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Abstract— With the continuous development of technology, the types of malware and their variants continue to increase, which has 

become an enormous challenge to network security. These malware use a variety of technical means to deceive or evade traditional 

detection methods, making traditional signature-based rule-based malware identification methods no longer applicable. Many machine 

algorithms have attracted widespread academic attention as powerful malware detection and classification methods in recent years. 

After an in-depth study of rich literature and a comprehensive survey of the latest scientific research results, feature extraction is used 

as the basis for classification. By extracting meaningful features from malware samples, such as behavioral patterns, code structures, 

and file attributes, researchers can discern unique characteristics that distinguish malicious software from benign ones. This process is 

the foundation for developing effective detection models and understanding the underlying mechanisms of malware behavior. We divide 

feature engineering and learning-based methods into two categories for investigation. Feature engineering involves selecting and 

extracting relevant features from raw data, while learning-based methods leverage machine learning algorithms to analyze and classify 

malware based on these features. Supervised, unsupervised, and deep learning techniques have shown promise in accurately detecting 

and classifying malware, even in the face of evolving threats. On this basis, we further look into the current problems and challenges 

malware identification research faces. 
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I. INTRODUCTION

Malicious software runs on a user's computer or other 
terminal. It uses operating system or application loopholes to 
infringe on the user's legitimate rights and interests without 
their knowledge or approval. According to different 
characteristics and hazards, malware can be divided into 
adware, ransomware, backdoor, Trojan horse, and other 
categories at present, as shown in Table I. Malware poses 
serious safety threats to network users, businesses, industrial 
facilities, and web and information tools, and the number of 
new malwares has been increasing in recent years.  

The continuous surge in malware threats has fueled 
extensive research in academia and industry, focusing on 
detecting and classifying malware families. Initially, 
signature matching dominated the industry's approach to 
malware identification [1], [2], [3], boasting high accuracy for 
known malware but falling short against unknown threats. 
Subsequently, heuristic-based methods emerged, defining 
static or dynamic rules to identify malware based on its 

characteristics [4], [5], [6]. While capable of detecting some 
unknown malicious codes, these methods suffer from a high 
false alarm rate. As malicious software evolved with 
advanced concealment techniques, traditional identification 
methods faced diminishing effectiveness. 

TABLE I 
MALWARE TYPE 

Malware 

type 
Behavior 

Adware Create revenue for developers by increasing the 
exposure of commercial advertisements or 
collecting user information without user 
authorization. 

Ransom
ware 

Encryption or file locking within the system limits 
user access privileges, compelling the target to pay 
a ransom to remove these restrictions. 

Back 
door 

They bypass the system's safety protection 
mechanism and install it on the system, which is 
convenient for attackers to access. 

Trojan 
horse 

A camouflaged virus with automatic renaming, self-
hiding, and self-replicating. It tends to be a 
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Malware 

type 
Behavior 

legitimate program to entice users to install or 
embed backdoor functions, allowing attackers to 
bypass security programs to enter the system, collect 
necessary information, and control it. 

Spyware Conducting covert espionage actions without the 
user's consent to gather confidential user 
information. 

Virus Exploit vulnerabilities within the operating system 
to harm the user system's functions and data, 
rendering it inoperable and propagating throughout 
the device. 

Worm Similar to a virus, it can cause huge damage to the 
system, but it can self-replicate and spread through 
the network. 

Rootkits The driver-level malicious program loaded into the 
system grain can hide the processes of other agendas 
and retain root privileges. Typically, it is employed 
with malware like Trojan horses and backdoors to 
obscure any traces of malicious activity. 

Downloa
der 

Various other types of malicious software are 
automatically installed without user permission. 

Fileless 
malware 
[7] 

It is highly concealable, achieves stealth by staying 
in memory for a long time, and prolongs the 
discovery time as much as possible. 

 
Machine learning-based malware identification has gained 

prominence in recent years, as depicted in Figure 1. Crucial to 
these algorithms is a robust feature representation. Early 
machine learning technologies relied on artificial feature 
engineering, where feature representations were manually 
extracted, and models like Support Vector Machine (SVM) 
and Random Forest (RF) were trained for malware detection 
(upper part of Figure 1). However, the high cost of feature 
engineering and the growing complexity of malicious code 
functions posed significant challenges. 

Deep learning technology ushered in a new era for malware 
identification, leveraging models such as recurrent neural 
networks and convolutional neural networks (lower part of 
Figure 1). Deep learning models automatically learn 
discriminative feature representations, enabling end-to-end 
malware detection. 

This article provides a comprehensive review of malware 
detection and classification and briefly describes malware 
identification through feature engineering, including static 
feature analysis and dynamic feature analysis. Malware 
identification based on feature learning is introduced, mainly 
from three perspectives: Recurrent Neural Networks, 
Convolutional Neural Networks, and Graph Neural Networks. 
The objective is to offer readers a comprehensive 
understanding of machine learning-based malware 
identification and its key advancements, serving as a technical 
reference to propel further development in the field. 

II. MATERIALS AND METHOD 

Malware identification based on feature engineering 
extracts meaningful features from samples to represent them 
through artificially designed processing flow and then uses a 
machine learning model to identify malware. This section 
summarizes the existing research work from the malware 
feature representation. The related work is listed in Table II. 

A. Static feature analysis 

Static feature analysis refers to extracting features without 
running the software, achieved by analyzing the content of 
files contained within the software. For malicious software 
targeting the Windows platform, numerous studies extract 
static feature representations from Portable Executable (PE) 
files such as EXE and DLL. Popoiu [8] utilized API and other 
strings reflective of attacker intent and objectives from PE 
files as features, constructing a malicious software 
recognition model based on a Support Vector Machine (SVM). 

 

 
Fig. 1  Malware identification procedure 

 

Shafiq et al. [9] extracted information from PE file headers, 
section tables, and sections, including dynamic link library 

references, symbol counts, linker versions, and import/export 
table sizes, as features. They built malicious software 
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recognition models using J48, Naive Bayes (NB), and other 
algorithms. 

Some research focuses on extracting serialized static 
feature representations from PE files, using the frequency of 
n-grams as features. For instance, Tyagi et al. [10] selected 
the most frequent binary byte n-grams from PE files as 
features. Gülmez et al. [11] and McLaughlin et al. [12] used 
n-grams of assembly opcode sequences from PE files as 
features. Hoang et al. [13] compared the effectiveness of 
binary byte n-grams and assembly opcode n-grams in PE files, 
with experimental results indicating that opcode sequence n-
grams are more effective. 

The sequence above feature-based methods do not consider 
the actual control flow during program execution, i.e., the 
fundamental behavior of the software at runtime. Addressing 
this issue, McLaughlin et al. [12] transformed PE assembly 
files into execution trees, employing a tree traversal algorithm 
to generate opcode n-grams that encapsulate all conceivable 
execution paths. 

For Android platform malware, Shao et al. [14] extracted 
permissions and API features from Android software manifest 
files and DEX disassembly files. They employed SVM and k-
NN to build malware recognition models. Alazab et al. [15] 
further categorized API calls into fuzzy, risky, and destructive 
calls, evaluating the effectiveness of these features. 

TABLE II 
REVIEW OF MALWARE RECOGNITION RESEARCH BASED ON FEATURE ENGINEERING 

 

Experiments indicated that the combination of destructive 
calls and risky calls yielded the best results. Yang et al. [17] 
extracted permission and intent features from the manifest file, 
proposing an improved random forest algorithm for malware 
identification. Amenova et al. [19] extracted six features: lock 
screen, encryption, permission, threat text, payment method, 
and network communication. They utilized the CNN-LSTM 
algorithm to detect ransomware. 

B. Analysis of dynamic characteristics 

Dynamic feature analysis [22] extracts behavioral 
characteristics of malware at runtime by executing malware 
in a virtual machine or sandbox and monitoring its real-time 
behavior. For Windows platform malware, Huang et al. [16] 
utilized API calls, <API calls, parameters> combinations, and 
tri-grams of API call sequences as features. They trained a 
multi-task feedforward neural network for identifying 
malicious software. Balodi et al. [23] conducted a 
comprehensive feature extraction process, encompassing 
metrics such as the tally of accessed/deleted/modified files, 
registry keys, IP addresses, DNS queries, runtime API calls, 

and accessed links. This extensive feature set served as the 
foundation for constructing a sophisticated malware 
recognition model. However, some malware can detect 
sandbox environments and conceal their malicious behavior, 
leading to recognition model failures. 

On the Android platform, Wu et al. [24] proposed a 
recognition model based on API clustering using the number 
of system API calls during runtime. Elalem et al. [25] 
designed 88 features capturing information in various aspects 
like runtime power, memory, network, touch screen, and 
keyboard. They used different classifiers, with J48 and NB 
performing better in experiments. Purnama et al. [20] 
integrated dynamic features such as API calls and 
actions/events with static features like permissions at runtime. 
They used a multi-layer perceptron (MLP) to build a 
recognition model. Singh et al. [26] enhanced the 
performance of the SVM-ML model through four different 
data preprocessing, transformation, outlier identification, 
filling and smoothing. Dynamic analysis can better identify 
malware's abnormal behavior compared to static analysis. 

Literature Operation object Method Data set Accuracy (% ) 

Huang et al. [16] API calls and their 
parameters 

FNN 2.85 million malicious files and 3.65 million 
benign files provided by Microsoft analysts. 

99.64 

Shao et al. [14] API calls + permissions SVM ＆ k-NN 100 malware and 500 normal software. 90.0 
Yang et al. [17] Permission + Intent RF 1260 malicious software was obtained from 

the Android Malware [18], and 674 benign 
software was downloaded from Google's 
official and domestic third-party application 
markets. 

98.1 

Amenova et al. [19] encryption + permissions,  CNN-LSTM It covers more than 17,341 Android samples 94.0 
Alazab et al. [15] API calls + permissions RF 13,719 malicious applications from 

AndroZoo, Contagio, MalShare, VirusShare, 
and VirusTotal. 

94.3 

Purnama et al. [20] API calls + n-gram  MLP 245 malware and 245 benign samples were 
obtained from VX Heaven for internal 
review. 

98.5 

Su et al. [21] Component + Permission 
+ Intent etc. 

DBN ＆ SVM 3986 Android malicious applications, 3986 
Android benign applications, and 1515 
unknown Android applications. 

97.5 

Gülmez et al. [11] opcode sequence SVM 17,000 malicious programs were downloaded 
from the VxHeaven website, and 1,000 
legitimate executable files were collected 
from computers. 

98.0  

McLaughlin et al. 
[12] 

opcode sequence DBN ＆ SVM / 
k- NN / DT 

2550 malicious files, 2550 benign files, and 
4000 unlabeled samples. 

96.8 
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However, the feature extraction process is time-consuming, 
making it less suitable for time-sensitive detection tasks. 

C. Feature Selection and Dimensionality Reduction 

To prevent the overfitting problem caused by high-
dimensional features, many studies further perform feature 
selection or dimensionality reduction on the initial features. 
Among them, commonly used feature selection methods 
include information gain [27], [28] (IG), mutual information 
[14], etc. Commonly used feature dimensionality reduction 
methods include principal component analysis [9] (PCA), 
random mapping [29] etc. Huang et al. [16] successively used 

mutual information and random mapping to map the feature 
space from millions to thousands of dimensions. Shafiq et al. 
[9] used three different methods of redundant feature removal 
(RFR), PCA, and Haar wavelet transform (HWT) to reduce 
the dimensionality of the extracted features. Yang et al. [17] 
used the IG and ReliefF algorithms to select the extracted 
features, respectively. Experiments showed that the IG 
algorithm was more stable than the ReliefF as the number of 
features increased. Elalem et al. [25] compared Chi-square 
test [30], Fisher score [31] and IG three feature selection 
methods, and the experiments showed that none had an 
absolute advantage in all experimental settings.  

 

TABLE III 
OVERVIEW OF MALWARE RECOGNITION RESEARCH USING FEATURE LEARNING 

 

Some studies use Auto Encoder to achieve feature 
dimensionality reduction [55], but it is challenging to train 
encoders for tens of thousands of dimensional features. To 
solve this problem, the deep belief network (DBN) proposed 
by Chen et al. [56] can achieve a good dimensionality 
reduction effect through layer-by-layer pre-training and 
parameter fine-tuning. Su et al. [21] performed 0/1 encoding 
on features such as components, intents, and request 
permissions extracted from Android software, and used DBN 
for dimensionality reduction. After dimensionality reduction, 
the recognition accuracy rate reached 97.5%. McLaughlin et 

al. [12] extracted PE file opcode n-grams and used DBN for 
dimensionality reduction, improving performance. 

III. RESULT AND DISCUSSION 

With the breakthrough of deep learning technology, 
malware identification using deep neural networks has 
become a new research trend. Since deep neural networks can 
learn discriminative features automatically, this paper 
presents this type of research as recognition methods based on 
feature learning. Different sample representation methods can 
be divided into recurrent neural network-based, convolutional 

Literature Operation object Method Data set Accuracy (% ) 

Kwan et al. [32] 
opcode sequence 

CNN Including 10868 samples of  9 categories. 98.7 

Priyanto et al. [33] 
Isolation Forest 
＆ LSTM 

The data was collected from 2019 to 2020 from raw 
data from the land monitoring system.. 

95.72 

Patil et al. [34] 

bytecode 
CNN 

Uses 36 different malware types and families, with 9 
malware variants from the Microsoft dataset. 

92.73 

Ke et al. [35] 
2500 malicious apps from Android virus  and 2500 
benign apps collected from Xiaomi's official 
application store. 

98.7 

Migdady et al. [36] Malming 98.0 
Malani et al. [37] A total of 138047 Android applications. 98.02 
Alam et al. [38] MalImg  98.9 
Geremias et al. [39] over 26 thousand Android apps 98.4 
Kural et al. [40] 24588 Android malware and 3000 benign applications 94 
Gibert et al. [41] HWT ＆ CNN MMCC [42] 98.96 
Rahul et al. [43] ANN ＆ SVM Benign 93.0 

Kalash et al. [44] bytecode CNN 
MalImg 98.52 
MMCC 99.97 

Yuan et al. [45] bytecode CNN 
MMCC 99.26 
4020 malwares from Drebin. 97.36 

Kr cˇ ál et al. [46] 
bytecode + 
handcrafted 
features 

CNN ＆ FNN File size between 12 ~ 512kb. 97.1 

Thosar et al. [47] 
bytecode + API 
call + mnemonic 
sequence 

CNN 
600000 labelled samples (50% labeled as malware 
and 50% benign) 

93.45 

Liu et al. [48] 

API call sequence 

Bi-LSTM 13518 malicious samples and 7860 benign samples. 97.85 

Lu et al. [49] 
Bi-Residual 
LSTM ＆ RF 

Malicious: 1430 malicious samples randomly 
extracted from VirusShare and VirusTotal; 
Benign: 1352 normal samples. 

96.7 

Huang et al. [50] TCN 
More than 6900 malicious PE files collected from 
CILPKU08 and Henchiri. 

98.60 

Tsunewaki et al. [51] LSTM Mal-API-2019 [52] 93.3 
Gui et al. [53] BGSA Including 20000 samples of 5 categories. 92.54 

Li et al. [54] GCN 
There are 6686 malicious samples and 6938 benign 
samples. 

98.32 
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neural network-based, and graph neural network-based 
methods, as described in this section. Related models are 
listed in Table III. 

A. Malware Identification based on Recurrent Neural 

Network 

Recurrent Neural Networks (RNN) excel at processing 
serialized data and find extensive applications in natural 
language processing and machine translation. In various 
studies, malware is first parsed into serialized forms like 
opcode and API call sequences through static or dynamic 
analysis. Following this, researchers construct models for 
malware recognition utilizing RNN. 

 
Fig. 2  Transformation process of gray-scale image 

 

For instance, Tsunewaki et al. [51] dynamically extracted 
the API call sequence of software, utilized Embedding to 
obtain the tensor representation, and fed it into a Long Short-
Term Memory network (LSTM) for malware family 
classification. Priyanto et al. [33] disassembled and extracted 
the opcode sequence, used a convolutional autoencoder to 
obtain a compressed vector representation, and inputted the 
vector into LSTM to calculate the malicious software's 
probability. Recognizing the variations in program 
implementation and execution processes among different 
malware variants, many researchers employ bidirectional 
RNNs to better capture dependencies from both forward and 
reverse directions to identify malicious sequence patterns. Gui 
et al. [53] utilized Bidirectional GRU with Self- Attention to 
classify software API call sequences, achieving significantly 
better results than CNN + Bidirectional LSTM. Liu et al. [48] 
employed BiLSTM to model API call sequences, comparing 
it with Gated Recurrent Unit (GRU), BiGRU, and LSTM, 
with BiLSTM performing the best in experiments. Lu et al. 
[49] selected key n-gram sequences of API calls via 
Information Gain (IG), proposed a bidirectional residual 
LSTM for further feature learning on the selected sequence, 
and ultimately used Random Forest (RF) for malware 
identification. 

Despite the commendable performance of malware 
identification methods based on RNN, adversaries can 
obfuscate these models by introducing numerous non-critical 
sequence elements. Consequently, enhancing the resilience of 
the RNN recognition model against confusion caused by 
sequence elements remains an ongoing research challenge. 

 

B. Malware Identification based on Convolutional Neural 

Network 

Convolutional Neural Networks (CNN) have demonstrated 
excellent performance in tasks involving spatial structure 
relationships, such as image processing and computer vision. 
Drawing inspiration from this, several studies adopt an 
approach where malware is transformed into data 
representations with spatial structure relationships, leveraging 
CNN for malware recognition [57], [58]. Migdady et al. [36] 
and Král et al. [46] proposed converting software binary files 
into hexadecimal sequences and employing 1-dimensional 
CNNs to construct malware recognition models. Gibert et al. 
[41] segmented the hexadecimal representation of malware 
into fixed-size blocks, calculated the entropy value of each 
block, used Haar Wavelet Transform (HWT) to obtain 
approximation and detail coefficients for the entropy 
sequence, and used these as inputs for CNN to build the 
recognition model. Huang et al. [50] utilized one-hot 
encoding to convert software API call sequences into digital 
representations, developing a malware recognition model 
with the Time Series Convolutional Network (TCN). The 
approach incorporated Cost-Sensitive cross-entropy loss to 
enhance model performance and facilitate the identification of 
malicious code fragments. Thosar et al. [47] introduced a 
multi-modal fusion recognition model HYDRA, utilizing 
CNN and Gradient Boosting to learn representations from 
assembly mnemonic sequences, byte sequences, and API calls. 
Representation fusion was achieved through a fully connected 
layer, leveraging the complementarity between different 
modes for enhanced performance.  

 
Fig. 3  Transformation process of byte transfer probability matrix 

 
Some studies convert software into visual images and use 

methods and models in the field of images to build malware 
recognition models. Patil et al. [34] took every 8 bits in the 
software binary representation as a pixel, converted the file 
into a grayscale image with a channel number of 1 (the 
process is shown in Figure 2), and then used CNN for 
malware identification. Ke et al. [35] considered that the DEX 
file of Android software may contain a lot of noise, so only 
part of its data was converted into a grayscale image, and 
CNN was used for malware identification. Yuan et al. [45] 
regarded the integer value represented by the byte as a state, 
calculated the transition probability between states based on 
the byte sequence of the software, and then constructed a 
"Markov Image" (as shown in Figure 3) and input it into the 
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CNN model to identify malware. Kwan et al. [32] adopted a 
similar idea, taking the product of the transition probability of 
the software assembly operation code and its IG as a pixel to 
construct an image and further using methods such as 
histogram normalization, dilation, and erosion to enhance the 
image.  

In general, deep convolutional networks can learn effective 
representations better than shallow network structures and 
have a more vital ability to fit data. A deeper network 
structure can deal with obfuscated samples more effectively 
for malware identification. However, as the depth increases 
and the network structure becomes more and more complex, 
it will cause the problem of gradient disappearance or gradient 
explosion during training so that the parameters cannot be 
effectively updated [59], [60], [61]. Sridhar et al. [62] 
proposed the ResNet model, which effectively alleviated the 
above problems through the residual structure so that the 
convolutional network structure could reach hundreds or even 
thousands of layers. However, due to the larger parameters 
scale, the deep convolutional network needs more data to train 
well. Given the limited scale of malware family annotation 
samples that can be obtained, many studies are based on 
transfer learning, first teaching a deep convolutional network 
model on large-scale image data and then transferring the 
knowledge learned by the model to the malware recognition 
task—for example, the IM CEC architecture proposed by 
Vasan et al. [63] first trains the VGG16 and ResNet50 models 
on the ImageNet dataset [64], and then transfer the parameters 
of the two models to the malware recognition model through 
transfer learning. 

 
Fig. 4  Convolutional autoencoder 

 
Training deep learning models on small datasets can easily 

lead to overfitting problems. Aiming at the training of 
malicious code models under minor sample conditions, 
Asaduzzaman et al. [65] introduced the tGAN model, where 
malware samples are transformed into images. Initially, a 
convolutional autoencoder is trained to capture the feature 
representation for each malware category (the process is 
shown in Figure 4). Subsequently, the decoder from the 
autoencoder is seamlessly transferred to the Generative 
Adversarial Network (GAN). The generator and discriminator 
components of the GAN are then employed for data 
augmentation and malware identification, respectively. 
Experiments show that the accuracy rate of the model is 90% 
under the condition of small samples. 

Malware recognition models based on visualization and 
image processing technology can often achieve high accuracy. 
However, existing studies generally force-transform 1-
dimensional sequences into 2-dimensional "images", so the 
second-dimensional structural relationship does not naturally 
exist in malware. Exploring the construction of a more 
rational visual representation to effectively leverage the 
strengths of the CNN model is a topic deserving further 
exploration. Furthermore, while recognition models based on 
architectures like VGG16 and ResNet50 can deliver favorable 
classification outcomes, the associated demands on training 
and inference time and the utilization of computing resources 
are often substantial. This limitation hinders the widespread 
application of such models. 

C. Malware Identification based on Graph Neural Network 

Graph Neural Networks (GNN) incorporate graph analysis 
into deep learning frameworks, demonstrating proficiency in 
handling relational data. Numerous scholars are 
experimenting with representing software samples as graphs 
and subsequently employing GNN models to classify these 
graphs for effective malware identification. For example, Li 
et al. [54] revealed that the API call sequence dynamically 
extracted from the software sample and the Markov chain 
generated by the entire sample were represented as a directed 
cycle graph and a shared weight graph, respectively. The two 
were fused, and then a Graph Convolutional Network (GCN) 
was used for malware detection. Busch et al. [66] built a 
directed graph by monitoring the network traffic when the 
software was running and then used GNN to classify the 
software. The nodes in the graph correspond to the IP 
addresses in the network, and the edges represent the direction 
of network traffic and have the number of packets sent, packet 
Attributes such as the average length, the maximum and 
minimum value of the packet transmission interval, etc. To 
avoid the introduction of runtime overhead, Feng et al. [67] 
decompiled the Android application into a Smali file, 
extracted the function call relationship from it to construct a 
function call graph, used the semantic information, security 
level, and permissions of the function as node attributes, and 
used GNN Identify malware. Overall, there is still little 
research on applying GNN to malware identification, and the 
graph representation and representation learning of samples 
are still worthy of further discussion. 

IV. CONCLUSION 

Although the research on malware identification based on 
machine learning has made significant progress, it still faces 
some problems and challenges, some of which are listed and 
analyzed in this chapter. Class imbalance poses a common 
challenge in malware recognition scenarios, where the 
abundance of benign samples often outweighs the availability 
of malicious samples. This imbalance is particularly evident 
in malware classification tasks, leading to skewed 
distributions among different malware categories. In the 
MMCC dataset, for instance, Lollipop and Kelihos ver3 boast 
2478 and 2942 samples, respectively, whereas the Simda 
category comprises a mere 42 samples. The inherent class 
imbalance tends to bias machine learning methods toward 
more significant categories. 
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To mitigate this issue, various approaches have been 
proposed in the literature. Rahman et al. [68] introduced two 
integrated learning mechanisms involving feature extraction 
from large and small category samples. They advocate the 
joint training of multiple weak classifiers to produce outputs 
for both sample types, primarily suited for binary 
classification. However, in the context of malware 
identification, class imbalance is more pronounced in multi-
classification tasks. Kim et al.'s tGAN model [69] addresses 
this by enhancing data across all categories through 
generation, employing an integrated method for multi-
classification. Nonetheless, concerns about the stability of the 
GAN model during sample generation persist. Venkata et al. 
[70] applied weighted SoftMax loss to fine-tune CNN, 
assigning varied loss weights based on category sample 
numbers. While this approach partially alleviates the impact 
of class imbalance, effectively addressing this challenge in 
malware identification remains an area that warrants further 
exploration. 

Various anti-identification technologies are also emerging 
with the continuous development of malware identification 
technology based on machine learning. Malware writers can 
design corresponding strategies according to the 
characteristics of the machine learning model so that malware 
can evade the detection of the model. Guo et al. [42] first 
synthesized three view visualization applications, including 
behavior view, operation view and bytecode view. We then 
fuse the comprehensive semantics at different levels to profile 
the maliciousness of the apps precisely based on multi-view 
learning. Abdelmonem et al. [52] only change features that do 
not affect malicious functionality to generate adversarial 
examples that retain their malicious functionality. In addition, 
supervised machine learning models are generally constructed 
based on training data, and their generalization to unknown 
malware is often not high. For the above two situations, it is 
usually necessary to rebuild the recognition model according 
to the anti-detection technology and the characteristics of new 
malware and deal with it passively. Establishing an active 
malware recognition model that can self-evolve based on 
theories and methods such as evolutionary learning, 
adversarial generation, and lifelong learning is also a direction 
worthy of further exploration. 

Currently, machine learning models and techniques are 
extensively employed in tasks related to identifying malicious 
code. This application helps address the issues of inadequate 
generalization and elevated false favorable rates associated 
with traditional methods relying on signatures and heuristic 
rules. This paper sorts out and summarizes the research on 
malware identification based on machine learning in recent 
years, expounds the early recognition methods based on 
feature engineering from the aspects of feature representation, 
feature selection, and dimensionality reduction, and 
summarizes and analyzes the recent RNN, CNN, and GNN 
deep neural network feature learning class recognition 
method. By studying the research status in this field, this 
paper points out that in the future, problems and challenges 
such as category imbalance and active recognition methods. 
With the rapid development of machine learning and deep 
learning technology, the performance and efficiency of 
malware identification based on machine learning will be 
further improved. 
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