering when they can be applied. We

developed a draft instructional model, as shown in Table 2.

TABLE Ⅱ

DRAFT OF THE MCPS INSTRUCTIONAL MODEL

Instructional models Step-by-step design principles

Steps Details Papert’s

constructionism

learning principles

Challenges

encountered in

computing classes

Other

instructional

models

Step 1.
motivation and
preparation

1.1 Learning motivation (relevance to major, need for
computing education)
1.2 Identifying learner’s characteristics and difficulties
in computing education (online survey)

1.3 Identifying the antecedents of computing education

A, B a, b, c ① ,②

Step 2.
building of basic
knowledge

2.1 Learning motivation (find related current IT issues)
2.2 Demonstration (explain programming grammar)
2.3 Support (using real-life examples)
2.4 Stop helping (extend practice)

A, B, C, D, P a, b, c, d

Step 3.
application of basic
knowledge

3.1 Learning motivation (build expectations by
introducing computing skills)
3.2 Problem settings

3.3 Derive a solution to the problem
3.4 Share solutions

A, B, C, D, E, F, G, P a, b, c, d, e ② ,④

1537

Instructional models Step-by-step design principles

Step 4.
planning outputs
and execution

4.1 Exploring ideas
4.2 Ideation
4.3 Design and share ideas

4.4 Implementing ideas
 4.4.1 Proofread ideas

4.4.2 Share Concrete Outputs
4.5 Evaluation

A, B, C, D, E, F, G,
H, I, J, K, L, M, N, P

a, b, c, d, e ③ ,⑤

Step 5.
development

5.1 Learning motivation (identify challenges and
confidence boosts)
5.2 Applying digital technology
5.3 Express ideas through various media

A, O, P a, f online/offline

In step 1, ‘Motivation and Preparation,’ we acknowledged

the relevance of the major and the need for computing

education to address the issue of insufficient learning

motivation. We addressed this by integrating it across all

stages, utilizing the identification of learner characteristics

and comprehension of computers to sustain motivation. In

step 2, ‘Building of Basic Knowledge,’ expert instructors

demonstrate the problem-solving process to assist learners

with programming grammar and terminology difficulties.

This is further enhanced with real-world examples, gradually

reducing support as learners independently solve problems. In
Step 3, ‘Application of Basic Knowledge,’ a learner-centered,

problem-based learning environment is established to

alleviate the burden on learners and allow them to practice

before engaging in team projects as part of a mini-project. In

step 4, ‘Planning and producing products,’ we emphasize the

process of correction and communication through intra- and

inter-team sharing activities so that intangible ideas can be

materialized. It is organized to manage the learning process

by using the experience of failure as a learning opportunity.

Step 5, ‘Development,’ is designed to provide an environment

and opportunities for learners to develop their sense of
challenge and confidence as an extension of the classroom

rather than ending with producing and evaluating concrete

objects.

3) MCPS Instructional Model Appropriateness Review:

To ensure the appropriateness of the proposed MCPS

instructional model, the first Delphi survey was conducted to

assess the Content Validity Ratio (CVR), followed by the

second Focus Group Interview (FGI) for expert review. In the

first expert review, a validity review was conducted on the

appropriateness of the instructional model, such as the

purpose of development of the model, class steps, and

applicability. A Likert 5-point scale was used for responses,

with five indicating 'very appropriate' and one indicating 'not

at all appropriate.' Suggestions for the MCPS instructional

model were freely written in an open format.

The validity analysis method was calculated using the CVR

of Lawshe (1975), as shown in Equations [40].

CVR =

: Number of "essential"

respondents

N : Total number of respondents
(1)

The experts involved in the review comprised 27

individuals, including university professors and lecturers

specializing in computer education and educational

technology, as well as in-service teachers and researchers.

Based on the number of participating experts, the criterion for

ensuring content validity was established at a CVR of .407

[40]. Table 3 presents detailed results of the expert evaluation,
including response outcomes and research items, from the

initial expert review.

TABLE Ⅲ

CVR VERIFICATION RESULT FOR EACH QUESTIONNAIRE

Division Contents of question

Number of

Responses (N=27) M SD CVR

5 4 3 2 1

Purpose of

development

1 Do you think the ‘purpose of development’ of the MCPS instructional model is

appropriate?
12 15 0 0 0 4.4 0.51 1.00

Steps of class 2 It is appropriate to base the instructional steps of the study model on Papert's

constructionism learning principles and the problem of improving computing

classes.

16 9 1 1 0 4.5 0.75 0.85

3 The instructional steps in the model are appropriate. 14 11 1 1 0 4.4 0.75 0.85
4 The detailed instructional steps in step 1, ‘Motivation and preparation,’ are

appropriate.
14 9 3 1 0 4.3 0.83 0.70

5 The detailed lesson steps for Step 2, ‘building Basic knowledge,’ was set

appropriately.
12 14 1 0 0 4.4 0.57 0.93

6 the class steps for Step 3, ‘apply basic knowledge,’ are set appropriately. 12 13 2 0 0 4.4 0.63 0.85
7 The class steps for Step 4, ‘Planning Outputs and Execution,’ are set appropriately. 15 11 1 0 0 4.5 0.58 0.93
8 The class steps for ‘Step 5 ‘development’ are set appropriately. 15 10 2 0 0 4.5 0.64 0.85

Applicability 9 The study model is appropriate for use in a project-based programming class for

non-majors.
10 14 2 1 0 4.2 0.75 0.78

10 The study model would help design computing course content for non-majors. 14 11 2 0 0 4.4 0.64 0.85

Overall average 4.5

1538

The results of the CVR validation showed that all the

survey items were above .407, which ensured the overall

validity of the items. The overall average was 4.5, which was

a favorable evaluation result. However, the applicability (4.2)

of item 9 showed a slightly lower response result. As an open-

ended opinion related to this, it was observed that it could be

difficult for non-majors and that step integration and

simplification were necessary. It was also observed that this

can be very effective for non-majors in a macroscopic aspect

if the class difficulty and task level are well adjusted and
operated by analyzing the learners’ characteristics in step 1.

The validity of the MCPS instructional model was

investigated through a first-order Delphi study—the results of

descriptive opinions and open-ended responses to items were

valid for all items. In addition, interviews were conducted

with four university professors and researchers majoring in

educational engineering and related to teaching-learning

theory and instructional design to gather more in-depth and

professional opinions from an educational engineering

perspective on whether the development of the instructional

model and the composition of the instructional design in this
study were organized correctly to meet the goals.

To summarize the first and second expert opinions, it is

necessary to distinguish the model development from existing

models by clearly presenting the instructional model and

instructional design components separately and providing

detailed activities and strategies for each step. Additionally, it

was noted that the study would be enhanced if the

instructional design clearly outlined the instructional goals

and evaluation methods and if these were reflected in the field

application. Therefore, in this study on the development of the

MCPS instructional model, an additional investigation was
conducted to create a learner evaluation rubric based on the

MCPS instructional model to enhance its comprehensiveness.

This rubric considers content and evaluation aspects by

explicitly outlining the lesson objectives.

4) Developing a Finalized Instructional Model: The

instructional model was modified to reflect its validity

verification, expert open review, and FGI survey results. The

final version of the MCPS instructional model was developed,

as shown in TABLE 4, by supplementing the teaching and

learning activities and strategies.

TABLE Ⅳ

MAPS INSTRUCTIONAL MODEL

Steps Details

Step 1.
Motivation
and

preparation

1.1 Learning motivation (relevance to major,
need for computing education)
1.2 Identifying learner’s characteristics and

difficulties in computing education (online
survey)
1.3 Identifying the antecedents of computing
education

Step 2.
Building of
basic
knowledge

2.1 Learning motivation (find related current IT
issues)
2.2 Demonstration (explain programming
grammar)

2.3 Support (using real-life examples)
2.4 Stop helping (extend practice)

Step 3.
Application
of basic
knowledge

3.1 Learning motivation (build expectations by
introducing computing skills)
3.2 Problem settings
3.3 Derive a solution to the problem

Steps Details

3.4 Share solutions
Step 4.
Planning
outputs and
execution

4.1 Exploring ideas
4.2 Ideation
4.3 Design and share ideas
4.4 Implementing ideas
 4.4.1 Proofread ideas

4.4.2 Share Concrete Outputs
4.5 Evaluation

Step 5.
Development

5.1 Learning motivation (identify challenges and
confidence boosts)
5.2 Applying digital technology
5.3 Express ideas through various media

5) Differentiation from the Existing Instructional Model:

The MCPS instructional model developed in this study has the

following characteristics compared to previous studies.

Firstly, based on Papert’s constructionism learning theory,

learner level and pace were adjusted. The preparatory step

was organized based on learner characteristics to provide

learners with many opportunities to make choices and reflect

on them so that non-majors can feel satisfaction and

achievement.

Secondly, most of the existing instructional models only

motivate students initially; the MCPS instructional model

fosters continuous motivation throughout all steps.

Furthermore, it offers activities such as finding relevance and

providing related information from stage 2 to stage 5. By
enabling non-major students to sustain and enhance their

learning motivation at every stage—through reminders of

their goals and progress checks—the significant issue of lack

of motivation has been addressed and improved.

Thirdly, while most existing instructional models are

designed for short-term (or single-session) classes, the MCPS

instructional model is designed for semesters or longer by

applying practical learning principles for non-majors.

Fourthly, in traditional computing classes, the product

project typically follows the learning of programming,

serving as a task or a means of evaluation. In contrast, the

MCPS instructional model is designed to facilitate systematic
learning by incorporating the entire process of planning and

producing applications and project outputs within the

framework of essential knowledge formation in the

instructional model.

Fifthly, integrating extracurricular activities fosters a sense

of challenge and self-confidence, with the instructional model

extending beyond the mere production and evaluation of

existing outputs. Moreover, it can be flexibly configured and

operated to align with school events and schedules.

F. The Development of an Evaluation Rubric for the MCPS

Instructional Model

1) Principles of Developing an Evaluation Rubric for the

MCPS Model: Based on related studies [23], [34], [41], [42],

[43], [44], [45], there are some principles for developing an
evaluation rubric for the MCPS model. First, include

cognitive and definitional domains, encompassing theory and

practice, as well as individual and collaborative outputs.

Second, based on process-oriented evaluation comprises

formative evaluation (classroom practice, assignments),

summative evaluation (short answer, narrative, practical

evaluation, product plan, and report), and collaborative

1539

evaluation. Third, it is not limited to computational thinking

skills. The process of producing output by solving real-life

(major) related problems by themselves is organized and

evaluated as an educational goal. Fourth, the scores are

subdivided to enable reliable evaluation. Fifth, clear criteria

should be provided based on the MCPS instructional model's

step-by-step objectives.

2) Evaluation rubric factors: The steps of the MCPS

lesson model were matched with the evaluation factors from

the relevant research in columns. Rows are the objectives for

each step in the MCPS instructional model. The evaluation

factors for each step in the MCPS instructional model

included knowledge, skill, and attitude domains, resulting in

the evaluation factors shown in Table 5.

TABLE Ⅴ

RESULTS OF DERIVING EVALUATION FACTORS FOR AN EVALUATION RUBRIC

MCPS Instructional Model

Steps [6]
Evaluation Factors Knowledge Skills Attitudes

Step 1. Motivation and
preparation

1.1 Basic principles and concepts of computers
1.2 Recognition of the relevance of computing to major fields
1.3 Design real-world computing algorithms

○

○

○

○

○

○

Step 2. Building of basic
knowledge

2.1 The concept of programming Elements
2.2 Executing code with programming elements
2.3 Executing code to solve real-world problems

○

○

○

○

○

○

Step 3. Application of basic
knowledge

3.1 Analyzing code to solve real-world(major-related) problems
3.2 Execute code to solve a real-world(major-related) problem
3.3 Expressing a Solution

○

○

○

○

○

○

Step 4. Planning outputs and
execution

4.1 Exploring real-world problems
4.2 Appropriateness of data collection and analysis
4.3 Decompose the problem into solvable units
4.4 Design a solution
4.5 Implement the solution
4.6 Refine through testing and debugging
4.7 Feedback through sharing and collaboration

4.8 Representing the results of collaborative output

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

Step 5. development 5.1 various expressions of ideas
5.2 share your impressions of participating in computing classes

○

○

○

○

○

○

3) Rubric appropriateness review: A validity study was

conducted with experts on the draft MCPS instructional

model learner evaluation rubric. The validity analysis method

was based on the CVR calculation formula [Equation (1)], and

the CVR was set at .538 (number of experts: 13) according to

the number of responding experts. We conducted a CVR
review of the learner evaluation rubric development's

evaluation factors and evaluation levels. First, we checked the

validation results of the evaluation elements, and all of them

were above .538, which ensured the validity of all items.

However, after discussing the borderline value of Step 5.2,

"Sharing experiences and reflections on participation in

computing classes (0.54)", it was removed because it is part

of the "Expressing ideas in a variety of ways" step in Step 5.1.

The overall rating was 4.50, which is a positive result. The

results of the expert review on the appropriateness of the

evaluation level based on the evaluation factors showed that
some items had a slightly lower CVR value of 0.54. Still, all

survey items had a CVR value of .538 or higher, ensuring the

validity of all items. Although the overall rating of 4.53 was

positive, the ratings of Step 1.2, "Recognizing the relevance

of computing to the major field (4th Industrial Revolution),"

and Step 1.3, "Designing computing algorithms in real life,"

were somewhat lower than the other items. However, the

ratings of 4.2 were positive; it can be observed that it is

essential that non-majors have activities that are not only

related to their major but also related to real life to motivate

them. In addition, we observed that the evaluation of outputs
should include the process and set evaluation criteria and that

evaluation and feedback from instructors and evaluation of

self-evaluation and peer evaluation are needed.

4) Develop a finalized version of the evaluation rubric:

Based on the expert review comments above, the draft learner

evaluation rubric was revised and refined to develop a

finalized version. Step 1 was to evaluate learners' attitudes
before programming classes and their ability to recognize the

need for computing education and to write real-life

algorithms. In Step 2, the students were asked to understand

the concepts of programming elements, follow the code of

real-life examples, and evaluate whether they could write and

extend them by adding their ideas. Step 3 is constructing a

solution to a real-world or major-related problem and

presenting a finalized solution. Step 4, the output process was

evaluated on whether the team explored and analyzed the

idea, broke it down into solvable units, designed and

implemented it, and evaluated the output together to provide
feedback. Step 5 was organized to assess the attitude of

reaffirming the need for computing and gaining confidence

through sharing experiences and feelings about various

expressions of ideas. The learner evaluation rubric for the

MCPS instructional model developed in this study will offer

a more objective and reliable assessment by furnishing a

precise evaluation criterion that assesses both the process of

learning programming and the completion of creative output.

G. Application of MCPS Instructional Models

1) Purpose and hypothesis: We developed and

implemented a computing course utilizing the MCPS

1540

instructional model to enhance learning motivation and foster

creative problem-solving skills in a college-level computing

liberal arts class for non-majors. Subsequently, we evaluate

its efficacy through result analysis. To validate the

effectiveness via a comparison between the group utilizing the

MCPS teaching model and the group undergoing traditional

computing classes in liberal arts for non-majors. The research

hypotheses for application and effectiveness analysis of the

MCPS instructional model are as follows:

[Learning Motivation – Inter-group]

a. [Hypothesis A1] In a college-level computing liberal

arts class for non-majors, the MCPS class model group

will exhibit significant differences in intrinsic

motivational goals compared to the group undergoing

traditional computing classes.
b. [Hypothesis A2] In a college-level computing liberal

arts class for non-majors, the MCPS class model group

will demonstrate significant differences in extrinsic

motivational goals compared to the group undergoing

traditional computing classes.

c. [Hypothesis A3] In a college-level computing liberal

arts class for non-majors, the MCPS class model group

will show significant differences in the control of

learning beliefs compared to the group undergoing

traditional computing classes.

d. [Hypothesis A4] In a college-level computing liberal

arts class for non-majors, the MCPS class model group
will display significant differences in self-efficacy

regarding learning motivation compared to the group

undergoing traditional computing classes.

[Creative Problem-solving Skills – Inter-group]

a. [Hypothesis B1] In a college-level computing liberal arts

class for non-majors, the MCPS class model group will

present significant differences in specific areas of

creative problem-solving skills such as knowledge,

thinking, skills, and proficiency compared to the group

undergoing traditional computing classes.

b. [Hypothesis B2] In a college-level computing liberal arts
class for non-majors, the MCPS class model group will

demonstrate significant differences in expansive

thinking regarding creative problem-solving skills

compared to the group undergoing traditional computing

classes.

c. [Hypothesis B3] In a college-level computing liberal arts

class for non-majors, the MCPS class model group will

exhibit significant differences in critical and logical

thinking regarding creative problem-solving skills

compared to the group undergoing traditional computing

classes.
d. [Hypothesis B4] In a college-level computing liberal arts

class for non-majors, the MCPS class model group will

manifest significant differences in motivational factors

concerning creative problem-solving skills compared to

the group undergoing traditional computing classes.

2) Application design: This study was conducted with

non-major students enrolled in the computing course for non-

majors at the University of A in South Korea. The participants

comprised 91 students from four divisions, with 43 students

in the experimental group and 48 in the control group. The

intervention period they lasted from March 1st to December

21st, 2022, spanning 15 weeks each for the first and second

semesters. Before the experiment, pre-tests for creative

problem-solving skills and learning motivation were

conducted to confirm the homogeneity of the experimental

and control groups. Following the pre-tests, the experimental

group received a computing course based on the MCPS class

model, while the control group received traditional computing

instruction. Traditional computing instruction refers to

lecture-based teaching focusing on grammar and end-of-

semester project-centered instruction. Post-tests were
administered immediately after the course's completion, and

this application's design is outlined in Table 6.

TABLE Ⅵ

APPLICATION DESIGN OF THE RESEARCH

G1 O1 X1 O3

G2 O2 X2 O4

G1: control group
G2: experimental group
O1, O2: pre-test (creative problem-solving ability test, learning
motivation test)
X1: MCPS-based computing course

X2: traditional computing course
O3, O4: post-test (creative problem-solving ability test, learning
motivation test)

3) Test Tool of Learning Motivation: For the learning

motivation test, a test tool modified by Kang [46] based on

the Motivation Strategies for Learning Questionnaire

(MSLQ) produced by Pintrich and his colleagues [47] was

used. The validity of this test paper was re-verified by one
teacher and two educational engineering experts [12]. The

sub-factors of the learning motivation test paper consist of

‘Internal goals,’ ‘External goals,’ ‘Control of learning

beliefs’, and ‘Self-efficacy.’ There are 16 items, four for each

sub-factor, and each item is presented on a 5-point Likert

scale. Table 7 shows the sub-factors and number of items in

the learning motivation test tool [15].

TABLE Ⅶ

SUB-FACTORS AND ITEMS OF THE LEARNING MOTIVATION TEST TOOL

Sub-Factor Question Number of

Questions

internal goals 1, 10, 13, 14 4

external goals 5, 7, 9, 16 4
control of learning beliefs 2, 6, 11, 15 4
self-efficacy 3, 4, 8, 12 4
total 16

4) Test Tool of Creative Problem-Solving Ability: In this

study, the ‘Simple Creative Problem-Solving Ability Test

Paper’ developed by the MI Research Team [48] of the

Psychological Lab at Seoul National University was used

[44]. This tool was developed based on the ‘Simple Creative

Problem-Solving ability test development study’ [49]

published by the Korea Educational Development Institute to
measure creative problem-solving ability [34]. The sub-

factors of the tool consist of ‘knowledge in a specific area, the

function of thinking, skill, and mastery,’ ‘divergent thinking,’

‘critical and logical thinking,’ and ‘motivational elements.

There are 20 items, five for each sub-factor, and each item is

presented on a 5-point Likert scale. Table 8 shows the sub-

factors and number of items in the creative problem-solving

ability test tool [15].

1541

TABLE Ⅷ

SUB-FACTORS AND ITEMS OF THE CREATIVE PROBLEM-SOLVING ABILITY

TEST TOOL

Sub-Factor Question Number of

Questions

Knowledge in a specific area,
the function of thinking, skill,

and mastery

1, 2, 3, 4, 5 5

Divergent thinking 6, 7, 8, 9, 10 5
critical and logical thinking 11, 12, 13, 14, 15 5
motivational elements 16, 17, 18, 18, 20 5
total 20

5) Extraction of Constructionism Learning

Characteristics Factors based on Papert: In this study, to

conduct causal analysis considering the constructionism

learning characteristics of Papert, we utilized the Class

Evaluation Items developed by our university. To extract the

constructionism learning characteristics of Papert, we

analyzed the validity of the factors by selecting 12 items out

of a total of 15 items in the class evaluation questionnaire,
excluding three self-evaluation items, as the subject of factor

analysis. Statistical analysis was performed using SPSS 26,

and exploratory factor analysis was conducted on the

completed items through expert validation. The extraction

method employed was Principal Component Analysis, and the

rotation method used was varimax for factor analysis [50].

In the third round of factor extraction, following the first

and second rounds, the Kaiser-Meyer-Olkin (KMO) measure

yielded a value of .850 (> .5), indicating adequacy, and

Bartlett's test of sphericity resulted in an approximate chi-

square value (significance probability) of 705.178 (.000),

confirming suitability. A total of 6 items were identified, with

each factor comprising three items, demonstrating the most

appropriate conclusion. Additionally, high reliability was

ensured for Factor 1 and 2, with values of .987 and .990,

respectively.

Considering the content and evaluation areas of the items

ultimately derived from exploratory factor analysis, and after

review by three experts, the factors were named ‘interest-

based problem-solving’ and ‘communication using digital

technology.’ Furthermore, a Cronbach's alpha value of .991

was obtained through reliability analysis, indicating very high
reliability. The constructivist learning characteristics factors

and item composition utilized in this study are outlined in

Table 9.

TABLE Ⅸ

CHARACTERISTICS AND ITEMS OF PAPERT'S CONSTRUCTIONIST LEARNING

Sub-Factor Question
Number of

Questions

Cronbac

h-α

interest-based problem-
solving

11, 14, 15 3
.991

communication using
digital technology

4, 9, 10 3

total 20

6) Instructional Implementation: In this study, to

validate the MCPS instructional model's effectiveness, we

developed a computing course based on the MCPS model and

conducted expert validation. We intend to apply for this

course to the experimental group. The control group was

designed to follow the traditional university computing course

format. To compare the courses between the experimental and

control groups, we outlined the weekly course designs for

each group, as shown in Table 10.

TABLE Ⅹ

COMPARISON OF LESSON PLANS BY WEEK BETWEEN THE EXPERIMENTAL GROUP AND THE CONTROL GROUP

Experimental Group (N=43) (MCPS-based Computing Course)

Week

(3 h)

Control Group (N=48) (Traditional

Computing Course)

Application of MCPS Principles Course Topic (App Inventor

Programming)

Course Topic (App

Inventor Programming)

Teaching Method

[Step 1]
� Maintain overall motivation
� Identify learner characteristics
� Pre-existing understanding of
computing

Orientation and 4th industrial
revolution, (online survey)

1 Orientation and 4th Industrial
Revolution, introduction to
App inventor

▸ lecture method+
basic examples

Basic Examples: understanding App
inventor's essential functions and
understanding of variables
(understanding computing)

2 Understanding app inventor's
essential functions and
understanding of variables

[Step 2]
� Find motivation and relevance
� Adaptation of learner characteristics
from step 1 -> adjusting learning pace
and level
� Explanation of syntax followed by

practice
� Demonstrating real-life examples
� Extend with additional ideas

Understanding conditions 3 Understanding conditions

Understanding lists 4 Understanding lists

Understanding loops 5 Understanding loops

Understanding functions 6 Understanding functions

Understanding other functions 7 Understanding other functions

Understanding level check (midterm
exam)

8 Understanding level check
(Midterm exam)

[Step 3]
� Find motivation and relevance
� Set everyday life (major-related)
problems
� Find solutions independently
� Share solutions

Solving everyday life and major-related
problems

9 Solving everyday life and
major-related problems

▸ Lecture method
+ advanced examples
(including real-life
related topics)

[Step 4] Creating apps using maps
(brainstorming ideas)

10 Creating apps using sensors

1542

Experimental Group (N=43) (MCPS-based Computing Course)

Week

(3 h)

Control Group (N=48) (Traditional

Computing Course)

Application of MCPS Principles Course Topic (App Inventor

Programming)

Course Topic (App

Inventor Programming)

Teaching Method

� Form teams based on learner

opinions
� Implementing creative outputs by
exploring ideas and solving problems
� [Example: 2nd class, output
production 1st class conducted
together or example: 1st class, output
production 2nd class]
� [Submit step-by-step plans and
reports]

Creating apps using maps creating quiz

apps (design and share ideas, for
example)

11 creating apps using maps

creating quiz apps (design and share
ideas, for example)

12 Creating quiz apps

Creating apps for convenience in daily
life (Implementing ideas)

13 Creating apps for convenience
in daily life

▸Problem-based
learning

▸Project-based
learning (team)

Evaluate outputs (instructor evaluation,
peer evaluation, self-evaluation)

14 Apps for college students
(Output production)

[Step 5]
� IoT demonstration
� Participation in campus exhibitions
� Computing competitions, etc.

Spreading ideas 15 Evaluate outputs (instructor
evaluation, peer evaluation,
self-evaluation)

In the experimental group's initial session, an online survey

was conducted to analyze learner characteristics. Based on the

results of this analysis, adjustments were made to learner

level, learning speed, and task difficulty starting from MCPS

class stage 2. Additionally, a team was formed incorporating

learner feedback, and the class environment was tailored to

address learner difficulties and preferences before each

session [51].

Comparing the characteristics of the two groups, during the

first and second weeks, the experimental group discussed the

necessity of computing and computer comprehension as part
of a motivation and preparation step. An online survey was

also conducted to analyze learner characteristics. In contrast,

the comparison group proceeded directly to the main class

after an orientation session.

From weeks 3 to 8, both groups focused on learning

programming grammar. The experimental group adjusted

their approach based on learner characteristics, presenting

topics that overlapped with consideration of learning levels,

speeds, and task difficulties. Additionally, they engaged in

activities before each class to connect with current IT issues.

The instructional approach involved principles of lecture

methods for explaining and summarizing grammar and
cognitive apprenticeship principles for demonstration and

extended activities based on real-life examples. The

comparison group followed a more traditional grammar-

centered lecture method with basic examples.

Weeks 9 to 14 saw the experimental group engaging in

practical exercises to solve real-life or significant problems.

They explored ideas, designed, implemented, and evaluated

solutions independently, fostering creativity through team

collaboration, opinion sharing, and feedback. Meanwhile, the

comparison group focused on in-depth examples followed by

producing output, mainly through problem-based learning
sessions addressing end-of-semester projects.

The final 15th week it involved a developmental stage and

idea dissemination activities for the experimental group (such

as school software exhibitions, idea contests, IoT

demonstrations, etc.). In contrast, the comparison group

underwent project evaluation.

III. RESULTS AND DISCUSSION

A. Comparison of Pre-Post Tests

Data analysis and processing in this study were conducted

using IBM SPSS version 26. To verify the hypothesis of this

application, a t-test was performed to confirm the

homogeneity of the experimental and control groups' learning

motivation and creative problem-solving ability before the

experiment. The pre-test results for learning motivation and

innovative problem-solving ability showed that the control

and experimental groups had similar average values, and the

significance levels for each factor in the two groups were all

above .05, showing no significant differences between the

groups. Therefore, it was confirmed that the control and
experimental groups were homogeneous in terms of learning

motivation. Table 11 shows the results of the Learning

Motivation pretest.

TABLE ⅩⅠ

RESULTS OF PRE-TEST FOR LEARNING MOTIVATION(EXPERIMENTAL N=43,

CONTROL N=48)

Sub-Factor Group M SD T P

Internal goals Experimental group 3.56 .557 -1.032 .305
Control group 3.69 .626

External goals Experimental group 3.69 .638 -.147 .884
Control group 3.71 .758

Control of
learning beliefs

Experimental group 3.70 .423 -.486 .628
Control group 3.76 .571

self-efficacy Experimental group 3.01 .612 .246 .806
Control group 2.97 .819

After conducting the pre-test for creative problem-solving

ability, it was observed that the control group had a slightly

higher overall average value than the experimental group.

However, the significance level for each factor was above .05,

indicating no significant differences between the groups.

Consequently, it was confirmed that the control and
experimental groups were homogeneous in terms of creative

problem-solving ability. The results of the creative problem-

solving ability pre-test are presented in Table 12.

TABLE ⅩⅡ

RESULTS OF THE PRE-TEST FOR CREATIVE PROBLEM-SOLVING

ABILITY(EXPERIMENTAL N=43, CONTROL N=48)

Sub-Factor Group M SD T P

Knowledge in a
specific area, the

Experimental group 2.71 .597 -.896 .373

1543

function of thinking,

skill, and mastery

Control group 2.83 .648

divergent thinking Experimental group 2.73 .716 -.074 .941
Control group 2.74 .745

Critical and logical
thinking

Experimental group 3.47 .453 -
1.378

.172
Control group 3.62 .576

Motivational
elements

Experimental group 3.17 .493 -.617 .539
Control group 3.25 .684

1) Comparison of Post-Test Results between Groups: To
confirm whether there are significant differences in learning

motivation and creative problem-solving ability between the

experimental group and the control group after the

experimental treatment, a post-test was conducted, and the

results comparing the post-test of the experimental group and

the control group using a g independent t-test are shown in

Table 13.

TABLE ⅩIII

COMPARISON OF POST-TEST RESULTS OF THE EXPERIMENTAL AND CONTROL

GROUPS (EXPERIMENTAL N=43, CONTROL N=48)

Sub-Factor Paired M SD T P

L
e
a
rn

in
g

 m
o

tiv
a
tio

n

internal goals experimental

group

4.02 .733

2.111 .038*

control group 3.68 .777

external goals experimental

group

3.70 .856

-.747 .457

control group 3.83 .735

control of learning beliefs experimental

group

4.02 .486

.370 .712

control group 3.97 .617

self-efficacy pre 3.43 .867
.573 .568

post 3.33 .746

C
re

a
tiv

e
 p

ro
b

le
m

-so
lv

in
g

ab
ility

knowledge in a specific

area, the function of

thinking, skill, and mastery

experimental

group

3.14 .591

.507 .613

control group 3.07 .690

divergent thinking experimental

group

3.27 .765

.765 .446

control group 3.15 .778

critical and logical thinking experimental

group

3.82 .541

-.857 .394

control group 3.91 .503

motivational elements experimental

group

3.51 .658

-.181 .857

control group 3.53 .727

As a result of the post-test conducted between groups, the

average score of the experimental group was generally higher

than that of the control group. However, this difference was

statistically significant only in the internal goal area among

the sub-factors of learning motivation, where the p-value was
below the significance level of .05. This finding indicates a

significant difference in learning motivation, specifically in

the internal goal area among students who participated in

MCPS model-based computing classes compared to those

who took traditional computing classes. Nevertheless, no

significant changes were observed in other learning-

motivation sub-factors and in the creative problem-solving

ability sub-factors based on the post-test results between

groups. Consequently, to further examine the average scores

within the experimental group across different factors, pre-

and post-tests within the group were compared, and additional

analysis was conducted on the average score of the
experimental group.

2) Comparison of Pre-Post Test Results Within Groups:

As previously mentioned, to examine the changes in the sub-

factors of learning motivation and creative problem-solving

ability within each group of the control and experimental

groups, additional paired sample t-tests were conducted. In

this regard, the following research hypothesis was formulated

to verify the effectiveness through comparison within the

group applying the MCPS instructional model in computing

general education classes for non-majors.

[Learning Motivation – Within-group]

a. [Hypothesis C1] The group of non-majors in university

computing liberal arts classes where the MCPS

instructional model is applied will exhibit a significant

difference in internal goal orientation of learning

motivation.

b. [Hypothesis C2] The group of non-majors in university

computing liberal arts classes where the MCPS

instructional model is applied will exhibit a significant
difference in external goal orientation of learning

motivation.

c. [Hypothesis C3] The group of non-majors in university

computing liberal arts classes where the MCPS

instructional model is applied will exhibit a significant

difference in perceived control of learning beliefs.

d. [Hypothesis C4] The group of non-majors in university

computing liberal arts classes where the MCPS

instructional model is applied will exhibit a significant

difference in self-efficacy of learning motivation

[Creative Problem-solving Skills – Within-group]

a. [Hypothesis D1] The group of non-majors in university
computing liberal arts classes where the MCPS

instructional model is applied will exhibit a significant

difference in specific areas of knowledge, thinking,

skills, and expertise related to creative problem-solving

ability.

b. [Hypothesis D2] The group of non-majors in university

computing liberal arts classes where the MCPS

instructional model is applied will exhibit a significant

difference in divergent thinking of creative problem-

solving ability.

c. [Hypothesis D3] The group of non-majors in university
computing liberal arts classes where the MCPS

instructional model is applied will exhibit a significant

difference in critical and logical thinking of creative

problem-solving ability.
d. [Hypothesis D4] The group of non-majors in university

computing liberal arts classes where the MCPS

instructional model is applied will exhibit a significant

difference in motivational factors of creative problem-

solving ability.
First, paired sample t-tests were conducted on the control

group's pre-test and post-test results, which are shown in

Table 14. The comparison of pre-test and post-test results for
each evaluation within the control group revealed a slight

increase in mean values for all sub-domains of the learning

motivation evaluation, excluding the internal goal orientation.

Additionally, within the sub-domains of learning motivation,

a statistically significant change was observed in the self-

efficacy domain, and within the sub-domains of creative

problem-solving ability evaluation, significant changes were

observed in the divergent thinking and critical/logical

thinking domains, with p-values of .033, .039, and .033,

respectively, indicating significance at the .05 level. The

1544

results of the paired sample t-tests for the experimental group

are presented in Table 15.

TABLE ⅩIV

COMPARISON OF PRE-TEST AND POST-TEST RESULTS IN THE CONTROL

GROUP (CONTROL N=48)

Sub-Factor Paired M SD T P

L
e
a
rn

in
g

m
o

tiv
a
tio

n

Internal goals
pre 3.74 .633

.453 .653
post 3.68 .777

External goals
pre 3.73 .774

-.628 .533
post 3.83 .735

Control of learning beliefs
pre 3.80 .599

-1.644 .107
post 3.97 .617

self-efficacy
pre 3.03 .837

-2.191 .033*
post 3.33 .746

C
re

a
tiv

e
 p

ro
b

le
m

-

so
lv

in
g

 ab
ility

 a
c
tiv

e

p
ro

b
le

m
-so

lv
in

g

Knowledge in a specific area, the

function of thinking, skill, and

mastery

pre 2.90 .670

-1.323 .192 post 3.07 .690

Divergent thinking
pre 2.83 .779

-2.118 .039*
post 3.15 .778

Critical and logical thinking
pre 3.67 .615

-2.191 .033*
post 3.91 .503

Motivational elements
pre 3.30 .707

-1.468 .149
post 3.53 .727

TABLE ⅩⅤ

COMPARISON OF PRE-TEST AND POST-TEST RESULTS IN THE EXPERIMENTAL

GROUP (CONTROL N=43)

Sub-Factor Paired M SD T P

L
e
a
rn

in
g

m
o

tiv
a
tio

n

internal goals
pre 3.59 .582

-2.771 .008**
post 4.02 .733

external goals
pre 3.71 .659

.034 .973
post 3.70 .856

control of learning

beliefs

pre 3.77 .471
-2.437 .019*

post 4.02 .486

self-efficacy
pre 3.08 .644

-2.237 .031*
post 3.43 .867

C
re

a
tiv

e
 p

ro
b

le
m

-so
lv

in
g

ab
ility

knowledge in a

specific area, function

of thinking, skill, and

mastery

pre 2.73 .587

-3.224 .002**
post 3.14 .591

divergent thinking
pre 2.77 .706

-2.981 .005**
post 3.27 .765

critical and logical

thinking

pre 3.47 .458
-3.288 .002**

post 3.82 .541

motivational elements
pre 3.19 .458

-2.294 .027*
post 3.51 .658

The comparison of pre-test and post-test results for each

evaluation in the experimental group revealed a significant

increase in mean values across all domains compared to the

control group, excluding the external goal orientation domain

of the learning motivation evaluation. Furthermore, within the

sub-domains of the learning motivation evaluation, excluding

the external goal orientation, statistically significant changes

were observed in three areas with p-values of .008, .019,

and .031, respectively, indicating significance at the .05 level.

Additionally, within the sub-domains of the creative problem-

solving ability evaluation, significant changes were observed

across all domains with p-values of .002, .005, .002, and .027,
respectively, indicating significance at the .05 level.

Although no significant difference was found in the post-

hoc comparison analysis between groups for creative

problem-solving ability, the pre-test and post-test comparison

within the experimental group revealed a significant increase

in mean values across all sub-domains, confirming significant

changes.

B. Interpretation of Test Comparison Results and Discussion

The comparison results between groups for learning

motivation and creative problem-solving ability evaluation, as

well as factors that showed statistically significant

improvements in pre-test and post-test comparisons within

groups, were analyzed.

Firstly, focusing on learning motivation, the analysis of

comparisons for each sub-factor between groups revealed

significant improvements in the internal goal orientation area

in the post-test comparison. Furthermore, in the pre-test and

post-test comparison within groups, statistically significant
improvements were observed in all sub-domains, excluding

the external goal orientation, for the experimental group.

Similarly, when examining the results for creative

problem-solving ability, while no statistically significant

differences were found in the post-test comparison between

groups, significant improvements were observed in all sub-

domains within the experimental group in the pre-test and

post-test comparison.

Therefore, [Hypothesis A1] was accepted, indicating that

the group of non-majors in university computing general

education classes where the MCPS instructional model was
applied showed a significant difference in internal goal

orientation of learning motivation compared to the group

where traditional computing classes were used. However,

[Hypotheses A2-A4] and [Hypotheses B1-B4] were rejected,

indicating no significant differences. Additionally, upon

further analysis of the changes in sub-factors of learning

motivation and creative problem-solving ability within

groups, [Hypothesis C2] was rejected, suggesting no

significant difference, while [Hypotheses C1], [C3-C4], [D1-

D4] were all accepted, indicating substantial differences.

In summary, the MCPS instructional model-based
computing education for non-majors in computing general

education classes demonstrated effectiveness in internal goal

orientation of learning motivation, perceived control in

learning beliefs, self-efficacy, and all sub-factors of creative

problem-solving ability according to within-group

comparison results. However, although the post-test

comparison between groups revealed somewhat more

significant results in the experimental group's sub-factors

compared to the control group, with only the internal goal

orientation factor of learning motivation showing substantial

difference, indicating the need for further analysis with

diversified methods to understand the relationship among
factors within the experimental group.

C. Analysis of Relationships between Each Factor in the

Application of the MCPS Instructional Model

1) First-order correlation analysis between subfactors of

each test: This study verified the effectiveness of the MCPS

instructional model for operating computing general

education classes for non-majors in university settings. In

addition to assessing effectiveness, the study aimed to derive

various implications by conducting in-depth analyses of

correlations and causality among sub-factors. The sub-

domains of the learning motivation and creative problem-

solving ability evaluation tools used in this study were

analyzed, focusing on seven factors: three sub-factors of

learning motivation (excluding the external goal orientation)
and four sub-factors of creative problem-solving ability,

where statistically significant differences were not observed

1545

in the experimental group. Pearson correlation coefficients

were calculated to analyze the primary correlations among

these sub-factors. Upon examining the evaluation results, it

was observed that there were significant correlations between

two sub-factors of learning motivation (internal goal

orientation, self-efficacy) and four factors of creative

problem-solving ability (specific area

knowledge/thinking/skills and expertise, divergent thinking,

critical/logical thinking, motivational factors). Therefore,

additional analysis was conducted to investigate the

relationships between these sub-factors further.

2) First-order causal analysis between each sub-factor:

To examine the relationship between the sub-factors of

learning motivation and creative problem-solving ability, a

primary causal relationship analysis was conducted. Two sub-

domains of learning motivation (internal goal orientation,

self-efficacy) were set as independent variables, while four

sub-domains of creative problem-solving ability were set as

dependent variables [12], [52], [53], [54], [55], [56]. The

following research hypotheses were formulated to determine

whether there exists any causal relationship between learning
motivation and creative problem-solving ability in the group

of non-majors in university computing general education

classes where the MCPS instructional model was applied.

[Primary Causal Analysis - Multiple Regression Analysis]

a. [Hypothesis E1]: The MCPS instructional model-based

computing education for non-majors in university
computing classes will have a causal relationship

between internal goal orientation of learning motivation

and specific area knowledge/thinking/skills and

expertise of creative problem-solving ability.

b. [Hypothesis E2]: The MCPS instructional model-based

computing education for non-majors in university

computing classes will have a causal relationship

between internal goal orientation of learning motivation

and divergent thinking of creative problem-solving

ability.

c. [Hypothesis E3]: The MCPS instructional model-based
computing education for non-majors in university

computing classes will have a causal relationship

between internal goal orientation of learning motivation

and critical/logical thinking of creative problem-solving

ability.

d. [Hypothesis E4]: The MCPS instructional model-based

computing education for non-majors in university

computing classes will have a causal relationship

between internal goal orientation of learning motivation

and motivational factors of creative problem-solving

ability.

e. [Hypothesis E5]: The MCPS instructional model-based
computing education for non-majors in university

computing classes will have a causal relationship

between self-efficacy of learning motivation, specific

area knowledge/thinking/skills, and expertise of creative

problem-solving ability.

f. [Hypothesis E6]: The MCPS instructional model-based

computing education for non-majors in university

computing classes will have a causal relationship

between self-efficacy of learning motivation and

divergent thinking of creative problem-solving ability.

g. [Hypothesis E7]: The MCPS instructional model-based

computing education for non-majors in university

computing classes will have a causal relationship

between self-efficacy of learning motivation and

critical/logical thinking of creative problem-solving

ability.
h. [Hypothesis E8]: The MCPS instructional model-based

computing education for non-majors in university

computing classes will have a causal relationship

between self-efficacy of learning motivation and
motivational factors of creative problem-solving ability.

To validate the research model, stepwise regression

analysis was employed to distinguish factors influencing the

dependent variable and to present only the independent

variables that had an effect. The aim was to analyze the impact

of two areas of learning motivation, set as independent

variables, on creative problem-solving ability.

The results were examined after conducting multiple

regression analyses on the influence of learning motivation on

creative problem-solving ability. The independent variables,

internal goal orientation, and self-efficacy, significantly
influenced the dependent variables: specific area

knowledge/thinking/skills and expertise, divergent thinking,

critical/logical thinking, and motivational factors, with p-

values of .000 (p < .05). All other variables were deemed

insignificant and were consequently eliminated through

backward elimination. This regression equation demonstrates

explanatory power of 33%, 47.1%, 22.8%, and 23.9% for

motivational factors.

Thus, analyzing the causal relationships between the seven

factors of learning motivation and creative problem-solving

ability (as described in hypotheses E1 to E8), it was found that
internal goal orientation influenced specific area

knowledge/thinking/skills and expertise, as well as divergent

thinking. Conversely, critical/logical thinking and

motivational factors were influenced by self-efficacy.

3) Secondary correlation analysis between each sub-

factor: As observed earlier, the causal relationships between

the two factors of learning motivation (internal goal

orientation, self-efficacy) and the four factors of creative

problem-solving ability (specific area

knowledge/thinking/skills and expertise, divergent thinking,

critical/logical thinking, motivational factors) were examined

in this study. To determine whether Papert's constructionism
learning characteristics, consisting of two factors (problem-

solving based on interest and understanding, digital-based

communication), mediate these relationships, Pearson

correlation coefficients were calculated to analyze the

secondary correlations among the eight factors.

The results indicated significant correlations between
Papert's constructionism learning characteristics, one factor of

learning motivation (internal goal orientation), and three

factors of creative problem-solving ability (specific area

knowledge/thinking/skills and expertise, divergent thinking,

motivational factors). Hence, additional analysis was

conducted to investigate the relationships between these sub-

factors further.

4) Secondary causal analysis between each sub-factor:

In the earlier first-order causal analysis, a causal relationship

was established between learning motivation (internal goals,

1546

self-efficacy) and creative problem-solving ability (specific

area knowledge/thinking/skills, divergent thinking,

motivational factors). Subsequently, a mediation regression

analysis was conducted to examine whether there is a

mediating effect of Papert's constructionism learning

characteristics (problem-solving based on interest and

understanding, digital-based communication) on the causal

relationship between learning motivation and creative

problem-solving ability.

The hypotheses set to examine the influence of Papert's

constructionism learning characteristics (problem-solving

based on interest and understanding, digital-based

communication) are as follows:

[Secondary Causal Analysis - Mediation Regression

Analysis]
a. [Hypothesis F1]: In the MCPS instructional model-

based computing education for non-majors, the

statistical impact of internal goal orientation of learning

motivation on specific area knowledge/thinking/skills

and expertise of creative problem-solving ability will be

mediated by problem-solving based on interest and

understanding.

b. [Hypothesis F2]: In the MCPS instructional model-

based computing education for non-majors, the

statistical impact of internal goal orientation of learning

motivation on divergent thinking of creative problem-

solving ability will be mediated by problem-solving
based on interest and understanding.

c. [Hypothesis F3]: In the MCPS instructional model-

based computing education for non-majors, the

statistical impact of internal goal orientation of learning

motivation on specific area knowledge/thinking/skills

and expertise of creative problem-solving ability will be

mediated by digital-based communication.

d. [Hypothesis F4]: In the MCPS instructional model-

based computing education for non-majors, the

statistical impact of internal goal orientation of learning

motivation on divergent thinking of creative problem-
solving ability will be mediated by digital-based

communication.

The results of the mediation regression analysis indicate

that the mediator variable 2, ‘digital-based communication,

has a complete mediating effect on the dependent variable 1,

specific domain knowledge, thinking, skills, and mastery. The

Barron and Kenny approach distinguishes between partial and

complete mediation effects and is commonly used by many

researchers [57]. However, it is weak in that it does not

directly test the significance of the indirect effects but rather

infers based on a series of tests. Hayes' bootstrapping method

was employed to verify the mediator variables' indirect
effects. Bootstrapping is a technique for estimating the

distribution of parameters based on sample data when the

population distribution is unknown. Indirect effects are

considered significant at the 5% significance level if the 95%

confidence interval does not include zero. Therefore, it can be

interpreted that all paths have mediating effects [58]. The

results of the indirect effects verification are shown in Table

16.

TABLE ⅩⅥ

INDIRECT EFFECT VERIFICATION RESULTS (BOOTSTRAPPING)

Route Indirect Effect

Effect BootSE
Boot

LLCI

Boot

ULCI

Internal goal → interest-based

problem solving → specific

domain knowledge, thinking,

skills, and mastery

.2563 .2242 .0439 .8640

Internal goal → interest-based

problem solving → dispersive

thinking

.3021 .3012 .0276 1.1198

Internal goal → digital-based

communication → specific

domain knowledge, thinking,

skills, and mastery

.3026 .1470 .0181 .6179

Internal goal → digital-based

communication → dispersive

thinking

.5050 .1921 .0583 .8481

Therefore, these results indicate that MCPS-based

computing education influences specific domain knowledge,

thinking, skills, mastery, and divergent thinking through

higher internal goals via interest-based problem-solving and

digital-based communication.

D. Interpretation of causal relationship analysis results and

Discussion

The causal relationship analysis results among motivation,

creative problem-solving ability, and Papert's constructionism

Figure 1 summarizes learning characteristics factors. In

summary, the internal goal of motivation partially mediates

the influence of interest-based problem-solving on specific

domain knowledge, thinking, skills, mastery, and divergent

thinking within creative problem-solving. Additionally,

digital-based communication fully mediates this relationship.

Moreover, motivation self-efficacy was observed to affect the
critical and logical thinking and motivational aspects of

creative problem-solving.

Therefore, the hypothesis testing results for the 1st causal

analysis-multiple regression analysis are as follows:

[Hypothesis E1], [Hypothesis E2] was accepted, indicating

that in non-major students, there is a causal relationship

between the internal goal of motivation and specific domain

knowledge, thinking, skills, and mastery, as well as divergent

thinking within creative problem-solving in MCPS-based

computing education. Additionally, [Hypothesis E7] and

[Hypothesis E8] were accepted, suggesting that in non-major

students, there is a causal relationship between the self-
efficacy of motivation and critical, logical thinking and

motivational aspects of creative problem-solving in MCPS-

based computing education. Furthermore, [Hypotheses E3 ~

E6] were all rejected, indicating no significant difference.

The results of the 2nd causal analysis - mediation

regression analysis are as follows: [Hypothesis F1],

[Hypothesis F2] was accepted, indicating that in non-major

students, there is a statistical mediation effect (partial) of

interest-based problem-solving on the influence of the

internal goal of motivation on specific domain knowledge,

thinking, skills, and mastery within creative problem-solving
in MCPS-based computing education. Additionally,

[Hypothesis F3] [Hypothesis F4] was accepted, suggesting

that in non-major students, there is a statistical mediation

effect (complete) of digital-based communication on the

influence of the internal goal of motivation on specific

1547

domain knowledge, thinking, skills, and mastery, as well as

divergent thinking within creative problem-solving in MCPS-

based computing education.

Fig. 1 Results of causal relationship analysis between sub-factors

To analyze this specifically, to foster specific domain

knowledge, thinking, skills, mastery, and divergent thinking,

students should be encouraged to choose challenging tasks

and persistently perform them, considering learning itself as a

reward, thus allowing for the cultivation of intrinsic goals.

The learning environment should be structured to respect

students' opinions and emphasize learning activities based on

their interests and understanding, utilizing digital technology

for communication processes. Such an environment can be

more effective in fostering these skills.

Moreover, teaching and learning methods and

environments should be designed to cultivate critical and
logical thinking and motivational factors to provide

satisfaction, interest, successful experiences, and positive

feedback to develop self-efficacy. Additionally, in Papert's

constructionism evaluation-based computing education,

active problem-solving based on interest and understanding,

along with smooth communication through digital tools, can

effectively mediate motivation and creative problem-solving

abilities [50], [59], [60].

Therefore, creating a learning environment that encourages

intrinsic goals, respects students' opinions, utilizes digital

technology for communication, provides challenging tasks,

offers positive feedback, and facilitates active problem-

solving can be effective in fostering specific domain

knowledge, thinking, skills, and mastery, as well as divergent

thinking, critical and logical thinking, and motivational

factors in computing education.

E. Rubric evaluation results of the experimental group

In this study, we aim to examine the impact of MCPS

(Modeling, Computing, Problem-Solving) instructional

framework-based computing classes on non-major students'

motivation and creative problem-solving abilities. We will

analyze the evaluation rubric results of the experimental

group to evaluate their performance. The evaluation rubric

results of the experimental group are presented in Table 17.

TABLE ⅩⅦ

EVALUATION RUBRIC RESULTS OF THE EXPERIMENTAL GROUP

MCPS Steps[6] Evaluation Type Evaluation Average
Evaluation

average
Points

Step 1. Motivation and
preparation

Midterm (Written) 1.1 Basic principles and concepts of
computers

4.19 5

Assignments & Feedback 1.2 Recognition of the relevance of
computing to major fields

4.25 5

Training 1.3 Design real-world computing algorithms 4.07 5

Step2. Building of basic
knowledge

Midterm exam (written +
practical)

2.1 The Concept of Programming Elements 4.70 5

2.2 Executing code with programming
elements

4.08 5

2.3 Executing code to solve real-world
problems

3.84 5

Step 3. Application of basic
knowledge

Lab sessions + assignments 3.1 Analyzing code to solve real-world(major-
related) problems

7.52 10

3.2 Execute code to solve a real-world(major-
related) problem

1548

MCPS Steps[6] Evaluation Type Evaluation Average
Evaluation

average
Points

3.3 Expressing a Solution 3 5

Step 4. Planning outputs and
execution

Project evaluation
(proposal, report)

4.1 Exploring real-world problems 4.89 5

4.2 Appropriateness of data collection and
analysis

4.3 Decompose the problem into solvable
units

4.89 5

4.4 Design a solution

4.5 Implement the solution 4.03 5

4.6 Refine through testing and debugging.

4.7 Feedback through sharing and
collaboration

4.33 5

4.8 Representing the results of collaborative
output

90.20 100

Step 5. Development Assignments 5.1 Various expressions of ideas 4. 5

Overall Average 4.27

Upon reviewing the evaluation rubric results of the

experimental group, it was found that the overall average

score was 4.27 out of 5 points, indicating positive outcomes.

However, differences were observed across different stages.

Among them, the score for Stage 2, ‘2.3 Execution of Code

for Real-life Problem Solutions (3.84 points)’, was the lowest,

followed by Stage 3, ‘3.3 Expression of Problem Solutions

(3.95 points)’.

This suggests that while students grasp programming

concepts, they may encounter difficulty executing code or

expressing solutions. Nevertheless, excluding Stage 4, ‘4.8
Expression of Collaborative Outputs’, the average score was

4.54 points, indicating overall positive outcomes. This can be

attributed to continuous communication and feedback among

team members while collaborating to express outputs.

Furthermore, the average scores for real-life applications and

problem solutions improved as stages progressed, indicating

a positive influence of the course stages on expressing

problem solutions. The lower score for ‘Diverse Expression

of Ideas (4.0 points)’ in Stage 5 was attributed to non-

submissions, resulting in a slightly lower average score.

F. Analysis of Lecture evaluation Results and Project

Impressions

1) Analysis of Course Evaluation Results: After

conducting the computing education, the student's overall
satisfaction with the course evaluation results was higher than

the overall course average in all categories. Additionally, the

ratings from the experimental group were higher than those

from the control group across all items. Notably, the items

regarding the ‘consistency and progress of course planning

and content,’ ‘instructor's preparation and teaching ability,’

and ‘communication between instructor and learners’ scored

above 4.50, indicating high satisfaction levels.

This indicates that, compared to other general education

courses at the university, computing education received

higher overall learner satisfaction. Furthermore, it suggests

that MCPS-based computing education had a more positive

impact on learner satisfaction. Additionally, it reaffirms the

importance of teaching methods and the role of instructors in

learner-centered constructionism-based computing education

courses.

2) Keyword Analysis and Word Cloud of Project

Impressions: Next, for qualitative analysis, a word cloud was

generated using visualization techniques to easily visualize

the key themes extracted from the reflections in the project

reports. To achieve this, a part-of-speech tagging module was

employed in Python programming to assign parts of speech,

considering the meaning and context of the content. Only

nouns were extracted, and word frequency was calculated to

represent the occurrence of each word.

Among the extracted keywords, 'coding' appeared most

frequently, with 30 occurrences, followed by 'class' (29

occurrences), 'project' (25 occurrences), and 'thought' (21

occurrences). Word frequency was calculated, and the word

cloud generation results were visualized for straightforward

interpretation. As shown in Figure 2, keywords such as
coding, project, and program were central, surrounded by

terms like interest, solution, experience, interest, opportunity,

collaboration, achievement, and difficulty, reflecting the

sentiments expressed in the reflections.

Fig. 2 Word visualization

3) Topic analysis of project impressions: Topic modeling

was employed to extract and analyze topics from the

reflections on the project outcomes and subjective opinions

on course evaluations of the experimental group. Topic

Modeling is a technique used to extract critical themes

(topics) from text-based document data, classify (cluster), and

analyze documents based on the extracted topics. Latent

1549

Dirichlet Allocation (LDA) topic modeling provided by the

gensim package in Python was used for topic analysis. LDA

is a prominent machine learning-based technique for topic

modeling that utilizes the Dirichlet distribution to infer latent

topics present in the given documents [61].

In this study, the results of analyzing the reflections on the

project outcomes and subjective opinions on course

evaluations led to the extraction of topics. The number of

topics to be extracted (k=4) and the number of key words to

constitute each topic (word=15) were set. Consequently, the

main 15 words constituting each topic were output along with

their relevance scores. Table 18 presents the results of the

topic analysis obtained using the lda_model.print_topics()

function and the visualization results from pyLDAvis,

providing the final topic analysis results regarding the topic

labels.

TABLE ⅩⅧ

COMPREHENSIVE TOPIC ANALYSIS RESULTS

In this study, four topics were extracted from the
reflections on project reports and course evaluations

submitted by students who took the computing class based on

the MCPS teaching model. The final topic labels provide

insights into students' perceptions and evaluations of the

course.

First, the topic related to ‘Digital-based idea programming’

includes words such as thoughts, coding, programming,

computer, problem, solution, utilization, and functionality. It

was observed that initially, students might find it challenging

to express their ideas through programming, but over time,

they become more familiar with digital tools and find them

helpful for learning more accurately and deeply.
Second, the topic associated with ‘Enhancing creative

problem-solving skills’ includes words like creativity,

problem-solving, assistance, programming, learning,

thoughts, study, progress, and thinking. Students expressed

that exploring and implementing solutions to real-life

problems independently, finding and applying unfamiliar

functions, and continuously improving the app even after

completion enhanced their fluid thinking and provided a

refreshing experience.

Third, the topic related to ‘Improving motivation’ includes

words such as class, activities, collaboration, progress,
solution, motivation, enhancement, outcomes, and utilization.

Students indicated that they gained awareness of the

importance of computing, demonstrated a sense of

accomplishment and determination in producing outputs, and

expressed expectations for further development by integrating

computing into their majors, leading to a desire to learn more

computing courses in the future.

Fourth, the topic concerning ‘Collaborative problem-

solving and interest-based learning’ includes words like logic,

team members, solution, difficulties, problem, outcomes,
thoughts, understanding, interest, etc. Students mentioned

that through collaboration and communication with team

members, they were able to overcome initial difficulties and

complete improved outputs, experiencing a different learning

environment and a sense of achievement compared to

traditional learning methods.

IV. CONCLUSION

In this study, we aimed to propose specific instructional
model for operating computing liberal arts courses tailored for

university non-majors to enhance learning motivation and

creative problem-solving skills. Drawing from research in

computing education and inspired by Papert's constructionist

learning principles, we addressed the shortcomings typically

found in computing courses designed for non-majors.
Through expert review and application in educational

settings, we validated the applicability of this course model

and derived implications.

The research findings confirm that the MCPS instructional

model in computing liberal arts classes for non-majors
enhances creative problem-solving skills by fostering

learning motivation. Additionally, learning motivation serves

as a crucial factor in creative problem-solving abilities, acting

as both the driving force and the sustainer of perseverance

throughout the problem-solving process. Intrinsic motivation,

which involves enjoying the creative problem-solving process

and considering it rewarding, is an essential factor for creative

problem-solving abilities. Cognitive self-efficacy has also

been shown to influence creative thinking by encouraging

individuals to tackle challenges with enthusiasm. These

results can be seen in the same context as the results of

existing research conducted on prospective teachers [62].

Topic Analysis Results (lda_model.print_topics) and Visualization Results by pyLDAvis

Final topic label Topic

number
Topic-specific words

Token

Distribution

Ratio

A
Thinking, coding, program, part, project, problem, utilization,
programming, first, use, function, computer, though, class,

course, etc.

41% Digitally based idea programming

B
Problem solving, assignment, help, topic. start. learning.
creative. apply. study. role. progress. subject. Thinking, flow,

technology, etc.

25%
Helps with creative problem-solving
skills

C

Activity, motivation, cooperation, knowledge, answer,

question, understanding, environment, improvement, lesson,
solution, student, progress, fun, etc.

18.1% Increased motivation

D

logic, once, structure, again, game, difficulty, collaboration,

everyone, for, understanding, existence, bug, part, mood,
teammate, interest, etc.

15.9%

Solving difficulties through

collaboration and classes based on
interest and understanding

1550

The MCPS instructional model proposed in this study

could be utilized for systematic computing education in non-

major computing liberal arts courses. Observing that learners

exhibit motivation and confidence only when they find

learning easy and enjoyable, adapting the instructional model

to suit learners' needs by simplifying or appropriately

modifying it could lead to more effective computing

education. The more professors dedicate themselves to

refining their teaching methods, the more likely it is for

learners to experience successful teaching. Therefore, this
study is expected to serve as foundational material for

university computing liberal arts education, as the demand for

computing education continues to rise.

REFERENCES

[1] Joint Ministries of South Korea, “Comprehensive Plan for Digital

Talent Development,” Aug. 22, 2022. [Online]. Available:

https://www.moe.go.kr/boardCnts/viewRenew.do?boardID=72769&

boardSeq=92573&lev=0&searchType=null&statusYN=W&page=1&

s=moe&m=0315&opType=N.

[2] Ministry of Science and ICT press release, “The Ministry of Science

and ICT. Digital 1 million talent training starts in earnest,” Jan. 19,

2023. [Online]. Available:

https://www.msit.go.kr/bbs/view.do?sCode=user&nttSeqNo=318264

5&pageIndex=1&searchTxt=%EC%86%8C%ED%94%84%ED%8A

%B8%EC%9B%A8%EC%96%B4&searchOpt=ALL&bbsSeqNo=94

&mId=113&mPid=238.

[3] Ministry of Science and ICT, “Announcing the 2022 Software Centers

of Excellence”, No. 2022-0092, Jan. 27, 2022. [Online]. Available:

https://www.msit.go.kr/bbs/view.do?sCode=user&mId=129&mPid=

128&bbsSeqNo=100&nttSeqNo=3177544.

[4] S. Y. Hong et al., “Exploratory study on the model of the software

educational effectiveness for non-major undergraduate students,”

Journal of The Korean Association of Information Education, vol. 23,

no. 5, pp. 427–440, 2019. DOI: 10.14352/jkaie.2019.23.5.427.

[5] J. E. Nah, “Software Education Needs Analysis in Liberal Arts,”

Korean Journal of General Education, vol. 11, no. 3, pp. 63–89, 2017.

[6] J. Y. Seo, “A case study on programming learning for non-majors to

nurture SW convergence talents,” Journal of Digital Convergence, vol.

15, no. 7, pp. 123–132, 2017. doi: 10.14400/JDC.2017.15.7.123.

[7] M. J. Lee, “Exploring the Effect of SW Programming Curriculum and

Content Development Model for Non-majors College Students:

Focusing on Visual Representation of SW Solutions,” Journal of

Digital Contents Society, vol. 18, no. 7, pp. 1313–1321, 2017.

doi:10.9728/dcs.2017.18.7.1313.

[8] H. J. Choi, “The Programming Education Framework for

Programming Course in University,” The Journal of Korean

Association of Computer Education, vol. 14, no. 1, pp. 69–79, 2011.

[9] J. C. Shin, “The Effects of Computational Thinking-based Liberal

Education on Problem Solving Ability,” Journal of the Korea Institute

of Information and Communication Engineering, vol. 14, no. 4, pp.

83–95, 2020.

[10] H. S. Kim, “Analysis of Non-Computer Majors’ Difficulties in

Computational Thinking Education,” The Journal of Korean

Association of Computer Education, vol. 18, no. 3, pp. 49–57, 2015.

[11] G. J. Park and Y. J. Choi, “Exploratory Study on the Direction of

Software Education for the Non-major Undergraduate Students,” The

Journal of Education & Culture, vol. 24, no. 4, pp. 273–292, 2018.

[12] D. I. Park, “Relationship between learning motivation, metacognition,

and creative problem-solving skills in social studies classes in

elementary school based on the Creative Problem Solving model,”

M.S. thesis, Dept. Educational Technology, Ewha Womens Univ.,

Seoul, Korea, 2007.

[13] H. W. Kim, “A Study on the Design and Operation of Liberal Arts

College for Improving Creativity of University Students,” The Journal

of Creativity Education, vol. 18, no. 4, pp. 91–14, 2018.

doi:10.36358/JCE.2018.18.4.91.

[14] H. J. Park, “The Development and Application of a MCPS (Motivation

and Creative Problem Solving) Instructional Model for Computing

Liberal Arts for Non-Majors,” Ph.D. dissertation. Dept. of Creativity

Software, Andong National Univ., Andong, Korea, 2023.

[15] ACM and IEEE-CS, “Computing Curricula 2020,” A Computing

Curricula Series Report, Dec, 31, 2020.

[16] S. H. Kim, “A Survey on the Needs of Non-Major University Students

for Coding Education Programs Status,” Master thesis. Sungsil Univ.,

Counseling Education Psychology, Seoul, Korea, 2021.

[17] E. S. Kang, “Structural Software Education Model for Non-majors -

Focused on Python,” Digital Contents Society. vol. 20, no. 12, pp.

2423–2432, 2019. doi: /10.9728/dcs.2019.20.12.2423.

[18] M. S. Lim, “A Study on the Design of Creative Coding Educational

Platform. Digital Contents Society,” Journal of Digital Contents

Society, vol. 21, no. 2, pp. 439–444, 2020.

doi:10.9728/dcs.2020.21.2.439.

[19] M. J. Oh, “Analysis of Effects of Scratch Programing Education to

Improve Computational Thinking,” Korea Association for

Educational Information and Media. vol. 24, no. 2, pp. 255–275, 2018.

[20] Y. J. Kim, “The Development and Application of Computational

Thinking based Test Driven Problem Solving(CT-TDPS) Learning

Model for Problem Solving Programming Education,” Ph.D.

Dissertation. Korea National Univ., Cheongju, Korea, 2021.

[21] W. S. Sohn, “A Developing a Teaching-Learning Model of Software

Education for Non-major Undergraduate Students,” Korean Institute

for Practical Engineering Education, vol. 9, no. 2, pp. 107–117, 2017.

doi: 10.14702/JPEE.2017.107.

[22] H. J. Jeon, “Development and Application of SW·AI

Teaching·Learning Model SAGE to Improve the Creative

Convergence Competency of Preservice Teachers,” Ph.D. Dissertation.

Computer Korea National Univ., Cheongju, Korea, 2022.

[23] S. K. Choi, “The Development of Multiple Project Based Coding

Education Model focused on Computational thinking,” Ph.D.

Dissertation. Kyung Hee Univ., Seoul, Korea, 2019.

[24] H. R. Kim, “A Study on the meaning of Social Constructionist

Approaches to Coding Education,” Journal of the Korean Association

of Information Education, vol. 25, no. 1, pp. 217–226, 2021.

[25] I. A. Kang, “Why constructivism?” Munumsa, Yongin, Gyeonggi-do,

Korea: 1997.

[26] J. G. Sung, “An Exploratory Study of the Utilization of Virtual Reality

as the Expansion of Maker Education Space,” Ph.D. Dissertation, Dept.

of Education, Seoul National Univ., Seoul, Korea, 2017.

[27] S. Papert, “Mindstorms: Children, computers, and powerful ideas,”

Basic Books, Inc., 1980.

[28] E. Ackermann, “Piaget’s Constructivism, Papert’s Constructionism:

What’s the difference?” Future of learning group publication, vol. 5,

no. 3, pp. 438, 2001.

[29] S. Papert and I. Harel, “Situating constructionism,” Constructionism,

vol. 36, no. 2, pp. 1–11, 1991.

[30] A. Alanazi, “A Critical Review of Constructivist Theory and the

Emergence of Constructionism” American Research Journal of

Humanities and Social Sciences, vol. 2, pp. 1-8, 2016.

doi:10.21694/2378-7031.16018.

[31] S. Papert, “Constructionism: A new opportunity for elementary

science education. Massachusetts Institute of Technology,” Media

Laboratory, Epistemology and Learning Group, 1986.

[32] H. J. Choi and Y. J. Jeon, “Informatics Education, 3rd edition,” Hanbit

Academy, Seoul, Korea: 2023. ISBN: 9791156646471

[33] S. Gary, “An Investigation of Constructionism in the Maine Youth

Center,” Ph.D. dissertation, The University of Melbourne, Australia,

2006.

[34] Y. J. Jeon, “The Development and Application of a CT-CPS

(Computational Thinking-based Creative Problem Solving)

Instructional Model for the Software Education of New Curriculum,”

Ph.D. dissertation, Dept. of Gifted Information Education, Korea

National Univ., Cheongju, Korea, 2017.

[35] H. W. Jung, “A study on basic software education applying a step-by-

step blinded programming practice,” The Society of Digital Policy &

Management, vol. 17, no. 3, pp. 25–33, 2019.

doi:10.14400/JDC.2019.17.3.025.

[36] S. I. Park et al., “Understanding the pedagogy of instructional

methods,” Company of Educational Science, Paju, Gyeonggi-do,

Korea: 2011.

[37] I. A. Kang, H. J. Yoon and J. W. Hwang, “Maker Education:

Constructivism Reunited in the Age of the 4th Industrial Revolution,”

Naeha Publishing House, Seoul, Korea: 2017.

[38] S. J. Jun, “Design and Effect of Development-Oriented Model for

Developing Computing Thinking in SW Education,” Journal of the

Korean Association of Information Education, vol. 21, no. 6, pp. 619–

627, 2017.

1551

[39] K. S. Oh and S. J. Ahn, “A study on the development of educational

contents about computational thinking,” The Journal of Korean

Association of Computer Education, vol. 19, no. 2, pp. 11–20, 2016.

[40] C. Lawshe, “A quantitative approach to content validity,” Personnel

Psychology, vol. 28, no. 4, 563–575, 1975.

[41] M. H. Shin, “A Study on the Development and Application of Rubrics

for Performance Assessment in Terms of Promoting Program

Learning Outcomes,” Journal of Engineering Education Research, vol.

15, no. 5, pp. 108–118, 2012.

[42] K. Brennan & M. Resnick, “New framework for studying and

assessing the Development of Computational Thinking,” Paper

presented at annual American Educational Research Association

meeting, Vancouver, BC, Canada, 2012.

[43] CollegeBoard, “AP Computer Science Principles: Course and exam

description,” Feb, 10, 2023.

[44] M. J. Kim, G. Yoo, H. Kim: “Development of a scoring rubric based

on Computational Thinking for evaluating students’ computational

artifacts in a programming course,” The Journal of Korean

Association of Computer Education, vol. 20, no. 2, pp. 1–11, 2017.

[45] S. H. Kim, “The development of an assessment Rubric of App-

inventor program based on process-focused assessments,” M.S. thesis,

Dept. Computer Education, Korea Univ., Seoul, Korea, 2019.

[46] D. L. Gang, "Effects of process-oriented and result-oriented learning

motivation methods on learning motivation and academic

achievement," Master's thesis, Dept. of Curriculum Major, Korea

National Univ., Cheongju, Korea, 1996.

[47] Pintrich, P. R., & De Groot, E. V, “Motivational and self-regulated

leaning components of classroom academic performance.” Journal of

Educational Psychology. Vol. 82, pp. 33- 40. 1990.

[48] S. H. Cho, "Research on the development of a simple creative

problem-solving test (I), "Korea Educational Development Institute,

No. CR2001-33, ISBN: 8983884843

[49] S. J. Hwang, T. H. Jung & H. J. Lim, "Effect of Programming

Education using App Inventor on Informatics Gifted Elementary

Students’ Creative Problem Solving Ability and Learning Flow,"

Master's thesis, Dept. of Gifted Information Education, Korea

National Univ., Cheongju, Korea, 2015.

[50] H. J. Park, H. Kim, J. Choi, Y. Jeon, “Development of Teaching

Efficacy Instrument in Informatics (Software and AI) Subject,” The

Journal of Korean Association of Computer Education, vol. 24, no. 4,

pp. 39–52, 2021.

[51] H. J. Park and Y. J. Jeon, "A Design and Application of Software

Liberal Arts Course based on CT-CPS Model for Developing Creative

Problem-Solving Ability and Learning Motivation of Non-software

Majors," IJIV., Vol. 6, No. 2, 2022. doi: 10.30630/joiv.6.2.996.

[52] E. A. Locke, E. Frederick and E., Lee, C., & P. Bobko, “Effect of self-

efficacy, goals, and task strategies on task performance,” Journal of

Applied Psychology, vol. 69, no. 2, pp. 241, 1984.

[53] S. W. Kim and Y. J. Lee, "Effects of Software Education Using Robots

in the Creative Problem-Solving Ability of Middle School Students,"

The Journal of Korean Association of Computer Education, vol. 23,

no. 5, pp. 13–22, 2020, doi:10.32431/kace.2020.23.5.002.

[54] K. R. Park and M. R. Park, "Development and Application of Artificial

Intelligence Job Creation Career Education Program focused on

Constructivist Learning Environments for Elementary School

Students.", The Journal of Korean Association of Computer Education,

vol. 26, no. 5, pp. 13–30. 2023. doi:10.32431/kace.2023.26.5.002.

[55] M. W. Lee and S. S. Kim, "The Effect of Maker Education Program

Utilizing Virtual Reality Creation Platform on Creative Problem

Solving Ability and Learning Flow," The Journal of Korean

Association of Computer Education, vol. 23, No. 5, pp. 65–72. 2020

doi:10.32431/kace.2020.23.2.007.

[56] W. Y. Chang, The Effects of Online Judge System on Motivation and

Thinking in Programming Education: Structural Relationships

between Factors," Vol. 24, No. 5, pp. 1–16,

doi:10.32431/kace.2021.24.5.001.

[57] G. S. Noh, "Statistical analysis SPSS & AMOS for writing papers with

proper knowledge," Seoul, Korea: Hanbit Academy, 2019.

[58] B. R. Bae, "Theory and practice of controlling and mediating effect

analysis using SPSS/PROCES," Seoul, Korea: Cheongnam Book

Publishing, 2021.

[59] M. J. Kim and J. M. Kim, “An Analysis of the Current Status of SW-

Centered Universities' Informatics Curriculum in Korea based on

Japan's Standards for Liberal Arts Informatics Curriculum,” The , Vol.

23, No. 2, pp. 65–72. 2020, doi:10.32431/kace.2020.23.2.007.

[60] Y. M. Go and H. S. Kim, “Analysis of the Effectiveness of an Artificial

Intelligence Literacy Education Program for High School Students

Based on NDIS Model,” The Journal of Korean Association of

Computer Education, Vol. 26, No. 3, pp. 57–66. 2023.

[61] J. Y. Lee, "Python big data analysis based on data science," Seoul,

Korea: Hanbit Academy, 2020.

[62] Y. J. Jeon and T. Y. Kim, "Suggestions of Instructional Strategy in the

Affective Aspect through the Analysis of Causality between the

Computer Learning Attitude Factors of the Non-Major Students in the

Software Education Class of the Teacher Training College," Journal

of Korean Association of Computer Education, vol. 19, no. 6, pp. 15–

23, 2016.

1552

