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Abstract— Lattice-based Cryptography is known as one of the key technologies in modern cryptography. This encryption scheme has 

the basis vectors from the lattice as the public key and a short-length vector in the lattice consisting of an integer combination of the 

basis vectors as the secret key. To break this encryption, we need to solve the Shortest Vector Problem (SVP), known as NP-hard. 

Therefore, instead of finding the shortest vector, LLL algorithm is often used to find a vector of sufficiently short length to break the 

encryption. The LLL algorithm is a well-known method for breaking this encryption, but there is still no clear answer to the question 

of how many times the LLL algorithm needs to be used to obtain the desired level of secret key, the average number of the (δ, η)-LLL

bases in dimension n is a tool to measure the probability that the LLL algorithm solves the SVP. We can expect that this number 

indicates how many times the appropriate algorithm should run. There is a formula for this, but it contains some functions that take a 

long time to compute. We apply linear regression to the formula of the average number of the (δ, η)-LLL bases in dimension n, and

therefore we obtain some formulas to approximate the average number of the (δ, η)-LLL is based on dimension n, which contains simple

functions. When the dimensions are high, our model is much better regarding the computation time.  
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I. INTRODUCTION

Lattice-based cryptography represents a cryptographic 
framework grounded in the computational complexity of 
lattice-based problems, as initially expounded by Ajtai [1]. 
This paradigm embodies a prospective avenue within the 
domain of post-quantum cryptography. Notably, its utility 
extends to conventional cryptographic paradigms such as key 
exchange and digital signatures, as underscored by 
Nejatollahi et al. [2]. Moreover, this cryptographic approach 
exhibits considerable promise across diverse applications, 
including the realm of the Internet of Things (IoT), as 
articulated by Khalid et al. [3], and the sphere of medical data 
analytics, as elucidated by Kocabas and Soyata [4]. A 
foundation in linear algebra is imperative to comprehend the 
underpinnings of lattice-based cryptography effectively. 
Specifically, elucidating the concept of the span of a subset 
within a vector space serves as the inaugural step in this 
mathematical journey.  

Recent research on this lattice encryption has taken a 
variety of forms. For example, there have been various studies 

on its mathematical properties and efficient algorithms [5]-
[10], some variations [11], electronic voting [12], 
Blockchains [13], and its protection from fault or DPA [14], 
[15], and other invasions using the techniques of masking [16]. 
Furthermore, research on the hardware structure is ongoing 
[17], and their applications are used in the design of qTESLA 
[18], [19].  

In the context of lattice theory, the Shortest Vector Problem 
(SVP) is a prominent challenge that garners attention. 
Identifying a vector possessing notable brevity within a lattice 
is significant as it emerges as a compelling contender for 
private key instantiation within the framework of lattice-
based cryptography, as elucidated by Hoffstein et al. [20]. The 
algorithm known as LLL (Lenstra–Lenstra–Lovász), 
expounded upon by Lenstra, Lenstra, and Lovász in their 
seminal work [21], facilitates the efficient computation of 
reduced bases within a polynomial time complexity 
framework. This culminates in deriving a collection of vectors 
characterized by their brevity, rendering them apt for 
employment on a lattice basis. The resultant basis, termed an 
LLL-reduced basis, embodies a cornerstone outcome of the
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LLL algorithm and has subsequently engendered several 
divergent iterations and adaptations. 

There are so many variations of LLL algorithm. For 
example, the modified greedy LLL algorithm paralleled the 
greedy LLL algorithm [22], [23]. Furthermore, the LLL 
algorithm is used in Lattice-based cryptography and in many 
other fields. For example, L algorithm is used to construct 
half-Hadamard matrices [24], solve the hidden subset sum 
problem [25], compute multidimensional theta functions [26], 
construct Hermite Normal Form [27], detect periodicity in 
digital images [28], attack ECDSA [29]. 

In this paper, we use the statistical techniques of linear 
regression are employed in the investigation of the average 
number of (δ, η)-LLL bases within the n-dimensional space. 
The outcomes of this investigation yield a series of analytical 
expressions, encapsulating elementary functional 
relationships, that serve as approximations for the 
aforementioned average counts of (δ, η )-LLL bases in n-
dimensional contexts. Particularly noteworthy is the marked 
efficiency exhibited by our proposed model, particularly in 
scenarios characterized by high dimensions, as it significantly 
outperforms conventional methodologies in terms of 
computational time requirements. 

We start with a brief introduction of Lattice based 
cryptography.  
Let us consider the simplest two-dimensional case. [30] 

 To receive the message, Alice creates a public key, 
which is a sufficiently large natural number q. 

 And then Alice creates two secret keys f and g that are 

satisfying f <  	
/2, 	
/4  <  � <  	
/2,  and f  and qg are relatively prime.  
 After that Alice creates another public key h ≡����(mod q) and then publish the pair of public key (q, h). 

 Bob wants to send a message m <  	
/4  to Alice 
without being seen by Eve. 

 So, Bob compute e ≡ rh +  m (mod q), 0 <  e <  q 
with a random number r and send the ciphertext e to 
Alice. 

 Alice computes a ≡ fe (mod q) , 0 < a < q  and then 
compute b ≡ ���� ( !" �), 0 < # < �. 

 Then b =  m. 
Let us see an example with small numbers.  
 Let q =  23, f =  2, and g =  3.  
 Then h ≡ 2�� ∙ 3 ≡ 12 ∙ 3 ≡ 13 ( !" 23).  
 Let plaintext m =  2.  With a random number r =  6, 

Bob computes e ≡ 6 ∙ 13 + 2 ≡ 11 (mod 23)  and 
send e. 

 Alice computes a ≡ 2 ⋅ 11 ≡ 22 (mod 23), and 
compute b ≡ 2�� ⋅ 22 ≡ 2 ⋅ 1 ≡ 2 ( !" 3)  and b = m =  2. 

Eve can try a brute-force attack, but it is not useful. So, Eve 
tries to find the private key (f, g) from the public key (q, h). 
If Eve knows a pair (F, G)  such thatFh ≡  G (mod q), F = .(	
), �/" 0 =  .(	
), then (F, G) behaves as if it were 
secret key. It is clear that Fh ≡  G (mod q) and Fh =  G + qR with an unknown integer R are equivalent. Then finding (F, G)  is equivalent to solve F(1, h)  −  R(0, q)  =  (F, G) 
with known vectors (1, h) , (0, q)  and unknown parameters F, G,  and R . So, solving Lattice-based cryptography is 

equivalent to this problem: Find a sufficiently nonzero small 
vector between the integer combinations of known vectors. As 
the dimension increases, this problem becomes much more 
difficult because the number of integer combinations to 
consider increases dramatically. This feature has been used to 
ensure the security of Lattice-based cryptography in 
sufficiently high dimensions. 

LLL algorithm, as introduced in Section 1, is an efficient 
method to find a sufficiently small vector by reducing given 
basis within a polynomial time complexity. From Eve's point 
of view, it is important to know how many times this 
algorithm can be used to get a sufficiently small nonzero 
vector, and from Alice's or Bob's point of view, they need an 
indicator that they should finish sending messages before 
running the LLL algorithm that sufficient times. 

Unfortunately, there is not yet enough research on this 
algorithm to know how many tries it takes to get a reasonably 
good small nonzero vector. We are simply utilizing the LLL 
algorithm in a way that allows us to run it a few times and see 
if we get a good vector. However, as the dimension is higher, 
you're going to have to run these algorithms a really large 
number of times, and it's going to take longer and longer to 
verify that the result of the algorithm is a reasonably short 
vector. So, there's definitely a need for research on how many 
runs are the answer for the range of good choices. 

In this paper, we use the following notation to define the 
set of integer combinations of basis vectors. 

where S =  45�, 56, . . ., 578. 

Let 9:,; =< 5: , <=∗
||<=∗||@ > , 5�∗  = 5�  and 5:∗ = 5: −

∑ 9:,;:��;C� 5; ∗ for i ≥ 2.  
Note that {5�∗, 56∗, . . . , 57∗} is an orthogonal basis and if 

this process is possible for given vector space, then we can 
find the shortest vector because at least one of 5:∗  can be 
shorten to a shortest vector by just multiplying a scalar. But in 

general, 9:,; =< 5: , <=∗
||<=∗||@ > is not an integer for a lattice base 

45�, 56, . . ., 578. Therefore, in the original LLL algorithm and 
its variants, use round (μ) instead of μ. 

For the purpose to see the quality of the output of LLL 
algorithm, we first check the pseudocode of the LLL 
algorithm as follows: [30] 

 Input: a basis 45�, 56, . . ., 578for ℝ7 , 
�
6 ≤ I ≤ J ≤ 1, 

Output: a (δ, η)-LLL basis 45�, 56, . . ., 578. 
 k =  2 
 while k ≤ n, 
 for i =  k − 1 to 1, 

 5N = 5N − O!P/"Q9N,:R5: 
 S� δ||5N��∗|| ≤ ||5N ∗ + 9N,N��5N��∗||  

 T =  T +  1 
 else 

 tmp = 5N�� 
 5N�� = 5N 
 5N = tmp 
 T =  W/(T − 1,2) 

 Output 45�, . . . , 578, a (δ, η)-LLL basis. 

Z[�/ℤ(])  =  ^_ �:5:: 
7

:C�
��, . . . , �7 ∈ ℤb  (1) 
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The output, a ( δ, η) -LLL basis satisfies the following 
conditions: [31] 

 |9:,; |≤ η for all j < i. 
 δ||5:∗|| ≤ ||5:d�∗ + 9:d�,:5:∗|| for all i =  1, . . . , n − 1 

Note that the output can vary for the same lattice by starting 
with different basis vectors. Also, for any fixed lattice, a basis 
that contains all the shortest vectors is not unique in general. 
For example, let 5: = e:. Then 45�, 56, . . ., 578 is a basis for ℤ7  and the number of bases for ℤ7  that contains all the 
shortest vector is 27 because 5: = ±e: for any i, generates ℤ7. 
Therefore, if the possible number of outputs for fixed LLL is 
sufficiently close to 27 , then by using LLL algorithm, user 
expects that the output basis contains the shortest vector(s). 
For this reason, there are some results for the number of LLL 
basis and the author of [30] obtain the average number of the 
(δ, η)-LLL bases in dimension n. That is, 

where ]:(g) is the surface area of a sphere in ℝ: of radius x. 
The formula is the exact value of the average number but 
computing this value takes so long time as n increases so it is 
beautiful but somewhat impractical. This paper aims to find 
an approximated formula for equation (2) that contains just 
simple functions, such as exponential functions.  

First, we start by simplifying the given equation (2) into 

equation (3). In equation (3), ξ(i)  =  �
6 W(W −

1)j�:/6Γ(:
6)l(W), mℎe oWe �// − pW �P/qmW!/,  a variation 

of the Riemann-zeta function. So that one of the product 
forms was deleted. After that, we compute the above formula 
to obtain that the exponent part of this formula is about cubic. 
We check this fact by estimation with a regression model. 

II. MATERIALS AND METHOD 

A. Material 

The following experimental combinations of n, δ, and η in 
formula (2) were used to produce input and output data for the 

LLL algorithm. There were 18 experimental combinations of n  in increments of 10 from 30 to 200, 5 experimental 
combinations of δ in increments of 0.5 from 0.75 to 0.95, and 
3 experimental combinations of η: 0.51, 0.52, and 0.53. The 
total number of combinations in the experiment is 
18×5×3=270 combinations. 

If we set η to 0.53, δ to 0.95, and n to 200, the calculated 
value of equation (1) is about 2.81e+118532, which exceeds 
the number of floating-point digits of the computer, and the 
result becomes infinite. Therefore, in this study, we used the 
"Rmpfr" and "gmp" libraries of the R program, which can 
calculate large integers. These libraries require a large 
computational cost to produce results. 

Fig. 1 shows the time taken to compute equation (2) as a 
function of δ  and n  after fixing η  to 0.53. For all δ , we see 
that there is a difference in the computation time when the 
dimensionality is small, but as the dimensionality increases, 
there is no significant difference in the computation time. The 
computation time scales linearly with the number of 
dimensions.  

The purpose of this study is to learn a kind of meta-model 
for equation (2) by statistical methods or machine learning to 
produce a value that approximates the true value faster than 
the number of possible bases resulting from the calculation of 
the LLL algorithm, and to produce similar results. However, 
although it is possible to produce input and output data for 
learning, it is not possible to learn a model in the usual way 
due to the difficulty in processing the value of the dependent 
variable, which is the prediction target, due to the floating-
point problem of the computer.  

 

Fig. 1 LLL basis computation time for δ and dimension number combinations. 

B. Method 

To solve the problem mentioned in the previous section, 
this study proposes a method that separates the integer and 
exponential parts of a value that exceeds the number of 
floating-point digits, predicts them separately, and combines 
the two prediction results. The exponential part is known to 
be proportional to /r , so we use it to learn with a linear 
regression model, while the integer part is filled with as many 
numbers as the computer's floating-point digits, so it is 
difficult to find any rules for the dimensionality. To solve this 
problem, we propose a method that cuts out numbers below a 
certain number of digits from the integer data to be trained 
and adds digits proportional to the number of dimensions to 
predict approximate values, but not true values. Also, since it 

2(2I)(7��)(7�6)/6 s ]:(1)l(W)
7

:C6
1/ s 1W(/ − W)

7��

:C�
 

× s u 	J6 − g6"gv
�v

7��

:C�
 

(2) 

= 2(2I)(7��)(7�6)/6 ∏
@x y@
z{y@|
}(:)7:C6 �

7 ∏ �
:(7�:)7��:C�  × 

s u 	J6 − g6"gv
�v

7��

:C�
 

 =2(2I)(7��)(7�6)/6 ∏ �
~@:(:��)�� y@�� y@�}(:)

7:C6 × 

s u 	J6 − g6"gv
�v

7��
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which is equal to 

27@�r7d�6I(7��)(7�6)6 s 1�(W)
7

:C6
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�v

7��

:C�
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predicts approximate values for true values, it predicts an 
interval with a (1-α)% confidence interval for the predicted 
value. 
To summarize the above algorithm  

 Step1: Separate dependent variable values into integer 
and exponential parts 

 Step2: Predict the exponent part by computing y =�(g) + �. 
 Step3: Scale the number of digits in the integer part of 

the data to be proportional to the dimension 
 Step4: By using log (y) = �(g) + � predict the integer 

part and inverse transform 
 Step5: Combine the predicted integer part and exponent 

part 
We fix the values of δ and η in the algorithm suggested in 

this study. η =  0.53, and δ =  0.95. 

III. RESULTS AND DISCUSSION 

The relationship between the exponential part and the 
integer part is in the form of a cubic polynomial as shown in 
Fig. 2. Therefore, the exponential part was predicted by fitting 
the polynomial regression model in equation (4). The 
regression coefficients in the regression model were estimated 
using the least squares method.  

 

Fig. 2  Relationship between exponential parts and number of dimensions. 

After fitting the model, the corrected coefficient of 
determination was 1, and the regression coefficients for each 
term were all statistically significant at the 0.001 level of 
significance ( α ). Fig. 3 is a scatter plot of the true and 
predicted values. The exponential part of the prediction was 
almost identical to the true value. 

 

 
Fig. 3  Scatterplot of predicted exponential part and true values 

Table shows the 95% confidence intervals for the predicted 
values of the exponential regression model. In all dimensions, 
we predicted intervals containing the true value, with a range 
of 18 on average, which is very close to the true value, and the 
time required for this prediction is less than one second.  

TABLE I 
95% CONFIDENCE INTERVAL FOR THE PREDICTED EXPONENTIAL PART 

Number of 

dimension (n) 

Lower 

bound 

Exact 

value 

Upper 

bound 

30 306 323 327 
40 801 809 820 
50 1632 1636 1650 
60 2892 2897 2910 
70 4677 4683 4695 
80 7079 7088 7097 
90 10195 10205 10213 

100 14117 14129 14135 
110 18940 18953 18958 
120 24758 24771 24776 
130 31666 31677 31684 
140 39757 39767 39775 
150 49127 49134 49145 
160 59868 59874 59886 
170 72076 72081 72094 
180 85844 85850 85862 
190 101267 101275 101285 
200 118437 118453 118458 

 
Fig. 4 is a scatter plot of the predicted and true values of 

the integer part. The modified coefficient of determination is 
0.998, which is slightly lower than the prediction performance 
of the exponential part, but it is analyzed that it is possible to 
predict the interval of the true value with some accuracy. 
Table 2 shows the 95% confidence intervals for the integer 
partial predictions. We see that the confidence intervals for all 
dimensions contain true value. Combining the integer interval 
estimates with the exponential interval estimates, the output 
of the LLL algorithm was able to approximate the interval 
with the true value for the number of possible bases. 

TABLE II 
95% CONFIDENCE INTERVAL FOR PREDICTED INTEGER PART 

Number of 

dimension (n) 

Lower 

bound 

Exact 

value 

Upper 

bound 

30 6.63e+77 2.43e+78 1.53e+79 
40 7.34e+77 3.89e+78 1.42e+79 
50 7.87e+77 7.44e+78 1.37e+79 
60 8.24e+77 1.83e+78 1.35e+79 
70 8.47e+77 2.66e+78 1.36e+79 
80 8.62e+77 3.06e+78 1.39e+79 
90 8.73e+77 8.38e+78 1.42e+79 

100 8.84e+77 3.17e+78 1.45e+79 
110 8.98e+77 1.61e+78 1.49e+79 
120 9.16e+77 1.63e+78 1.52e+79 
130 9.37e+77 7.01e+78 1.54e+79 
140 9.62e+77 3.73e+78 1.56e+79 
150 9.87e+77 9.22e+78 1.59e+79 
160 1.01e+78 5.03e+78 1.62e+79 
170 1.02e+78 3.51e+78 1.68e+79 
180 1.01e+78 2.16e+78 1.76e+79 
190 9.81e+77 9.53e+78 1.90e+79 
200 9.22e+77 2.81e+78 2.12e+79 

 

y = β� + β� xr + β6 x6 + βr x⬚ +  ε (4) 
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Fig. 4  Scatterplot of predicted integer part and true values. 

IV. CONCLUSION 

For more accurate prediction in the future, we believe that 
the performance will be improved by applying a learning 
method that can accurately predict the integer part. Also, we 
try to expand the result to arbitrary � and �, not fixed. As you 
can see in fig. 1, the value of the formula (1) is dominated by �, not � or �. So, the method used in this paper will have the 
effect to predict for arbitrary � and �. From these predictions, 
we suggest an indicator that shows how many times LLL 
algorithm has to be executed to find sufficiently short vector 
of given fixed lattice. We intend to follow up on this work in 
the future so that we can come up with appropriate metrics for 
similarly conceptually well-defined things that are still 
difficult to use in practice. We believe that many areas have 
not been solved mathematically or experimentally, especially 
when limited to areas that require a lot of computation, such 
as high dimensions, and we would like to continue research 
on this area because practicality also depends on this area. 

Similarly, there are many things that are not yet well 
understood mathematically in lattice-based cryptosystems. 
For example, for the BKZ algorithm, which performs basis 
reduction similarly to the LLL algorithm, the appropriate 
number of runs to obtain a good basis is not well defined. 
Mathematical and statistical characterization of these 
practical issues for different algorithms is another topic of 
future research related to this study. 

ACKNOWLEDGMENT 

This research was supported by the 2023 scientific 
promotion program funded by Jeju National University. 

REFERENCES 

[1]  M. Ajtai, "Generating hard instances of lattice problems", Proc. 
Electron. Colloq. Comput. Complexity, 1996. 

[2]  H. Nejatollahi, N. Dutt, S. Ray, F. Regazzoni, I. Banerjee, R. 
Cammarota, “Software and hardware implementation of lattice-cased 
cryptography schemes”, Center for Embedded Cyber-Physical 
Systems, pp. 1-43, 2017. 

[3]  A. Khalid, S. McCarthy, M. O’Neill, and W. Liu, “Lattice-based 
Cryptography for IoT in A Quantum World: Are We Ready?,” 2019 
IEEE 8th International Workshop on Advances in Sensors and 
Interfaces (IWASI), Jun. 2019, doi: 10.1109/iwasi.2019.8791343. 

[4]  Ö Kocabaş and T Soyata, “Medical data analytics in the cloud using 
homomorphic encryption”, In E-Health and Telemedicine: Concepts, 
Methodologies, Tools, and Applications. IGI Global, 2016. 

[5]  M. N. John, O. G. Udoaka, I. U. Udoakpan “Group Theory in Lattice-
Based Cryptography.”, Int. J. Math. And Appl., vol. 11, no. 4, pp. 111–
125, Dec. 2023. 

[6]  M. F. Esgin, R. Steinfeld, J. K. Liu, and D. Liu, “Lattice-Based Zero-
Knowledge Proofs: New Techniques for Shorter and Faster 
Constructions and Applications,” Lecture Notes in Computer Science, 
pp. 115–146, 2019, doi: 10.1007/978-3-030-26948-7_5. 

[7]  C. Baum and A. Nof, “Concretely-Efficient Zero-Knowledge 
Arguments for Arithmetic Circuits and Their Application to Lattice-
Based Cryptography,” Public-Key Cryptography – PKC 2020, pp. 
495–526, 2020, doi: 10.1007/978-3-030-45374-9_17. 

[8]  V. Lyubashevsky, N. K. Nguyen, and M. Plançon, “Lattice-Based 
Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More 
General,” Lecture Notes in Computer Science, pp. 71–101, 2022, 
doi:10.1007/978-3-031-15979-4_3. 

[9]  L. Ducas and W. van Woerden, “On the Lattice Isomorphism Problem, 
Quadratic Forms, Remarkable Lattices, and Cryptography,” Lecture 
Notes in Computer Science, pp. 643–673, 2022, doi: 10.1007/978-3-
031-07082-2_23. 

[10]  S. Lyu, L. Liu, C. Ling, J. Lai, and H. Chen, “Lattice codes for lattice-
based PKE,” Designs, Codes and Cryptography, vol. 92, no. 4, pp. 
917–939, Nov. 2023, doi: 10.1007/s10623-023-01321-6. 

[11]  N. Alkeilani Alkadri, R. El Bansarkhani, and J. Buchmann, “BLAZE: 
Practical Lattice-Based Blind Signatures for Privacy-Preserving 
Applications,” Lecture Notes in Computer Science, pp. 484–502, 
2020, doi: 10.1007/978-3-030-51280-4_26. 

[12]  D. F. Aranha, C. Baum, K. Gjøsteen, T. Silde, and T. Tunge, “Lattice-
Based Proof of Shuffle and Applications to Electronic Voting,” 
Lecture Notes in Computer Science, pp. 227–251, 2021, 
doi:10.1007/978-3-030-75539-3_10. 

[13]  C. Ma and M. Jiang, “Practical Lattice-Based Multisignature Schemes 
for Blockchains,” IEEE Access, vol. 7, pp. 179765–179778, 2019, 
doi:10.1109/access.2019.2958816. 

[14]  D. Heinz and T. Pöppelmann, “Combined Fault and DPA Protection 
for Lattice-Based Cryptography,” IEEE Transactions on Computers, 
vol. 72, no. 4, pp. 1055–1066, Apr. 2023, 
doi:10.1109/tc.2022.3197073. 

[15]  T. Oder, “Efficient and side-channel resistant implementation of 
lattice-based cryptography”, Doctoral dissertation, Dissertation, 
Bochum, Ruhr-Universität Bochum, 2019. 

[16]  J.-P. D’Anvers, D. Heinz, P. Pessl, M. Van Beirendonck, and I. 
Verbauwhede, “Higher-Order Masked Ciphertext Comparison for 
Lattice-Based Cryptography,” IACR Transactions on Cryptographic 
Hardware and Embedded Systems, pp. 115–139, Feb. 2022, 
doi:10.46586/tches.v2022.i2.115-139. 

[17]  W. Tan, A. Wang, Y. Lao, X. Zhang, K. K. Parhi,  “Low-latency VLSI 
architectures for modular polynomial multiplication via fast filtering 
and applications to lattice-based cryptography”, arXiv preprint 
arXiv:2110.12127, 2021. 

[18]  W. Wang, S. Tian, B. Jungk, N. Bindel, P. Longa, and J. Szefer, 
“Parameterized Hardware Accelerators for Lattice-Based 
Cryptography and Their Application to the HW/SW Co-Design of 
qTESLA,” IACR Transactions on Cryptographic Hardware and 
Embedded Systems, pp. 269–306, Jun. 2020, 
doi:10.46586/tches.v2020.i3.269-306. 

[19]  E. Alkim, P. S. L. M. Barreto, N. Bindel, J. Krämer, P. Longa, and J. 
E. Ricardini, “The Lattice-Based Digital Signature Scheme qTESLA,” 
Lecture Notes in Computer Science, pp. 441–460, 2020, 
doi:10.1007/978-3-030-57808-4_22. 

[20]  J. Hoffstein, J. Pipher, J.H. Silverman, “An introduction to 
mathematical cryptography”, vol. 1, New York: Springer, 2008, 
doi:10.1007/978-0-387-77993-5. 

[21]  A. K. Lenstra, H. W. Lenstra, and L. Lovász, “Factoring polynomials 
with rational coefficients,” Mathematische Annalen, vol. 261, no. 4, 
pp. 515–534, Dec. 1982, doi: 10.1007/bf01457454. 

[22]  L. Chen, Z. Xing, Y. Li, and S. Qiu, “Efficient MIMO Preprocessor 
With Sorting-Relaxed QR Decomposition and Modified Greedy LLL 
Algorithm,” IEEE Access, vol. 8, pp. 54085–54099, 2020, 
doi:10.1109/access.2020.2980922. 

[23]  L. Chen, Y. Wang, Z. Xing, S. Qiu, Q. Wang, and Y. Zhang, “A 
Paralleled Greedy LLL Algorithm for 16×16 MIMO Detection,” 2020 
IEEE International Symposium on Circuits and Systems (ISCAS), Oct. 
2020, doi: 10.1109/iscas45731.2020.9181195. 

[24]  A. Goldberger and Y. Strassler, “A practical algorithm for completing 
half-Hadamard matrices using LLL,” Journal of Algebraic 
Combinatorics, vol. 55, no. 1, pp. 217–244, Nov. 2021, 
doi:10.1007/s10801-021-01077-z. 

[25]  J.-S. Coron and A. Gini, “A Polynomial-Time Algorithm for Solving 
the Hidden Subset Sum Problem,” Lecture Notes in Computer Science, 
pp. 3–31, 2020, doi: 10.1007/978-3-030-56880-1_1. 

910



[26]  J. Frauendiener, C. Jaber, and C. Klein, “Efficient computation of 
multidimensional theta functions,” Journal of Geometry and Physics, 
vol. 141, pp. 147–158, Jul. 2019, 
doi:10.1016/j.geomphys.2019.03.011. 

[27]  G. H. Cho, H.-S. Lee, S. Lim, and Y. Kim, “Storage efficient algorithm 
for Hermite Normal Form using LLL,” Linear Algebra and its 
Applications, vol. 613, pp. 183–200, Mar. 2021, 
doi:10.1016/j.laa.2020.12.022. 

[28]  L. Hajdu, B. Harangi, A. Tiba, and A. Hajdu, “Detecting Periodicity 
in Digital Images by the LLL Algorithm,” Mathematics in Industry, 
pp. 613–619, 2019, doi: 10.1007/978-3-030-27550-1_78. 

[29]  K. Ryan, "Return of the hidden number problem.: A widespread and 
novel key extraction attack on ecdsa and dsa", vol. 2019, pp. 146-168, 
Nov. 2018, [online] Available: 
https://tches.iacr.org/index.php/TCHES/article/view/7337. 

[30]  Kim S. “On the shape of a high-dimensional random lattice.” Ph.D. 
thesis, Stanford University, 2015.

 

911




