
Vol.14 (2024) No. 3

ISSN: 2088-5334

A Comprehensive Review of Machine Learning Approaches for
Detecting Malicious Software

Liu Yuanming a,*, Rodziah Latih a
a Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Selangor, 43600, Malaysia

Corresponding author: *p103623@siswa.ukm.edu.my

Abstract— With the continuous development of technology, the types of malware and their variants continue to increase, which has

become an enormous challenge to network security. These malware use a variety of technical means to deceive or evade traditional

detection methods, making traditional signature-based rule-based malware identification methods no longer applicable. Many machine

algorithms have attracted widespread academic attention as powerful malware detection and classification methods in recent years.

After an in-depth study of rich literature and a comprehensive survey of the latest scientific research results, feature extraction is used

as the basis for classification. By extracting meaningful features from malware samples, such as behavioral patterns, code structures,

and file attributes, researchers can discern unique characteristics that distinguish malicious software from benign ones. This process is

the foundation for developing effective detection models and understanding the underlying mechanisms of malware behavior. We divide

feature engineering and learning-based methods into two categories for investigation. Feature engineering involves selecting and

extracting relevant features from raw data, while learning-based methods leverage machine learning algorithms to analyze and classify

malware based on these features. Supervised, unsupervised, and deep learning techniques have shown promise in accurately detecting

and classifying malware, even in the face of evolving threats. On this basis, we further look into the current problems and challenges

malware identification research faces.

Keywords—Malware; machine learning; deep learning; malware detection; malware classification.

Manuscript received 27 Mar. 2024; revised 25 Apr. 2024; accepted 9 May 2024. Date of publication 30 Jun. 2024.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Malicious software runs on a user's computer or other
terminal. It uses operating system or application loopholes to
infringe on the user's legitimate rights and interests without
their knowledge or approval. According to different
characteristics and hazards, malware can be divided into
adware, ransomware, backdoor, Trojan horse, and other
categories at present, as shown in Table I. Malware poses
serious safety threats to network users, businesses, industrial
facilities, and web and information tools, and the number of
new malwares has been increasing in recent years.

The continuous surge in malware threats has fueled
extensive research in academia and industry, focusing on
detecting and classifying malware families. Initially,
signature matching dominated the industry's approach to
malware identification [1], [2], [3], boasting high accuracy for
known malware but falling short against unknown threats.
Subsequently, heuristic-based methods emerged, defining
static or dynamic rules to identify malware based on its

characteristics [4], [5], [6]. While capable of detecting some
unknown malicious codes, these methods suffer from a high
false alarm rate. As malicious software evolved with
advanced concealment techniques, traditional identification
methods faced diminishing effectiveness.

TABLE I
MALWARE TYPE

Malware

type
Behavior

Adware Create revenue for developers by increasing the
exposure of commercial advertisements or
collecting user information without user
authorization.

Ransom
ware

Encryption or file locking within the system limits
user access privileges, compelling the target to pay
a ransom to remove these restrictions.

Back
door

They bypass the system's safety protection
mechanism and install it on the system, which is
convenient for attackers to access.

Trojan
horse

A camouflaged virus with automatic renaming, self-
hiding, and self-replicating. It tends to be a

826

Malware

type
Behavior

legitimate program to entice users to install or
embed backdoor functions, allowing attackers to
bypass security programs to enter the system, collect
necessary information, and control it.

Spyware Conducting covert espionage actions without the
user's consent to gather confidential user
information.

Virus Exploit vulnerabilities within the operating system
to harm the user system's functions and data,
rendering it inoperable and propagating throughout
the device.

Worm Similar to a virus, it can cause huge damage to the
system, but it can self-replicate and spread through
the network.

Rootkits The driver-level malicious program loaded into the
system grain can hide the processes of other agendas
and retain root privileges. Typically, it is employed
with malware like Trojan horses and backdoors to
obscure any traces of malicious activity.

Downloa
der

Various other types of malicious software are
automatically installed without user permission.

Fileless
malware
[7]

It is highly concealable, achieves stealth by staying
in memory for a long time, and prolongs the
discovery time as much as possible.

Machine learning-based malware identification has gained

prominence in recent years, as depicted in Figure 1. Crucial to
these algorithms is a robust feature representation. Early
machine learning technologies relied on artificial feature
engineering, where feature representations were manually
extracted, and models like Support Vector Machine (SVM)
and Random Forest (RF) were trained for malware detection
(upper part of Figure 1). However, the high cost of feature
engineering and the growing complexity of malicious code
functions posed significant challenges.

Deep learning technology ushered in a new era for malware
identification, leveraging models such as recurrent neural
networks and convolutional neural networks (lower part of
Figure 1). Deep learning models automatically learn
discriminative feature representations, enabling end-to-end
malware detection.

This article provides a comprehensive review of malware
detection and classification and briefly describes malware
identification through feature engineering, including static
feature analysis and dynamic feature analysis. Malware
identification based on feature learning is introduced, mainly
from three perspectives: Recurrent Neural Networks,
Convolutional Neural Networks, and Graph Neural Networks.
The objective is to offer readers a comprehensive
understanding of machine learning-based malware
identification and its key advancements, serving as a technical
reference to propel further development in the field.

II. MATERIALS AND METHOD

Malware identification based on feature engineering
extracts meaningful features from samples to represent them
through artificially designed processing flow and then uses a
machine learning model to identify malware. This section
summarizes the existing research work from the malware
feature representation. The related work is listed in Table II.

A. Static feature analysis

Static feature analysis refers to extracting features without
running the software, achieved by analyzing the content of
files contained within the software. For malicious software
targeting the Windows platform, numerous studies extract
static feature representations from Portable Executable (PE)
files such as EXE and DLL. Popoiu [8] utilized API and other
strings reflective of attacker intent and objectives from PE
files as features, constructing a malicious software
recognition model based on a Support Vector Machine (SVM).

Fig. 1 Malware identification procedure

Shafiq et al. [9] extracted information from PE file headers,
section tables, and sections, including dynamic link library

references, symbol counts, linker versions, and import/export
table sizes, as features. They built malicious software

827

recognition models using J48, Naive Bayes (NB), and other
algorithms.

Some research focuses on extracting serialized static
feature representations from PE files, using the frequency of
n-grams as features. For instance, Tyagi et al. [10] selected
the most frequent binary byte n-grams from PE files as
features. Gülmez et al. [11] and McLaughlin et al. [12] used
n-grams of assembly opcode sequences from PE files as
features. Hoang et al. [13] compared the effectiveness of
binary byte n-grams and assembly opcode n-grams in PE files,
with experimental results indicating that opcode sequence n-
grams are more effective.

The sequence above feature-based methods do not consider
the actual control flow during program execution, i.e., the
fundamental behavior of the software at runtime. Addressing
this issue, McLaughlin et al. [12] transformed PE assembly
files into execution trees, employing a tree traversal algorithm
to generate opcode n-grams that encapsulate all conceivable
execution paths.

For Android platform malware, Shao et al. [14] extracted
permissions and API features from Android software manifest
files and DEX disassembly files. They employed SVM and k-
NN to build malware recognition models. Alazab et al. [15]
further categorized API calls into fuzzy, risky, and destructive
calls, evaluating the effectiveness of these features.

TABLE II
REVIEW OF MALWARE RECOGNITION RESEARCH BASED ON FEATURE ENGINEERING

Experiments indicated that the combination of destructive
calls and risky calls yielded the best results. Yang et al. [17]
extracted permission and intent features from the manifest file,
proposing an improved random forest algorithm for malware
identification. Amenova et al. [19] extracted six features: lock
screen, encryption, permission, threat text, payment method,
and network communication. They utilized the CNN-LSTM
algorithm to detect ransomware.

B. Analysis of dynamic characteristics

Dynamic feature analysis [22] extracts behavioral
characteristics of malware at runtime by executing malware
in a virtual machine or sandbox and monitoring its real-time
behavior. For Windows platform malware, Huang et al. [16]
utilized API calls, <API calls, parameters> combinations, and
tri-grams of API call sequences as features. They trained a
multi-task feedforward neural network for identifying
malicious software. Balodi et al. [23] conducted a
comprehensive feature extraction process, encompassing
metrics such as the tally of accessed/deleted/modified files,
registry keys, IP addresses, DNS queries, runtime API calls,

and accessed links. This extensive feature set served as the
foundation for constructing a sophisticated malware
recognition model. However, some malware can detect
sandbox environments and conceal their malicious behavior,
leading to recognition model failures.

On the Android platform, Wu et al. [24] proposed a
recognition model based on API clustering using the number
of system API calls during runtime. Elalem et al. [25]
designed 88 features capturing information in various aspects
like runtime power, memory, network, touch screen, and
keyboard. They used different classifiers, with J48 and NB
performing better in experiments. Purnama et al. [20]
integrated dynamic features such as API calls and
actions/events with static features like permissions at runtime.
They used a multi-layer perceptron (MLP) to build a
recognition model. Singh et al. [26] enhanced the
performance of the SVM-ML model through four different
data preprocessing, transformation, outlier identification,
filling and smoothing. Dynamic analysis can better identify
malware's abnormal behavior compared to static analysis.

Literature Operation object Method Data set Accuracy (%)

Huang et al. [16] API calls and their
parameters

FNN 2.85 million malicious files and 3.65 million
benign files provided by Microsoft analysts.

99.64

Shao et al. [14] API calls + permissions SVM ＆ k-NN 100 malware and 500 normal software. 90.0
Yang et al. [17] Permission + Intent RF 1260 malicious software was obtained from

the Android Malware [18], and 674 benign
software was downloaded from Google's
official and domestic third-party application
markets.

98.1

Amenova et al. [19] encryption + permissions, CNN-LSTM It covers more than 17,341 Android samples 94.0
Alazab et al. [15] API calls + permissions RF 13,719 malicious applications from

AndroZoo, Contagio, MalShare, VirusShare,
and VirusTotal.

94.3

Purnama et al. [20] API calls + n-gram MLP 245 malware and 245 benign samples were
obtained from VX Heaven for internal
review.

98.5

Su et al. [21] Component + Permission
+ Intent etc.

DBN ＆ SVM 3986 Android malicious applications, 3986
Android benign applications, and 1515
unknown Android applications.

97.5

Gülmez et al. [11] opcode sequence SVM 17,000 malicious programs were downloaded
from the VxHeaven website, and 1,000
legitimate executable files were collected
from computers.

98.0

McLaughlin et al.
[12]

opcode sequence DBN ＆ SVM /
k- NN / DT

2550 malicious files, 2550 benign files, and
4000 unlabeled samples.

96.8

828

However, the feature extraction process is time-consuming,
making it less suitable for time-sensitive detection tasks.

C. Feature Selection and Dimensionality Reduction

To prevent the overfitting problem caused by high-
dimensional features, many studies further perform feature
selection or dimensionality reduction on the initial features.
Among them, commonly used feature selection methods
include information gain [27], [28] (IG), mutual information
[14], etc. Commonly used feature dimensionality reduction
methods include principal component analysis [9] (PCA),
random mapping [29] etc. Huang et al. [16] successively used

mutual information and random mapping to map the feature
space from millions to thousands of dimensions. Shafiq et al.
[9] used three different methods of redundant feature removal
(RFR), PCA, and Haar wavelet transform (HWT) to reduce
the dimensionality of the extracted features. Yang et al. [17]
used the IG and ReliefF algorithms to select the extracted
features, respectively. Experiments showed that the IG
algorithm was more stable than the ReliefF as the number of
features increased. Elalem et al. [25] compared Chi-square
test [30], Fisher score [31] and IG three feature selection
methods, and the experiments showed that none had an
absolute advantage in all experimental settings.

TABLE III
OVERVIEW OF MALWARE RECOGNITION RESEARCH USING FEATURE LEARNING

Some studies use Auto Encoder to achieve feature
dimensionality reduction [55], but it is challenging to train
encoders for tens of thousands of dimensional features. To
solve this problem, the deep belief network (DBN) proposed
by Chen et al. [56] can achieve a good dimensionality
reduction effect through layer-by-layer pre-training and
parameter fine-tuning. Su et al. [21] performed 0/1 encoding
on features such as components, intents, and request
permissions extracted from Android software, and used DBN
for dimensionality reduction. After dimensionality reduction,
the recognition accuracy rate reached 97.5%. McLaughlin et

al. [12] extracted PE file opcode n-grams and used DBN for
dimensionality reduction, improving performance.

III. RESULT AND DISCUSSION

With the breakthrough of deep learning technology,
malware identification using deep neural networks has
become a new research trend. Since deep neural networks can
learn discriminative features automatically, this paper
presents this type of research as recognition methods based on
feature learning. Different sample representation methods can
be divided into recurrent neural network-based, convolutional

Literature Operation object Method Data set Accuracy (%)

Kwan et al. [32]
opcode sequence

CNN Including 10868 samples of 9 categories. 98.7

Priyanto et al. [33]
Isolation Forest
＆ LSTM

The data was collected from 2019 to 2020 from raw
data from the land monitoring system..

95.72

Patil et al. [34]

bytecode
CNN

Uses 36 different malware types and families, with 9
malware variants from the Microsoft dataset.

92.73

Ke et al. [35]
2500 malicious apps from Android virus and 2500
benign apps collected from Xiaomi's official
application store.

98.7

Migdady et al. [36] Malming 98.0
Malani et al. [37] A total of 138047 Android applications. 98.02
Alam et al. [38] MalImg 98.9
Geremias et al. [39] over 26 thousand Android apps 98.4
Kural et al. [40] 24588 Android malware and 3000 benign applications 94
Gibert et al. [41] HWT ＆ CNN MMCC [42] 98.96
Rahul et al. [43] ANN ＆ SVM Benign 93.0

Kalash et al. [44] bytecode CNN
MalImg 98.52
MMCC 99.97

Yuan et al. [45] bytecode CNN
MMCC 99.26
4020 malwares from Drebin. 97.36

Kr cˇ ál et al. [46]
bytecode +
handcrafted
features

CNN ＆ FNN File size between 12 ~ 512kb. 97.1

Thosar et al. [47]
bytecode + API
call + mnemonic
sequence

CNN
600000 labelled samples (50% labeled as malware
and 50% benign)

93.45

Liu et al. [48]

API call sequence

Bi-LSTM 13518 malicious samples and 7860 benign samples. 97.85

Lu et al. [49]
Bi-Residual
LSTM ＆ RF

Malicious: 1430 malicious samples randomly
extracted from VirusShare and VirusTotal;
Benign: 1352 normal samples.

96.7

Huang et al. [50] TCN
More than 6900 malicious PE files collected from
CILPKU08 and Henchiri.

98.60

Tsunewaki et al. [51] LSTM Mal-API-2019 [52] 93.3
Gui et al. [53] BGSA Including 20000 samples of 5 categories. 92.54

Li et al. [54] GCN
There are 6686 malicious samples and 6938 benign
samples.

98.32

829

neural network-based, and graph neural network-based
methods, as described in this section. Related models are
listed in Table III.

A. Malware Identification based on Recurrent Neural

Network

Recurrent Neural Networks (RNN) excel at processing
serialized data and find extensive applications in natural
language processing and machine translation. In various
studies, malware is first parsed into serialized forms like
opcode and API call sequences through static or dynamic
analysis. Following this, researchers construct models for
malware recognition utilizing RNN.

Fig. 2 Transformation process of gray-scale image

For instance, Tsunewaki et al. [51] dynamically extracted
the API call sequence of software, utilized Embedding to
obtain the tensor representation, and fed it into a Long Short-
Term Memory network (LSTM) for malware family
classification. Priyanto et al. [33] disassembled and extracted
the opcode sequence, used a convolutional autoencoder to
obtain a compressed vector representation, and inputted the
vector into LSTM to calculate the malicious software's
probability. Recognizing the variations in program
implementation and execution processes among different
malware variants, many researchers employ bidirectional
RNNs to better capture dependencies from both forward and
reverse directions to identify malicious sequence patterns. Gui
et al. [53] utilized Bidirectional GRU with Self- Attention to
classify software API call sequences, achieving significantly
better results than CNN + Bidirectional LSTM. Liu et al. [48]
employed BiLSTM to model API call sequences, comparing
it with Gated Recurrent Unit (GRU), BiGRU, and LSTM,
with BiLSTM performing the best in experiments. Lu et al.
[49] selected key n-gram sequences of API calls via
Information Gain (IG), proposed a bidirectional residual
LSTM for further feature learning on the selected sequence,
and ultimately used Random Forest (RF) for malware
identification.

Despite the commendable performance of malware
identification methods based on RNN, adversaries can
obfuscate these models by introducing numerous non-critical
sequence elements. Consequently, enhancing the resilience of
the RNN recognition model against confusion caused by
sequence elements remains an ongoing research challenge.

B. Malware Identification based on Convolutional Neural

Network

Convolutional Neural Networks (CNN) have demonstrated
excellent performance in tasks involving spatial structure
relationships, such as image processing and computer vision.
Drawing inspiration from this, several studies adopt an
approach where malware is transformed into data
representations with spatial structure relationships, leveraging
CNN for malware recognition [57], [58]. Migdady et al. [36]
and Král et al. [46] proposed converting software binary files
into hexadecimal sequences and employing 1-dimensional
CNNs to construct malware recognition models. Gibert et al.
[41] segmented the hexadecimal representation of malware
into fixed-size blocks, calculated the entropy value of each
block, used Haar Wavelet Transform (HWT) to obtain
approximation and detail coefficients for the entropy
sequence, and used these as inputs for CNN to build the
recognition model. Huang et al. [50] utilized one-hot
encoding to convert software API call sequences into digital
representations, developing a malware recognition model
with the Time Series Convolutional Network (TCN). The
approach incorporated Cost-Sensitive cross-entropy loss to
enhance model performance and facilitate the identification of
malicious code fragments. Thosar et al. [47] introduced a
multi-modal fusion recognition model HYDRA, utilizing
CNN and Gradient Boosting to learn representations from
assembly mnemonic sequences, byte sequences, and API calls.
Representation fusion was achieved through a fully connected
layer, leveraging the complementarity between different
modes for enhanced performance.

Fig. 3 Transformation process of byte transfer probability matrix

Some studies convert software into visual images and use

methods and models in the field of images to build malware
recognition models. Patil et al. [34] took every 8 bits in the
software binary representation as a pixel, converted the file
into a grayscale image with a channel number of 1 (the
process is shown in Figure 2), and then used CNN for
malware identification. Ke et al. [35] considered that the DEX
file of Android software may contain a lot of noise, so only
part of its data was converted into a grayscale image, and
CNN was used for malware identification. Yuan et al. [45]
regarded the integer value represented by the byte as a state,
calculated the transition probability between states based on
the byte sequence of the software, and then constructed a
"Markov Image" (as shown in Figure 3) and input it into the

830

CNN model to identify malware. Kwan et al. [32] adopted a
similar idea, taking the product of the transition probability of
the software assembly operation code and its IG as a pixel to
construct an image and further using methods such as
histogram normalization, dilation, and erosion to enhance the
image.

In general, deep convolutional networks can learn effective
representations better than shallow network structures and
have a more vital ability to fit data. A deeper network
structure can deal with obfuscated samples more effectively
for malware identification. However, as the depth increases
and the network structure becomes more and more complex,
it will cause the problem of gradient disappearance or gradient
explosion during training so that the parameters cannot be
effectively updated [59], [60], [61]. Sridhar et al. [62]
proposed the ResNet model, which effectively alleviated the
above problems through the residual structure so that the
convolutional network structure could reach hundreds or even
thousands of layers. However, due to the larger parameters
scale, the deep convolutional network needs more data to train
well. Given the limited scale of malware family annotation
samples that can be obtained, many studies are based on
transfer learning, first teaching a deep convolutional network
model on large-scale image data and then transferring the
knowledge learned by the model to the malware recognition
task—for example, the IM CEC architecture proposed by
Vasan et al. [63] first trains the VGG16 and ResNet50 models
on the ImageNet dataset [64], and then transfer the parameters
of the two models to the malware recognition model through
transfer learning.

Fig. 4 Convolutional autoencoder

Training deep learning models on small datasets can easily

lead to overfitting problems. Aiming at the training of
malicious code models under minor sample conditions,
Asaduzzaman et al. [65] introduced the tGAN model, where
malware samples are transformed into images. Initially, a
convolutional autoencoder is trained to capture the feature
representation for each malware category (the process is
shown in Figure 4). Subsequently, the decoder from the
autoencoder is seamlessly transferred to the Generative
Adversarial Network (GAN). The generator and discriminator
components of the GAN are then employed for data
augmentation and malware identification, respectively.
Experiments show that the accuracy rate of the model is 90%
under the condition of small samples.

Malware recognition models based on visualization and
image processing technology can often achieve high accuracy.
However, existing studies generally force-transform 1-
dimensional sequences into 2-dimensional "images", so the
second-dimensional structural relationship does not naturally
exist in malware. Exploring the construction of a more
rational visual representation to effectively leverage the
strengths of the CNN model is a topic deserving further
exploration. Furthermore, while recognition models based on
architectures like VGG16 and ResNet50 can deliver favorable
classification outcomes, the associated demands on training
and inference time and the utilization of computing resources
are often substantial. This limitation hinders the widespread
application of such models.

C. Malware Identification based on Graph Neural Network

Graph Neural Networks (GNN) incorporate graph analysis
into deep learning frameworks, demonstrating proficiency in
handling relational data. Numerous scholars are
experimenting with representing software samples as graphs
and subsequently employing GNN models to classify these
graphs for effective malware identification. For example, Li
et al. [54] revealed that the API call sequence dynamically
extracted from the software sample and the Markov chain
generated by the entire sample were represented as a directed
cycle graph and a shared weight graph, respectively. The two
were fused, and then a Graph Convolutional Network (GCN)
was used for malware detection. Busch et al. [66] built a
directed graph by monitoring the network traffic when the
software was running and then used GNN to classify the
software. The nodes in the graph correspond to the IP
addresses in the network, and the edges represent the direction
of network traffic and have the number of packets sent, packet
Attributes such as the average length, the maximum and
minimum value of the packet transmission interval, etc. To
avoid the introduction of runtime overhead, Feng et al. [67]
decompiled the Android application into a Smali file,
extracted the function call relationship from it to construct a
function call graph, used the semantic information, security
level, and permissions of the function as node attributes, and
used GNN Identify malware. Overall, there is still little
research on applying GNN to malware identification, and the
graph representation and representation learning of samples
are still worthy of further discussion.

IV. CONCLUSION

Although the research on malware identification based on
machine learning has made significant progress, it still faces
some problems and challenges, some of which are listed and
analyzed in this chapter. Class imbalance poses a common
challenge in malware recognition scenarios, where the
abundance of benign samples often outweighs the availability
of malicious samples. This imbalance is particularly evident
in malware classification tasks, leading to skewed
distributions among different malware categories. In the
MMCC dataset, for instance, Lollipop and Kelihos ver3 boast
2478 and 2942 samples, respectively, whereas the Simda
category comprises a mere 42 samples. The inherent class
imbalance tends to bias machine learning methods toward
more significant categories.

831

To mitigate this issue, various approaches have been
proposed in the literature. Rahman et al. [68] introduced two
integrated learning mechanisms involving feature extraction
from large and small category samples. They advocate the
joint training of multiple weak classifiers to produce outputs
for both sample types, primarily suited for binary
classification. However, in the context of malware
identification, class imbalance is more pronounced in multi-
classification tasks. Kim et al.'s tGAN model [69] addresses
this by enhancing data across all categories through
generation, employing an integrated method for multi-
classification. Nonetheless, concerns about the stability of the
GAN model during sample generation persist. Venkata et al.
[70] applied weighted SoftMax loss to fine-tune CNN,
assigning varied loss weights based on category sample
numbers. While this approach partially alleviates the impact
of class imbalance, effectively addressing this challenge in
malware identification remains an area that warrants further
exploration.

Various anti-identification technologies are also emerging
with the continuous development of malware identification
technology based on machine learning. Malware writers can
design corresponding strategies according to the
characteristics of the machine learning model so that malware
can evade the detection of the model. Guo et al. [42] first
synthesized three view visualization applications, including
behavior view, operation view and bytecode view. We then
fuse the comprehensive semantics at different levels to profile
the maliciousness of the apps precisely based on multi-view
learning. Abdelmonem et al. [52] only change features that do
not affect malicious functionality to generate adversarial
examples that retain their malicious functionality. In addition,
supervised machine learning models are generally constructed
based on training data, and their generalization to unknown
malware is often not high. For the above two situations, it is
usually necessary to rebuild the recognition model according
to the anti-detection technology and the characteristics of new
malware and deal with it passively. Establishing an active
malware recognition model that can self-evolve based on
theories and methods such as evolutionary learning,
adversarial generation, and lifelong learning is also a direction
worthy of further exploration.

Currently, machine learning models and techniques are
extensively employed in tasks related to identifying malicious
code. This application helps address the issues of inadequate
generalization and elevated false favorable rates associated
with traditional methods relying on signatures and heuristic
rules. This paper sorts out and summarizes the research on
malware identification based on machine learning in recent
years, expounds the early recognition methods based on
feature engineering from the aspects of feature representation,
feature selection, and dimensionality reduction, and
summarizes and analyzes the recent RNN, CNN, and GNN
deep neural network feature learning class recognition
method. By studying the research status in this field, this
paper points out that in the future, problems and challenges
such as category imbalance and active recognition methods.
With the rapid development of machine learning and deep
learning technology, the performance and efficiency of
malware identification based on machine learning will be
further improved.

REFERENCES
[1] J. Acharya, A. Chuadhary, A. Chhabria, and S. Jangale, “Detecting

malware, malicious URLs and virus using machine learning and
signature matching,” in 2021 2nd International Conference for
Emerging Technology, INCET 2021, 2021.
doi:10.1109/INCET51464.2021.9456440.

[2] U. Garg, N. Sharma, M. Kumar and A. Singh, "Identification and
Detection of Behavior Based Malware using Machine Learning," 2023
International Conference on Artificial Intelligence and Smart
Communication (AISC), Greater Noida, India, 2023, pp. 915-918,
doi:10.1109/AISC56616.2023.10085168.

[3] Srastika, N. Bhandary, R. S. Shalakha, P. Honnavalli, and E.
Sivaraman, “An Enhanced Malware Detection Approach using
Machine Learning and Feature Selection,” in 3rd International
Conference on Electronics and Sustainable Communication Systems,
ICESC 2022 - Proceedings, 2022.
doi:10.1109/ICESC54411.2022.9885509.

[4] Q. Qiao, R. Feng, S. Chen, F. Zhang, and X. Li, “Multi-label
Classification for Android Malware Based on Active Learning,” IEEE
Trans Dependable Secure Comput, 2022,
doi:10.1109/TDSC.2022.3213689.

[5] T. Lu and J. Wang, “DOMR: Toward Deep Open-World Malware
Recognition,” IEEE Transactions on Information Forensics and
Security, vol. 19, 2024, doi: 10.1109/TIFS.2023.3338469.

[6] M. A. Halim, A. Abdullah, and K. A. Z. Ariffin, “Recurrent neural
network for malware detection,” International Journal of Advances in
Soft Computing and its Applications, vol. 11, no. 1, 2019.

[7] P. Borana, V. Sihag, G. Choudhary, M. Vardhan, and P. Singh, “An
assistive tool for fileless malware detection,” in World Automation
Congress Proceedings, 2021.
doi:10.23919/WAC50355.2021.9559449.

[8] G. Popoiu, “One side class SVM training methods for malware
detection,” in Proceedings - 2022 24th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing,
SYNASC 2022, 2022. doi: 10.1109/SYNASC57785.2022.00065.

[9] M. Z. Shafiq, S. M. Tabish, F. Mirza, and M. Farooq, “PE-miner:
Mining structural information to detect malicious executables in
realtime,” in Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2009. doi: 10.1007/978-3-642-04342-0_7.

[10] S. Tyagi, A. Baghela, K. M. Dar, A. Patel, S. Kothari, and S. Bhosale,
“Malware Detection in PE files using Machine Learning,” in 2022
OPJU International Technology Conference on Emerging
Technologies for Sustainable Development, OTCON 2022, 2023.
doi:10.1109/OTCON56053.2023.10113998.

[11] S. Gulmez and I. Sogukpinar, “Graph-Based Malware Detection Using
Opcode Sequences,” in 9th International Symposium on Digital
Forensics and Security, ISDFS 2021, 2021.
doi:10.1109/ISDFS52919.2021.9486386.

[12] N. McLaughlin and J. M. Del Rincon, “Data Augmentation for Opcode
Sequence Based Malware Detection,” in 2022 Cyber Research
Conference - Ireland, Cyber-RCI 2022, 2022. doi: 10.1109/Cyber-
RCI55324.2022.10032676.

[13] X. D. Hoang, B. C. Nguyen and T. T. Trang Ninh, "Detecting Malware
Based on Statistics and Machine Learning Using Opcode N-Grams,"
2023 RIVF International Conference on Computing and
Communication Technologies (RIVF), Hanoi, Vietnam, 2023, pp.
118-123, doi: 10.1109/RIVF60135.2023.10471824.

[14] Y. H.-q. SHAO Shu-di, F. Gui-sheng, Detecting malware by
combining api and permission features, Computer Science 44 (4)
(2017) 135. doi:10.11896/j.issn.1002-137X.2017.04.029.

[15] M. Alazab, M. Alazab, A. Shalaginov, A. Mesleh, and A. Awajan,
“Intelligent mobile malware detection using permission requests and
API calls,” Future Generation Computer Systems, vol. 107, 2020,
doi:10.1016/j.future.2020.02.002.

[16] W. Huang and J. W. Stokes, “MtNet: A multi-task neural network for
dynamic malware classification,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 2016. doi: 10.1007/978-3-319-
40667-1_20.

[17] H. Y. Yang and J. Xu, “Android malware detection based on improved
random forest,” Tongxin Xuebao/Journal on Communications, vol. 38,
no. 4, 2017, doi: 10.11959/j.issn.1000-436x.2017073.

[18] M. A. Khalifa, A. Elsayed, A. Hussien and A. S. Hussainy, "Android
Malware Detection and Prevention Based on Deep Learning and
Tweets Analysis," 2024 6th International Conference on Computing

832

and Informatics (ICCI), New Cairo - Cairo, Egypt, 2024, pp. 153-157,
doi: 10.1109/ICCI61671.2024.10485022.

[19] S. Amenova, C. Turan, and D. Zharkynbek, “Android Malware
Classification by CNN-LSTM,” in SIST 2022 - 2022 International
Conference on Smart Information Systems and Technologies,
Proceedings, 2022. doi: 10.1109/SIST54437.2022.9945816.

[20] B. Purnama, D. Stiawan, D. Hanapi, E. A. Winanto, R. Budiarto, and
M. Y. Bin Idris, “N-gram Effect in Malware Detection Using
Multilayer Perceptron (MLP),” in International Conference on
Electrical Engineering, Computer Science and Informatics (EECSI),
2021. doi: 10.23919/EECSI53397.2021.9624273.

[21] X. Su, W. Shi, X. Qu, Y. Zheng, and X. Liu, “DroidDeep: using Deep
Belief Network to characterize and detect android malware,” Soft
comput, vol. 24, no. 8, 2020, doi: 10.1007/s00500-019-04589-w.

[22] S. Khalid and F. B. Hussain, “Evaluating Dynamic Analysis Features
for Android Malware Categorization,” in 2022 International Wireless
Communications and Mobile Computing, IWCMC 2022, 2022.
doi:10.1109/IWCMC55113.2022.9824225.

[23] B. Balodi, S. Sharma, A. K. Shukla, and B. Singh, “Automated Static
Malware Analysis Using Machine Learning,” in Proceedings of the
10th International Conference on Signal Processing and Integrated
Networks, SPIN 2023, 2023. doi:10.1109/SPIN57001.2023.10116580.

[24] Z. Wu, J. Zhang, and L. Kou, “A Model for Malware Detection Method
based on API call Sequence Clustering,” in Proceedings - 2022 9th
International Conference on Dependable Systems and Their
Applications, DSA 2022, 2022. doi: 10.1109/DSA56465.2022.00157.

[25] M. Elalem and T. Jabir, “Malware Analysis in Cyber Security based
on Deep Learning; Recognition and Classification,” in Proceeding -
2023 IEEE 3rd International Maghreb Meeting of the Conference on
Sciences and Techniques of Automatic Control and Computer
Engineering, MI-STA 2023, 2023. doi: 10.1109/MI-
STA57575.2023.10169310.

[26] P. Singh, S. K. Borgohain, and J. Kumar, “Performance Enhancement
of SVM-based ML Malware Detection Model Using Data
Preprocessing,” in 2022 2nd International Conference on Emerging
Frontiers in Electrical and Electronic Technologies, ICEFEET 2022,
2022. doi: 10.1109/ICEFEET51821.2022.9848192.

[27] D. Albashish, R. Al-Sayyed, A. Abdullah, M. H. Ryalat, and N. Ahmad
Almansour, “Deep CNN Model based on VGG16 for Breast Cancer
Classification,” in 2021 International Conference on Information
Technology, ICIT 2021 - Proceedings, 2021.
doi:10.1109/ICIT52682.2021.9491631.

[28] M. I. Pavel, S. Y. Tan, and A. Abdullah, “Vision-Based Autonomous
Vehicle Systems Based on Deep Learning: A Systematic Literature
Review,” Applied Sciences (Switzerland), vol. 12, no. 14. 2022.
doi:10.3390/app12146831.

[29] J. GrasleyJ. Grasley and A. D. Alahmar, “Systematic Mapping of
Machine Learning-Based Malware Detection Studies,” in International
Conference on Electrical, Computer, and Energy Technologies,
ICECET 2022, 2022. doi: 10.1109/ICECET55527.2022.9872937.

[30] A. F. Rasheed, M. Zarkoosh, and S. S. Al-Azzawi, “The Impact of
Feature Selection on Malware Classification Using Chi-Square and
Machine Learning,” in Proceedings of the 9th International
Conference on Computer and Communication Engineering, ICCCE
2023, 2023. doi: 10.1109/ICCCE58854.2023.10246084.

[31] R. Kalakoti, S. Nomm, and H. Bahsi, “In-Depth Feature Selection for
the Statistical Machine Learning-Based Botnet Detection in IoT
Networks,” IEEE Access, vol. 10, 2022,
doi:10.1109/access.2022.3204001.

[32] L. M. Kwan, “Markov Image with Transfer Learning for Malware
Detection and Classification,” in IEEE Region 10 Annual International
Conference, Proceedings/TENCON, 2022.
doi:10.1109/tencon55691.2022.9977916.

[33] C. Y. Priyanto, Hendry, and H. D. Purnomo, “Combination of Isolation
Forest and LSTM Autoencoder for Anomaly Detection,” in 2021 2nd
International Conference on Innovative and Creative Information
Technology, ICITech 2021, 2021.
doi:10.1109/ICITech50181.2021.9590143.

[34] V. Patil, S. Shetty, A. Tawte, and S. Wathare, “Deep Learning and
Binary Representational Image Approach for Malware Detection,” in
2023 International Conference on Power, Instrumentation, Control and
Computing, PICC 2023, 2023.
doi:10.1109/PICC57976.2023.10142644.

[35] X. Ke and Y. X. Hui, “Android Malware Detection Based on Image
Analysis,” in Proceedings of 2021 IEEE 2nd International Conference
on Information Technology, Big Data and Artificial Intelligence,
ICIBA 2021, 2021. doi: 10.1109/ICIBA52610.2021.9688179.

[36] A. Migdady, L. Smadi, and Q. Yaseen, “A CNN and Image-Based
Approach for Malware Analysis,” in 2022 International Conference on
Emerging Trends in Computing and Engineering Applications,
ETCEA 2022 - Proceedings, 2022.
doi:10.1109/ETCEA57049.2022.10009748.

[37] H. Malani, A. Bhat, S. Palriwala, J. Aditya, and A. Chaturvedi, “A
Unique Approach to Malware Detection Using Deep Convolutional
Neural Networks,” in Proceedings, International Conference on
Electrical, Control and Instrumentation Engineering, ICECIE, 2022.
doi: 10.1109/ICECIE55199.2022.10000344.

[38] M. Alam, A. Akram, T. Saeed, and S. Arshad, “DeepMalware: A Deep
Learning based Malware Images Classification,” in 2021 International
Conference on Cyber Warfare and Security, ICCWS 2021 -
Proceedings, 2021. doi: 10.1109/ICCWS53234.2021.9703021.

[39] J. Geremias, E. K. Viegas, A. O. Santin, A. Britto, and P. Horchulhack,
“Towards a Reliable Hierarchical Android Malware Detection
Through Image-based CNN,” in Proceedings - IEEE Consumer
Communications and Networking Conference, CCNC, 2023.
doi:10.1109/CCNC51644.2023.10060381.

[40] O. E. Kural, D. Ö. Şahin, S. Akleylek, E. Kiliç, and M. Ömüral,
“Apk2Img4AndMal: Android Malware Detection Framework Based
on Convolutional Neura Network,” in Proceedings - 6th International
Conference on Computer Science and Engineering, UBMK 2021,
2021. doi: 10.1109/UBMK52708.2021.9558983.

[41] D. Gibert, C. Mateu, J. Planes, and R. Vicens, “Classification of
malware by using structural entropy on convolutional neural networks,”
in Proceedings of the 30th Innovative Applications of Artificial
Intelligence Conference, IAAI 2018, 2018.
doi:10.1609/aaai.v32i1.11409.

[42] J. Guo, Z. Meng, Q. Zhang, Y. Xiong, and W. Huang, “MVVDroid:
Android Malware Detection based on Multi-View Visualization,” in
Proceedings - 2023 9th International Conference on Big Data
Computing and Communications, BigCom 2023, 2023.
doi:10.1109/bigcom61073.2023.00021.

[43] R. Rahul and L. Kumble, “Investigation of Malware & Threat Analysis
on APKs Using SVM & ANN Algorithm. -A New Approach,” in 2023
International Conference on Recent Advances in Information
Technology for Sustainable Development, ICRAIS 2023 -
Proceedings, 2023. doi: 10.1109/ICRAIS59684.2023.10367124.

[44] M. Kalash, M. Rochan, N. Mohammed, N. D. B. Bruce, Y. Wang, and
F. Iqbal, “Malware Classification with Deep Convolutional Neural
Networks,” in 2018 9th IFIP International Conference on New
Technologies, Mobility and Security, NTMS 2018 - Proceedings, 2018.
doi: 10.1109/NTMS.2018.8328749.

[45] B. Yuan, J. Wang, D. Liu, W. Guo, P. Wu, and X. Bao, “Byte-level
malware classification based on markov images and deep learning,”
Comput Secur, vol. 92, 2020, doi: 10.1016/j.cose.2020.101740.

[46] M. Krčál, O. Švec, O. Jašek, and M. Bálek, “Deep convolutional
malware classifiers can learn from raw executables and labels only,”
in 6th International Conference on Learning Representations, ICLR
2018 - Workshop Track Proceedings, 2018.

[47] K. Thosar, P. Tiwari, R. Jyothula, and D. Ambawade, “Effective
Malware Detection using Gradient Boosting and Convolutional Neural
Network,” in 2021 IEEE Bombay Section Signature Conference,
IBSSC 2021, 2021. doi: 10.1109/IBSSC53889.2021.9673266.

[48] Y. Liu and Y. Wang, “A robust malware detection system using deep
learning on API calls,” in Proceedings of 2019 IEEE 3rd Information
Technology, Networking, Electronic and Automation Control
Conference, ITNEC 2019, 2019. doi: 10.1109/ITNEC.2019.8728992.

[49] L. Xiaofeng, J. Fangshuo, Z. Xiao, Y. Shengwei, S. Jing, and P. Lio,
“ASSCA: API sequence and statistics features combined architecture
for malware detection,” Computer Networks, vol. 157, 2019,
doi:10.1016/j.comnet.2019.04.007.

[50] J. Huang, C. Lu, G. Ping, L. Sun, and X. Ye, “TCN-ATT: A Non-
recurrent Model for Sequence-Based Malware Detection,” in Lecture
Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 2020.
doi:10.1007/978-3-030-47436-2_14.

[51] K. Tsunewaki, T. Kimura, and J. Cheng, “LSTM-Based Ransomware
Detection Using API Call Information,” in Proceedings - 2022 IEEE
International Conference on Consumer Electronics - Taiwan, ICCE-
Taiwan 2022, 2022. doi: 10.1109/ICCE-Taiwan55306.2022.9869122.

[52] S. Abdelmonem, S. Seddik, R. El-Sayed, and A. S. Kaseb, “Enhancing
Image-Based Malware Classification Using Semi-Supervised
Learning,” in NILES 2021 - 3rd Novel Intelligent and Leading
Emerging Sciences Conference, Proceedings, 2021.
doi:10.1109/NILES53778.2021.9600511.

833

[53] H. Gui, F. Liu, C. Zhang, and K. Tang, “A Malware Classification
Method based on Attentive Bidirectional Model,” in 2022 7th
International Conference on Intelligent Computing and Signal
Processing, ICSP 2022, 2022. doi: 10.1109/ICSP54964.2022.9778322.

[54] S. Li, Q. Zhou, R. Zhou, and Q. Lv, “Intelligent malware detection
based on graph convolutional network,” Journal of Supercomputing,
vol. 78, no. 3, 2022, doi: 10.1007/s11227-021-04020-y.

[55] L. Zhang, J. Yin, J. Ning, Y. Wang, B. Adebisi, and J. Yang, “A Novel
Unsupervised Malware Detection Method based on Adversarial Auto-
encoder and Deep Clustering,” in Proceedings - 2022 9th International
Conference on Dependable Systems and Their Applications, DSA
2022, 2022. doi: 10.1109/DSA56465.2022.00038.

[56] X. Chen, “Power System Malware Detection Based on Deep Belief
Network Classifier,” in 2022 6th International Conference on Green
Energy and Applications, ICGEA 2022, 2022.
doi:10.1109/icgea54406.2022.9792083.

[57] I. S. Srinu and D. Vidyarthi, "Classification of Malware Using Deep
Learning: A Study," 2023 IEEE International Carnahan Conference on
Security Technology (ICCST), Pune, India, 2023,
doi:10.1109/iccst59048.2023.10474230.

[58] A. Abdullah, R. C. Veltkamp, and M. A. Wiering, “Spatial pyramids
and two-layer stacking SVM classifiers for image categorization: A
comparative study,” in Proceedings of the International Joint
Conference on Neural Networks, 2009.
doi:10.1109/ijcnn.2009.5178743.

[59] U. Garg, S. S. Rana, D. S. Bisht, R. Rautela, and A. Garg, “A
Comparative Analysis of IoT Malware Detection Using CNN and
Deep Learning,” in Proceedings - International Conference on
Technological Advancements in Computational Sciences, ICTACS
2023, 2023. doi: 10.1109/ICTACS59847.2023.10389976.

[60] L. Alsharafi, M. Asiri, S. Azzony, and A. Alqahtani, “Malware
Detection Based on Deep Learning,” in 2023 3rd International
Conference on Computing and Information Technology, ICCIT 2023,
2023. doi: 10.1109/ICCIT58132.2023.10273961.

[61] K. L. Lam, A. Abdullah, and D. Albashish, “Ensemble of Fully
Convolutional Neural Networks with End-to-End Learning for Small
Object Semantic Segmentation,” in Lecture Notes in Networks and
Systems, 2023. doi: 10.1007/978-3-031-26889-2_12.

[62] S. Sridhar, R. Seetharaman, and S. Sanagavarapu, “Intelligent Vision-
based Malware Classification using Quantised ResNets,” in 2021

IEEE 12th Annual Information Technology, Electronics and Mobile
Communication Conference, IEMCON 2021, 2021.
doi:10.1109/iemcon53756.2021.9623219.

[63] D. Vasan, M. Alazab, S. Wassan, B. Safaei, and Q. Zheng, “Image-
Based malware classification using ensemble of CNN architectures
(IMCEC),” Comput Secur, vol. 92, 2020,
doi:10.1016/j.cose.2020.101748.

[64] T. Deng, “A Survey of Convolutional Neural Networks for Image
Classification: Models and Datasets,” in Proceedings - 2022
International Conference on Big Data, Information and Computer
Network, BDICN 2022, 2022. doi: 10.1109/BDICN55575.2022.00145.

[65] MM. Asaduzzaman and M. M. Rahman, “An Adversarial Approach
for Intrusion Detection Using Hybrid Deep Learning Model,” in 2022
International Conference on Information Technology Research and
Innovation, ICITRI 2022, 2022.
doi:10.1109/icitri56423.2022.9970221.

[66] J. Busch, A. Kocheturov, V. Tresp, and T. Seidl, “NF-GNN: Network
Flow Graph Neural Networks for Malware Detection and
Classification,” in ACM International Conference Proceeding Series,
2021. doi: 10.1145/3468791.3468814.

[67] P. Feng, J. Ma, T. Li, X. Ma, N. Xi, and D. Lu, “Android Malware
Detection via Graph Representation Learning,” Mobile Information
Systems, vol. 2021, 2021, doi: 10.1155/2021/5538841.

[68] M. M. Rahman et al., “CNN vs Transformer Variants: Malware
Classification Using Binary Malware Images,” in Proceeding -
COMNETSAT 2023: IEEE International Conference on
Communication, Networks and Satellite, 2023.
doi:10.1109/comnetsat59769.2023.10420585.

[69] J. Y. Kim, S. J. Bu, and S. B. Cho, “Malware detection using deep
transferred generative adversarial networks,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2017.
doi:10.1007/978-3-319-70087-8_58.

[70] E. Venkata Pawan Kalyan, A. Purushottam Adarsh, S. Sai Likith
Reddy, and P. Renjith, “Detection of Malware Using CNN,” in 2022
2nd International Conference on Computer Science, Engineering and
Applications, ICCSEA 2022, 2022.
doi:10.1109/ICCSEA54677.2022.9936225.

834

