
Vol.14 (2024) No. 3

ISSN: 2088-5334

A Study on the Average Number of LLL-based
Using Statistical Learning

Kyunghwan Song a, Yun Am Seo b,*
a Department of Mathematics, Jeju National University,Jeju-si, 63243, Republic of Korea
bDepartment of Data Science, Jeju National University,Jeju-si, 63243, Republic of Korea

Corresponding author: *seoya@jejunu.ac.kr

Abstract— Lattice-based Cryptography is known as one of the key technologies in modern cryptography. This encryption scheme has

the basis vectors from the lattice as the public key and a short-length vector in the lattice consisting of an integer combination of the

basis vectors as the secret key. To break this encryption, we need to solve the Shortest Vector Problem (SVP), known as NP-hard.

Therefore, instead of finding the shortest vector, LLL algorithm is often used to find a vector of sufficiently short length to break the

encryption. The LLL algorithm is a well-known method for breaking this encryption, but there is still no clear answer to the question

of how many times the LLL algorithm needs to be used to obtain the desired level of secret key, the average number of the (δ, η)-LLL

bases in dimension n is a tool to measure the probability that the LLL algorithm solves the SVP. We can expect that this number

indicates how many times the appropriate algorithm should run. There is a formula for this, but it contains some functions that take a

long time to compute. We apply linear regression to the formula of the average number of the (δ, η)-LLL bases in dimension n, and

therefore we obtain some formulas to approximate the average number of the (δ, η)-LLL is based on dimension n, which contains simple

functions. When the dimensions are high, our model is much better regarding the computation time.

Keywords—Shortest vector; LLL-reduction algorithm; linear regression.

Manuscript received 10 Sep. 2023; revised 14 Dec. 2023; accepted 24 Feb. 2024. Date of publication 30 Jun. 2024.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Lattice-based cryptography represents a cryptographic
framework grounded in the computational complexity of
lattice-based problems, as initially expounded by Ajtai [1].
This paradigm embodies a prospective avenue within the
domain of post-quantum cryptography. Notably, its utility
extends to conventional cryptographic paradigms such as key
exchange and digital signatures, as underscored by
Nejatollahi et al. [2]. Moreover, this cryptographic approach
exhibits considerable promise across diverse applications,
including the realm of the Internet of Things (IoT), as
articulated by Khalid et al. [3], and the sphere of medical data
analytics, as elucidated by Kocabas and Soyata [4]. A
foundation in linear algebra is imperative to comprehend the
underpinnings of lattice-based cryptography effectively.
Specifically, elucidating the concept of the span of a subset
within a vector space serves as the inaugural step in this
mathematical journey.

Recent research on this lattice encryption has taken a
variety of forms. For example, there have been various studies

on its mathematical properties and efficient algorithms [5]-
[10], some variations [11], electronic voting [12],
Blockchains [13], and its protection from fault or DPA [14],
[15], and other invasions using the techniques of masking [16].
Furthermore, research on the hardware structure is ongoing
[17], and their applications are used in the design of qTESLA
[18], [19].

In the context of lattice theory, the Shortest Vector Problem
(SVP) is a prominent challenge that garners attention.
Identifying a vector possessing notable brevity within a lattice
is significant as it emerges as a compelling contender for
private key instantiation within the framework of lattice-
based cryptography, as elucidated by Hoffstein et al. [20]. The
algorithm known as LLL (Lenstra–Lenstra–Lovász),
expounded upon by Lenstra, Lenstra, and Lovász in their
seminal work [21], facilitates the efficient computation of
reduced bases within a polynomial time complexity
framework. This culminates in deriving a collection of vectors
characterized by their brevity, rendering them apt for
employment on a lattice basis. The resultant basis, termed an
LLL-reduced basis, embodies a cornerstone outcome of the

906

LLL algorithm and has subsequently engendered several
divergent iterations and adaptations.

There are so many variations of LLL algorithm. For
example, the modified greedy LLL algorithm paralleled the
greedy LLL algorithm [22], [23]. Furthermore, the LLL
algorithm is used in Lattice-based cryptography and in many
other fields. For example, L algorithm is used to construct
half-Hadamard matrices [24], solve the hidden subset sum
problem [25], compute multidimensional theta functions [26],
construct Hermite Normal Form [27], detect periodicity in
digital images [28], attack ECDSA [29].

In this paper, we use the statistical techniques of linear
regression are employed in the investigation of the average
number of (δ, η)-LLL bases within the n-dimensional space.
The outcomes of this investigation yield a series of analytical
expressions, encapsulating elementary functional
relationships, that serve as approximations for the
aforementioned average counts of (δ, η)-LLL bases in n-
dimensional contexts. Particularly noteworthy is the marked
efficiency exhibited by our proposed model, particularly in
scenarios characterized by high dimensions, as it significantly
outperforms conventional methodologies in terms of
computational time requirements.

We start with a brief introduction of Lattice based
cryptography.
Let us consider the simplest two-dimensional case. [30]

 To receive the message, Alice creates a public key,
which is a sufficiently large natural number q.

 And then Alice creates two secret keys f and g that are

satisfying f < 	
/2, 	
/4 < � < 	
/2, and f and qg are relatively prime.
 After that Alice creates another public key h ≡����(mod q) and then publish the pair of public key (q, h).

 Bob wants to send a message m < 	
/4 to Alice
without being seen by Eve.

 So, Bob compute e ≡ rh + m (mod q), 0 < e < q
with a random number r and send the ciphertext e to
Alice.

 Alice computes a ≡ fe (mod q) , 0 < a < q and then
compute b ≡ ���� (!" �), 0 < # < �.

 Then b = m.
Let us see an example with small numbers.
 Let q = 23, f = 2, and g = 3.
 Then h ≡ 2�� ∙ 3 ≡ 12 ∙ 3 ≡ 13 (!" 23).
 Let plaintext m = 2. With a random number r = 6,

Bob computes e ≡ 6 ∙ 13 + 2 ≡ 11 (mod 23) and
send e.

 Alice computes a ≡ 2 ⋅ 11 ≡ 22 (mod 23), and
compute b ≡ 2�� ⋅ 22 ≡ 2 ⋅ 1 ≡ 2 (!" 3) and b = m = 2.

Eve can try a brute-force attack, but it is not useful. So, Eve
tries to find the private key (f, g) from the public key (q, h).
If Eve knows a pair (F, G) such thatFh ≡ G (mod q), F = .(
), �/" 0 = .(
), then (F, G) behaves as if it were
secret key. It is clear that Fh ≡ G (mod q) and Fh = G + qR with an unknown integer R are equivalent. Then finding (F, G) is equivalent to solve F(1, h) − R(0, q) = (F, G)
with known vectors (1, h) , (0, q) and unknown parameters F, G, and R . So, solving Lattice-based cryptography is

equivalent to this problem: Find a sufficiently nonzero small
vector between the integer combinations of known vectors. As
the dimension increases, this problem becomes much more
difficult because the number of integer combinations to
consider increases dramatically. This feature has been used to
ensure the security of Lattice-based cryptography in
sufficiently high dimensions.

LLL algorithm, as introduced in Section 1, is an efficient
method to find a sufficiently small vector by reducing given
basis within a polynomial time complexity. From Eve's point
of view, it is important to know how many times this
algorithm can be used to get a sufficiently small nonzero
vector, and from Alice's or Bob's point of view, they need an
indicator that they should finish sending messages before
running the LLL algorithm that sufficient times.

Unfortunately, there is not yet enough research on this
algorithm to know how many tries it takes to get a reasonably
good small nonzero vector. We are simply utilizing the LLL
algorithm in a way that allows us to run it a few times and see
if we get a good vector. However, as the dimension is higher,
you're going to have to run these algorithms a really large
number of times, and it's going to take longer and longer to
verify that the result of the algorithm is a reasonably short
vector. So, there's definitely a need for research on how many
runs are the answer for the range of good choices.

In this paper, we use the following notation to define the
set of integer combinations of basis vectors.

where S = 45�, 56, . . ., 578.

Let 9:,; =< 5: , <=∗
||<=∗||@ > , 5�∗ = 5� and 5:∗ = 5: −

∑ 9:,;:��;C� 5; ∗ for i ≥ 2.
Note that {5�∗, 56∗, . . . , 57∗} is an orthogonal basis and if

this process is possible for given vector space, then we can
find the shortest vector because at least one of 5:∗ can be
shorten to a shortest vector by just multiplying a scalar. But in

general, 9:,; =< 5: , <=∗
||<=∗||@ > is not an integer for a lattice base

45�, 56, . . ., 578. Therefore, in the original LLL algorithm and
its variants, use round (μ) instead of μ.

For the purpose to see the quality of the output of LLL
algorithm, we first check the pseudocode of the LLL
algorithm as follows: [30]

 Input: a basis 45�, 56, . . ., 578for ℝ7 ,
�
6 ≤ I ≤ J ≤ 1,

Output: a (δ, η)-LLL basis 45�, 56, . . ., 578.
 k = 2
 while k ≤ n,
 for i = k − 1 to 1,

 5N = 5N − O!P/"Q9N,:R5:
 S� δ||5N��∗|| ≤ ||5N ∗ + 9N,N��5N��∗||

 T = T + 1
 else

 tmp = 5N��
 5N�� = 5N
 5N = tmp
 T = W/(T − 1,2)

 Output 45�, . . . , 578, a (δ, η)-LLL basis.

Z[�/ℤ(]) = ^_ �:5::
7

:C�
��, . . . , �7 ∈ ℤb (1)

907

The output, a (δ, η) -LLL basis satisfies the following
conditions: [31]

 |9:,; |≤ η for all j < i.
 δ||5:∗|| ≤ ||5:d�∗ + 9:d�,:5:∗|| for all i = 1, . . . , n − 1

Note that the output can vary for the same lattice by starting
with different basis vectors. Also, for any fixed lattice, a basis
that contains all the shortest vectors is not unique in general.
For example, let 5: = e:. Then 45�, 56, . . ., 578 is a basis for ℤ7 and the number of bases for ℤ7 that contains all the
shortest vector is 27 because 5: = ±e: for any i, generates ℤ7.
Therefore, if the possible number of outputs for fixed LLL is
sufficiently close to 27 , then by using LLL algorithm, user
expects that the output basis contains the shortest vector(s).
For this reason, there are some results for the number of LLL
basis and the author of [30] obtain the average number of the
(δ, η)-LLL bases in dimension n. That is,

where]:(g) is the surface area of a sphere in ℝ: of radius x.
The formula is the exact value of the average number but
computing this value takes so long time as n increases so it is
beautiful but somewhat impractical. This paper aims to find
an approximated formula for equation (2) that contains just
simple functions, such as exponential functions.

First, we start by simplifying the given equation (2) into

equation (3). In equation (3), ξ(i) = �
6 W(W −

1)j�:/6Γ(:
6)l(W), mℎe oWe �// − pW �P/qmW!/, a variation

of the Riemann-zeta function. So that one of the product
forms was deleted. After that, we compute the above formula
to obtain that the exponent part of this formula is about cubic.
We check this fact by estimation with a regression model.

II. MATERIALS AND METHOD

A. Material

The following experimental combinations of n, δ, and η in
formula (2) were used to produce input and output data for the

LLL algorithm. There were 18 experimental combinations of n in increments of 10 from 30 to 200, 5 experimental
combinations of δ in increments of 0.5 from 0.75 to 0.95, and
3 experimental combinations of η: 0.51, 0.52, and 0.53. The
total number of combinations in the experiment is
18×5×3=270 combinations.

If we set η to 0.53, δ to 0.95, and n to 200, the calculated
value of equation (1) is about 2.81e+118532, which exceeds
the number of floating-point digits of the computer, and the
result becomes infinite. Therefore, in this study, we used the
"Rmpfr" and "gmp" libraries of the R program, which can
calculate large integers. These libraries require a large
computational cost to produce results.

Fig. 1 shows the time taken to compute equation (2) as a
function of δ and n after fixing η to 0.53. For all δ , we see
that there is a difference in the computation time when the
dimensionality is small, but as the dimensionality increases,
there is no significant difference in the computation time. The
computation time scales linearly with the number of
dimensions.

The purpose of this study is to learn a kind of meta-model
for equation (2) by statistical methods or machine learning to
produce a value that approximates the true value faster than
the number of possible bases resulting from the calculation of
the LLL algorithm, and to produce similar results. However,
although it is possible to produce input and output data for
learning, it is not possible to learn a model in the usual way
due to the difficulty in processing the value of the dependent
variable, which is the prediction target, due to the floating-
point problem of the computer.

Fig. 1 LLL basis computation time for δ and dimension number combinations.

B. Method

To solve the problem mentioned in the previous section,
this study proposes a method that separates the integer and
exponential parts of a value that exceeds the number of
floating-point digits, predicts them separately, and combines
the two prediction results. The exponential part is known to
be proportional to /r , so we use it to learn with a linear
regression model, while the integer part is filled with as many
numbers as the computer's floating-point digits, so it is
difficult to find any rules for the dimensionality. To solve this
problem, we propose a method that cuts out numbers below a
certain number of digits from the integer data to be trained
and adds digits proportional to the number of dimensions to
predict approximate values, but not true values. Also, since it

2(2I)(7��)(7�6)/6 s]:(1)l(W)
7

:C6
1/ s 1W(/ − W)

7��

:C�

× s u 	J6 − g6"gv
�v

7��

:C�

(2)

= 2(2I)(7��)(7�6)/6 ∏
@x y@
z{y@|
}(:)7:C6 �

7 ∏ �
:(7�:)7��:C� ×

s u 	J6 − g6"gv
�v

7��

:C�

 =2(2I)(7��)(7�6)/6 ∏ �
~@:(:��)�� y@�� y@�}(:)

7:C6 ×

s u 	J6 − g6"gv
�v

7��

:C�

which is equal to

27@�r7d�6I(7��)(7�6)6 s 1�(W)
7

:C6
×

s u 	J6 − g6"gv
�v

7��

:C�

(3)

908

predicts approximate values for true values, it predicts an
interval with a (1-α)% confidence interval for the predicted
value.
To summarize the above algorithm

 Step1: Separate dependent variable values into integer
and exponential parts

 Step2: Predict the exponent part by computing y =�(g) + �.
 Step3: Scale the number of digits in the integer part of

the data to be proportional to the dimension
 Step4: By using log (y) = �(g) + � predict the integer

part and inverse transform
 Step5: Combine the predicted integer part and exponent

part
We fix the values of δ and η in the algorithm suggested in

this study. η = 0.53, and δ = 0.95.

III. RESULTS AND DISCUSSION

The relationship between the exponential part and the
integer part is in the form of a cubic polynomial as shown in
Fig. 2. Therefore, the exponential part was predicted by fitting
the polynomial regression model in equation (4). The
regression coefficients in the regression model were estimated
using the least squares method.

Fig. 2 Relationship between exponential parts and number of dimensions.

After fitting the model, the corrected coefficient of
determination was 1, and the regression coefficients for each
term were all statistically significant at the 0.001 level of
significance (α). Fig. 3 is a scatter plot of the true and
predicted values. The exponential part of the prediction was
almost identical to the true value.

Fig. 3 Scatterplot of predicted exponential part and true values

Table shows the 95% confidence intervals for the predicted
values of the exponential regression model. In all dimensions,
we predicted intervals containing the true value, with a range
of 18 on average, which is very close to the true value, and the
time required for this prediction is less than one second.

TABLE I
95% CONFIDENCE INTERVAL FOR THE PREDICTED EXPONENTIAL PART

Number of

dimension (n)

Lower

bound

Exact

value

Upper

bound

30 306 323 327
40 801 809 820
50 1632 1636 1650
60 2892 2897 2910
70 4677 4683 4695
80 7079 7088 7097
90 10195 10205 10213

100 14117 14129 14135
110 18940 18953 18958
120 24758 24771 24776
130 31666 31677 31684
140 39757 39767 39775
150 49127 49134 49145
160 59868 59874 59886
170 72076 72081 72094
180 85844 85850 85862
190 101267 101275 101285
200 118437 118453 118458

Fig. 4 is a scatter plot of the predicted and true values of

the integer part. The modified coefficient of determination is
0.998, which is slightly lower than the prediction performance
of the exponential part, but it is analyzed that it is possible to
predict the interval of the true value with some accuracy.
Table 2 shows the 95% confidence intervals for the integer
partial predictions. We see that the confidence intervals for all
dimensions contain true value. Combining the integer interval
estimates with the exponential interval estimates, the output
of the LLL algorithm was able to approximate the interval
with the true value for the number of possible bases.

TABLE II
95% CONFIDENCE INTERVAL FOR PREDICTED INTEGER PART

Number of

dimension (n)

Lower

bound

Exact

value

Upper

bound

30 6.63e+77 2.43e+78 1.53e+79
40 7.34e+77 3.89e+78 1.42e+79
50 7.87e+77 7.44e+78 1.37e+79
60 8.24e+77 1.83e+78 1.35e+79
70 8.47e+77 2.66e+78 1.36e+79
80 8.62e+77 3.06e+78 1.39e+79
90 8.73e+77 8.38e+78 1.42e+79

100 8.84e+77 3.17e+78 1.45e+79
110 8.98e+77 1.61e+78 1.49e+79
120 9.16e+77 1.63e+78 1.52e+79
130 9.37e+77 7.01e+78 1.54e+79
140 9.62e+77 3.73e+78 1.56e+79
150 9.87e+77 9.22e+78 1.59e+79
160 1.01e+78 5.03e+78 1.62e+79
170 1.02e+78 3.51e+78 1.68e+79
180 1.01e+78 2.16e+78 1.76e+79
190 9.81e+77 9.53e+78 1.90e+79
200 9.22e+77 2.81e+78 2.12e+79

y = β� + β� xr + β6 x6 + βr x⬚ + ε (4)

909

Fig. 4 Scatterplot of predicted integer part and true values.

IV. CONCLUSION

For more accurate prediction in the future, we believe that
the performance will be improved by applying a learning
method that can accurately predict the integer part. Also, we
try to expand the result to arbitrary � and �, not fixed. As you
can see in fig. 1, the value of the formula (1) is dominated by �, not � or �. So, the method used in this paper will have the
effect to predict for arbitrary � and �. From these predictions,
we suggest an indicator that shows how many times LLL
algorithm has to be executed to find sufficiently short vector
of given fixed lattice. We intend to follow up on this work in
the future so that we can come up with appropriate metrics for
similarly conceptually well-defined things that are still
difficult to use in practice. We believe that many areas have
not been solved mathematically or experimentally, especially
when limited to areas that require a lot of computation, such
as high dimensions, and we would like to continue research
on this area because practicality also depends on this area.

Similarly, there are many things that are not yet well
understood mathematically in lattice-based cryptosystems.
For example, for the BKZ algorithm, which performs basis
reduction similarly to the LLL algorithm, the appropriate
number of runs to obtain a good basis is not well defined.
Mathematical and statistical characterization of these
practical issues for different algorithms is another topic of
future research related to this study.

ACKNOWLEDGMENT

This research was supported by the 2023 scientific
promotion program funded by Jeju National University.

REFERENCES

[1] M. Ajtai, "Generating hard instances of lattice problems", Proc.
Electron. Colloq. Comput. Complexity, 1996.

[2] H. Nejatollahi, N. Dutt, S. Ray, F. Regazzoni, I. Banerjee, R.
Cammarota, “Software and hardware implementation of lattice-cased
cryptography schemes”, Center for Embedded Cyber-Physical
Systems, pp. 1-43, 2017.

[3] A. Khalid, S. McCarthy, M. O’Neill, and W. Liu, “Lattice-based
Cryptography for IoT in A Quantum World: Are We Ready?,” 2019
IEEE 8th International Workshop on Advances in Sensors and
Interfaces (IWASI), Jun. 2019, doi: 10.1109/iwasi.2019.8791343.

[4] Ö Kocabaş and T Soyata, “Medical data analytics in the cloud using
homomorphic encryption”, In E-Health and Telemedicine: Concepts,
Methodologies, Tools, and Applications. IGI Global, 2016.

[5] M. N. John, O. G. Udoaka, I. U. Udoakpan “Group Theory in Lattice-
Based Cryptography.”, Int. J. Math. And Appl., vol. 11, no. 4, pp. 111–
125, Dec. 2023.

[6] M. F. Esgin, R. Steinfeld, J. K. Liu, and D. Liu, “Lattice-Based Zero-
Knowledge Proofs: New Techniques for Shorter and Faster
Constructions and Applications,” Lecture Notes in Computer Science,
pp. 115–146, 2019, doi: 10.1007/978-3-030-26948-7_5.

[7] C. Baum and A. Nof, “Concretely-Efficient Zero-Knowledge
Arguments for Arithmetic Circuits and Their Application to Lattice-
Based Cryptography,” Public-Key Cryptography – PKC 2020, pp.
495–526, 2020, doi: 10.1007/978-3-030-45374-9_17.

[8] V. Lyubashevsky, N. K. Nguyen, and M. Plançon, “Lattice-Based
Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More
General,” Lecture Notes in Computer Science, pp. 71–101, 2022,
doi:10.1007/978-3-031-15979-4_3.

[9] L. Ducas and W. van Woerden, “On the Lattice Isomorphism Problem,
Quadratic Forms, Remarkable Lattices, and Cryptography,” Lecture
Notes in Computer Science, pp. 643–673, 2022, doi: 10.1007/978-3-
031-07082-2_23.

[10] S. Lyu, L. Liu, C. Ling, J. Lai, and H. Chen, “Lattice codes for lattice-
based PKE,” Designs, Codes and Cryptography, vol. 92, no. 4, pp.
917–939, Nov. 2023, doi: 10.1007/s10623-023-01321-6.

[11] N. Alkeilani Alkadri, R. El Bansarkhani, and J. Buchmann, “BLAZE:
Practical Lattice-Based Blind Signatures for Privacy-Preserving
Applications,” Lecture Notes in Computer Science, pp. 484–502,
2020, doi: 10.1007/978-3-030-51280-4_26.

[12] D. F. Aranha, C. Baum, K. Gjøsteen, T. Silde, and T. Tunge, “Lattice-
Based Proof of Shuffle and Applications to Electronic Voting,”
Lecture Notes in Computer Science, pp. 227–251, 2021,
doi:10.1007/978-3-030-75539-3_10.

[13] C. Ma and M. Jiang, “Practical Lattice-Based Multisignature Schemes
for Blockchains,” IEEE Access, vol. 7, pp. 179765–179778, 2019,
doi:10.1109/access.2019.2958816.

[14] D. Heinz and T. Pöppelmann, “Combined Fault and DPA Protection
for Lattice-Based Cryptography,” IEEE Transactions on Computers,
vol. 72, no. 4, pp. 1055–1066, Apr. 2023,
doi:10.1109/tc.2022.3197073.

[15] T. Oder, “Efficient and side-channel resistant implementation of
lattice-based cryptography”, Doctoral dissertation, Dissertation,
Bochum, Ruhr-Universität Bochum, 2019.

[16] J.-P. D’Anvers, D. Heinz, P. Pessl, M. Van Beirendonck, and I.
Verbauwhede, “Higher-Order Masked Ciphertext Comparison for
Lattice-Based Cryptography,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 115–139, Feb. 2022,
doi:10.46586/tches.v2022.i2.115-139.

[17] W. Tan, A. Wang, Y. Lao, X. Zhang, K. K. Parhi, “Low-latency VLSI
architectures for modular polynomial multiplication via fast filtering
and applications to lattice-based cryptography”, arXiv preprint
arXiv:2110.12127, 2021.

[18] W. Wang, S. Tian, B. Jungk, N. Bindel, P. Longa, and J. Szefer,
“Parameterized Hardware Accelerators for Lattice-Based
Cryptography and Their Application to the HW/SW Co-Design of
qTESLA,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, pp. 269–306, Jun. 2020,
doi:10.46586/tches.v2020.i3.269-306.

[19] E. Alkim, P. S. L. M. Barreto, N. Bindel, J. Krämer, P. Longa, and J.
E. Ricardini, “The Lattice-Based Digital Signature Scheme qTESLA,”
Lecture Notes in Computer Science, pp. 441–460, 2020,
doi:10.1007/978-3-030-57808-4_22.

[20] J. Hoffstein, J. Pipher, J.H. Silverman, “An introduction to
mathematical cryptography”, vol. 1, New York: Springer, 2008,
doi:10.1007/978-0-387-77993-5.

[21] A. K. Lenstra, H. W. Lenstra, and L. Lovász, “Factoring polynomials
with rational coefficients,” Mathematische Annalen, vol. 261, no. 4,
pp. 515–534, Dec. 1982, doi: 10.1007/bf01457454.

[22] L. Chen, Z. Xing, Y. Li, and S. Qiu, “Efficient MIMO Preprocessor
With Sorting-Relaxed QR Decomposition and Modified Greedy LLL
Algorithm,” IEEE Access, vol. 8, pp. 54085–54099, 2020,
doi:10.1109/access.2020.2980922.

[23] L. Chen, Y. Wang, Z. Xing, S. Qiu, Q. Wang, and Y. Zhang, “A
Paralleled Greedy LLL Algorithm for 16×16 MIMO Detection,” 2020
IEEE International Symposium on Circuits and Systems (ISCAS), Oct.
2020, doi: 10.1109/iscas45731.2020.9181195.

[24] A. Goldberger and Y. Strassler, “A practical algorithm for completing
half-Hadamard matrices using LLL,” Journal of Algebraic
Combinatorics, vol. 55, no. 1, pp. 217–244, Nov. 2021,
doi:10.1007/s10801-021-01077-z.

[25] J.-S. Coron and A. Gini, “A Polynomial-Time Algorithm for Solving
the Hidden Subset Sum Problem,” Lecture Notes in Computer Science,
pp. 3–31, 2020, doi: 10.1007/978-3-030-56880-1_1.

910

[26] J. Frauendiener, C. Jaber, and C. Klein, “Efficient computation of
multidimensional theta functions,” Journal of Geometry and Physics,
vol. 141, pp. 147–158, Jul. 2019,
doi:10.1016/j.geomphys.2019.03.011.

[27] G. H. Cho, H.-S. Lee, S. Lim, and Y. Kim, “Storage efficient algorithm
for Hermite Normal Form using LLL,” Linear Algebra and its
Applications, vol. 613, pp. 183–200, Mar. 2021,
doi:10.1016/j.laa.2020.12.022.

[28] L. Hajdu, B. Harangi, A. Tiba, and A. Hajdu, “Detecting Periodicity
in Digital Images by the LLL Algorithm,” Mathematics in Industry,
pp. 613–619, 2019, doi: 10.1007/978-3-030-27550-1_78.

[29] K. Ryan, "Return of the hidden number problem.: A widespread and
novel key extraction attack on ecdsa and dsa", vol. 2019, pp. 146-168,
Nov. 2018, [online] Available:
https://tches.iacr.org/index.php/TCHES/article/view/7337.

[30] Kim S. “On the shape of a high-dimensional random lattice.” Ph.D.
thesis, Stanford University, 2015.

911

