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Abstract —Laparoscopic surgery is a widely adopted minimally invasive procedure that requires surgeons to master complex skills such 

as suturing, knot-tying, and needle-passing. Traditional assessment of these skills is often subjective and prone to bias, relying heavily 

on manual evaluation by expert surgeons, which can vary between evaluators. We applied deep learning models to automate surgical 

skill evaluation to address this issue and move towards a more objective and standardized assessment method. In this study, we utilized 

two advanced architectures—3D ResNet-18 and InceptionV3-GRU—within a Temporal Segment Network (TSN) framework to classify 

skill levels using the publicly available JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS) dataset. We focused on 

optimizing temporal sampling by adjusting the number of frames and frame intervals in the video data. Our findings show that 

capturing longer sequences of actions improved accuracy for suturing and needle-passing tasks while capturing more detailed motions 

enhanced performance for knot-tying. Our findings suggest that capturing longer sequences of actions improved accuracy for suturing 

and needle-passing tasks while capturing more detailed motions enhanced performance for knot-tying. The 3D ResNet-18 model 

achieved 100% accuracy across all tasks, significantly outperforming the InceptionV3-GRU model, which achieved 85.71% for 

suturing, 77.42% for knot-tying, and 100% for needle-passing. These results demonstrate the superior capability of the 3D ResNet-18 

model in surgical skill classification and highlight the critical role of temporal optimization in improving performance across different 

surgical tasks.  
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I. INTRODUCTION

Laparoscopic surgery, a minimally invasive technique 

widely used in clinical practice, allows surgeons to access the 

abdomen and pelvis through small incisions, known as 

keyhole surgery [1], [2], [3]. This approach offers advantages 

over open surgery, such as faster recovery times, less pain, 
and lower complication risks [2]. Successful laparoscopic 

procedures heavily rely on skills like suturing, knot-tying, and 

needle passing, necessitating structured training for surgeons 

to enhance these essential skills [4]. Currently, the assessment 

of laparoscopic skills tends to be subjective, usually 

conducted by experienced surgeons through direct 

observation, rating skills across novice (N), intermediate (I), 

and expert (E) levels [5]. 

The advances in deep learning have had a transformative 

impact across various sectors, especially in medicine [6], [7]. 

Deep learning's integration into laparoscopic surgery has 

revolutionized the way surgical skills are evaluated and 

enhanced. The application of computer vision, a branch of 

deep learning, allows for the sophisticated analysis of visual 

data from surgical procedures. This technology excels in 
interpreting complex images and videos, transforming them 

into actionable insights [3], [7]. In the context of laparoscopy, 

this means leveraging the vast amount of video data generated 

during surgeries. The extensive video footage of laparoscopic 

procedures offers a unique opportunity for deep learning 
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algorithms to analyze and learn from these intricate surgical 

techniques [8]. By processing this data, deep learning systems 

can identify key patterns, movements, and techniques that 

characterize expert surgical practice. 

Convolutional Neural Networks (CNNs) is a deep learning 

model that excel in visual data processing, especially for 2D 

images, by leveraging spatial pixel correlations [9], [10]. 

However, they are less effective for 3D motion data like 

videos. The development of 3D CNNs addresses this by 

combining both 2D CNN to extract features from spatial 
dimensions and 1D CNN for temporal dimensions, making 

them suitable for recognizing actions or movements in video 

data [11], [12]. In laparoscopic surgery, this capability is 

particularly useful. For instance, Funke et al. [13] applied a 

3D CNN with Temporal Segment Network (TSN) to the 

JIGSAWS dataset, achieving an impressive accuracy of 100% 

on suturing, 95.8% on knot-tying, and 100% on needle-

passing. Similarly, Jian et al. [14] applied an attention-

enhanced I3D CNN with multitask-TSN to the same dataset, 

achieving an impressive 100% accuracy on suturing, 97.2% 

on knot-tying, and 100% on needle-passing 
The Temporal Segment Network (TSN) framework as 

demonstrated in Funke et al. [13] and Jian et al. [14] were 

introduced by Wang et al. which further refines the 

capabilities of CNNs in video classification tasks, particularly 

in the domain of human action recognition. TSN operates by 

segmenting videos into short snippets and utilizing a ConvNet 

to classify these snippets individually. Subsequently, 

predictions from these snippet-level classifiers are aggregated 

using a consensus function to yield the overall video 

classification result. Among the aggregation functions, 

average pooling emerges as a widely employed and effective 
choice.  

During the training phase of TSN, snippets are sampled 

based on a segment-based strategy, where the video is 

partitioned into non-overlapping segments, and one or more 

consecutive frames are randomly sampled from each segment 

to form snippets. This process generates K snippets, typically 

ranging from 3 to 9 for videos of standard durations. 

Conversely, during testing, snippets are sampled equidistantly 

from the test video, often exceeding the number of snippets 

sampled during training. This adaptive sampling strategy 

ensures the robustness and generalizability of the TSN model 

across diverse video inputs, making it a potent tool for video 
classification tasks, including intricate scenarios like action 

recognition in laparoscopic surgery.  

One main advantage of using CNN is the ability to use pre-

trained model such as ResNet and Inception trained with huge 

image dataset like ImageNet [15]. Tran et al., [16] leveraged 

this with their 3D Resnet-18 model, combining pre-trained 2D 

spatial and 1D temporal CNNs with residual blocks. This 

approach reduces the number of parameters, simplifying the 

training process, and enabling the model to perform on par or 

better than existing state-of-the-art models in action 

recognition datasets like Sports-1M, Kinetics, UCF101, and 
HMDB51. 

Recurrent Neural Networks (RNNs), particularly 

exemplified by architectures like Gated Recurrent Unit 

(GRU), offer a powerful approach for processing sequential 

data due to their ability to retain and forget information over 

time [17]. By integrating CNN's feature extraction 

capabilities with GRU's sequential data processing, 

researchers have addressed various challenges encountered by 

both networks [18]. For instance, Lu et al. [19] showcased the 

effectiveness of CNN-GRU models in human activity 

recognition on the UCI-HAR dataset, achieving a notable 

accuracy of 96.39%. Similarly, Ullah & Munir [20] utilized 

CNNs for video data feature extraction and Bi-GRUs for 
temporal processing, resulting in significantly improved 

execution speed, up to 167 times faster in frames per second. 

These studies underscore the adaptability and efficacy of 

CNN-GRU models in diverse applications involving 

spatiotemporal data. 

In our study, we aimed to address these gaps by leveraging 

advanced deep learning models—3D ResNet-18 and 

InceptionV3-GRU—to improve laparoscopic video 

classification. The 3D ResNet-18 architecture combines 2D 

CNNs for spatial feature extraction with 1D CNNs for 

temporal analysis, using residual blocks to enhance training 
efficiency and model accuracy. In contrast, the InceptionV3-

GRU model integrates a pre-trained InceptionV3 network 

with GRU, enabling it to process sequential data and capture 

long-term temporal dependencies in laparoscopic videos. 

Both models were evaluated using the Temporal Segment 

Network (TSN) framework to improve generalizability. By 

comparing these models, we aimed to identify the most 

effective approach for automated laparoscopic skill 

classification. Furthermore, we examined the impact of 

varying frame steps and frame counts within the TSN 

framework to optimize its performance across different video 
characteristics, thereby contributing to more reliable and 

scalable surgical skill assessments. 

II. MATERIALS AND METHOD 

This section outlines the methodology employed in the 

study, starting with a description of the JHU-ISI Gesture and 

Skill Assessment Working Set (JIGSAWS) dataset, which 

includes videos of laparoscopic skills performed by surgeons 

of varying proficiency levels. We detail the data 
preprocessing steps, including video extraction and image 

processing, followed by the data splitting strategy, ensuring 

balanced distributions across skill levels for effective model 

evaluation. The study proposes and compares two distinct 

models: the first model, based on 3D ResNet-18, combines a 

3D Convolutional Neural Network (CNN) architecture with 

residual blocks, while the second model, named InceptionV3-

GRU, integrates the InceptionV3 CNN pre-trained model 

with a GRU. Both models utilize input snippets containing 32 

frames, each with a resolution of 224x224, resulting in a final 

input shape of 32x224x224. The output consists of three 
probability values corresponding to expertise levels (novice, 

intermediate, expert), with probabilities summing to 1 using a 

SoftMax classifier. 
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Fig. 1  Data Preprocessing Workflow 

 

A. Data Description 

The dataset used in the study originates from the JHU-ISI 
Gesture and Skill Assessment Working Set (JIGSAWS), 

which acts as a repository for surgical activity data geared 

towards modeling human motion. This dataset was amassed 

through a collaborative effort between The Johns Hopkins 

University (JHU) and Intuitive Surgical, Inc. (ISI), based in 

Sunnyvale, CA. The study made use of the Da Vinci Surgical 

System and involved eight surgeons whose surgical 

proficiency spanned from novice to expert levels. The 

JIGSAWS dataset comprises video recordings showcasing 

three distinct laparoscopic skills: suturing, knot-tying, and 

needle-passing. These recordings are categorized into three 
expertise levels—novice, intermediate, and expert—each 

annotated with specific skill or activity details. The videos are 

maintained at a resolution of 640x480, with durations varying 

between 26 seconds to 2 minutes and 32 seconds with 30 

frames per second [1]. 

Table 1 describes the distribution of video counts for each 

laparoscopic skill across different expertise levels. There are 

a total of 103 videos, evenly distributed among the skills and 

expertise levels. Each video was recorded from two different 

angles: from the left side (capture1) and from the right side 

(capture2), resulting in a total of 206 videos in the dataset. In 

this study, only videos captured from the left side (capture1) 

will be utilized. 

TABLE I 

VIDEO COUNT FOR EACH SKILL AND EXPERTISE 

Laparoscopic 

Skill 

Video Count for Each Level 
Total 

Novice Intermediate Expert 

Suturing 19 10 10 39 
Knot-Tying 16 10 10 36 
Needle-Passing 11 8 9 28 

B. Data Preprocessing 

Error! Reference source not found. illustrates the main 

data preprocessing workflow, which encompasses both video 

extraction and image processing stages. In the video 

preprocessing phase, frames are extracted from each video, 

resulting in the extraction of n snippets, each containing m 
frames. The parameter frame steps dictate the skipping 

interval for frame selection. This skipping interval determines 

how often frames are sampled from the original video 

sequence. Formula (1) defines the set of indices used with m 

as its frame count and h as its frame steps in the preprocessing 

workflow: 

������� = 	1, 1 + 1 × �ℎ − 1��, 1
+ 2 × �ℎ − 1��,  …  , 1
+ �� − 1� × �ℎ − 1��� 

(1) 
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C. Data Splitting 

The data will be divided into two sections: training data and 

testing data. Each section comprises snippets with 32 frames 

obtained from the video processing stage. Some videos will 

be manually selected for use as testing data, while the rest will 

be designated for training data. Consequently, frames derived 

from a particular video will not be utilized in multiple data 

types. The number snippets obtained for suturing, knot-tying, 

and needle-passing skills are 174, 272, and 167, respectively. 

The distribution of data is presented in Table 2. 

TABLE II 

SNIPPET COUNT IN ALL DATASETS FOR EACH SKILL AND EXPERTISE 

Laparoscopic 

Skill 

Expertise 

Level 

Training 

Snippet 

Count 

Testing 

Snippet 

Count 

Total 

Snippet 

Count 

Suturing 

Novice 44 26 70 

Intermediate 34 19 53 

Expert 37 14 51 

Knot-Tying 

Novice 81 29 110 

Intermediate 68 13 81 

Expert 63 18 81 

Needle-

Passing 

Novice 51 13 64 

Intermediate 28 16 44 

Expert 43 16 59 

 
Fig. 2  3D ResNet-18 for laparoscopy surgical expertise classification 

 

D. 3D ResNet-18 

The 3D ResNet-18 architecture integrates a 3D CNN 

framework, merging 2D and 1D CNN. Additionally, it 

includes residual blocks, renowned for their advantages such 

as enhanced gradient flow during training and the facilitation 

of deeper network architectures. This architecture comprises 

three pivotal components: Conv2Plus1D, Residual Block, and 

Identity Block, along with other components such as batch 
normalization, ReLU activation function, pooling layers, 

dropout, and SoftMax classifier. The overview of the 

architecture is shown in Error! Reference source not 

found.. Further details regarding the key components of this 

architecture will be explained in the subsequent subsection. 

1)   Conv2DPlus1D: The Conv2DPlus1D layer, inspired 

by Tran et al. [16] 3D convolution, harnesses the feature 

extraction capabilities of CNNs. This layer integrates 2D 

CNN for spatial dimension processing and 1D CNN for 

temporal dimension processing. Utilizing an n x n x n filter, 

the input undergoes spatial 3D convolution (1 x n x n) to 
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mimic 2D CNN behavior, followed by temporal 3D 

convolution (n x 1 x 1) to simulate 1D CNN behavior. 

2)   Residual Block: Residual networks, developed by 

Microsoft for image recognition, are a type of CNN model 

specifically designed to address the issue of vanishing 

gradients during training. They utilize residual functions to 

mitigate vanishing gradient, a problem commonly 

encountered in deep neural networks. By implementing 

residual functions, the network can combine the output of a 

layer with the output of the preceding layer before passing 
through the activation function. This approach allows 

gradients to directly flow back to previous layers in the 

network, enabling better data representation learning and 

overcoming gradient disappearance issues. The Residual 

Block represents one of the implementations of the residual 

network, characterized by multiple Conv2DPlus1D layers 

followed by normalization layers and ReLU activation 

functions. This layer employs 2 layers of n x n x n convolution 

layer to produce the output, along with a 1 x 1 x 1 convolution 

applied to adjust the shape of the residual. Finally, the output 

and the residual are combined using addition to address the 

vanishing gradient problem [21], [22]. 

3)   Identity Block: The Identity Block also functions as a 

residual layer, comprising multiple convolutional layers, 

normalization layers, and ReLU activations. Unlike the 
residual block layer, this layer does not entail conventional 

3D convolution. Instead, this layer utilizes a residual with the 

same size as the input, removing the necessity for 

conventional 3D convolution to adjust the size between input 

and output. Hence, it is dubbed the "identity block." 

 
Fig. 3  GRU model architecture for laparoscopy surgical expertise classification 

 

E. InceptionV3-GRU 

The InceptionV3-GRU architecture integrates feature 

extraction via InceptionV3, leveraging a pre-trained CNN 

model to extract features from each frame in the snippet input. 

These extracted features are then processed using a Gated 

Recurrent Unit (GRU) to handle the sequential frames of the 

snippets. Finally, a softmax classifier is employed to 

determine the expertise level. Further elaboration on the key 

components of this architecture will be provided in the 
subsequent subsections. 

1)   InceptionV3: InceptionV3 is a deep learning model 

developed by Google for image recognition, representing an 

evolution from its predecessors, InceptionV1 and V2. It 

utilizes an architecture known as the "inception module", 

enabling the model to extract features at various spatial scales 

in parallel. Moreover, InceptionV3 employs a regularization 

technique called "batch normalization" to enhance model 
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accuracy and reduce training time [23]. In this architecture, 

the InceptionV3 pre-trained model is utilized to extract 

features from each frame in the snippet input, which are then 

processed by a GRU layer. An overview of the architecture is 

depicted in Error! Reference source not found.. 

2)   Gated Recurrent Unit (GRU): GRU, a variation of 

Recurrent Neural Network (RNN) with gated units, 

introduces a hidden state to capture and retain temporal 

dependencies across sequential data. The hidden state is 

updated by two gates: the update gate and the reset gate. The 
update gate determines the amount of information from the 

previous time step to retain for the current time step, while the 

reset gate allows GRU to decide whether to ignore or consider 

information from the previous time step. The hidden state 

stores crucial information from the previous time step deemed 

essential for the current time step, making GRU an effective 

neural network architecture for processing sequential or time-

series data by retaining significant information from the 

previous time step and deciding whether to retain or discard 

it. In the proposed model, features extracted by the 

InceptionV3 model from the sequential frames of the snippets 
are processed using GRU, leveraging the advantages of GRU 

in capturing and utilizing temporal dependencies of each 

frame effectively. 

F. SoftMax Classifier 

The SoftMax classifier commences with a dropout layer, 

which serves as a regularization technique to mitigate 

overfitting by randomly deactivating a proportion of input units 

during training. This dropout mechanism introduces robustness 

to the model by preventing reliance on specific features and 
encouraging the learning of more generalizable representations. 

Following the dropout layer, the final output layer for both 

proposed architectures consist of a fully connected layer with 

three neurons, aligning with the number of expertise levels 

(novice, intermediate, expert) in the classification task. 

Subsequently, the SoftMax activation function is applied after 

the fully connected layer. The SoftMax function computes the 

probability distribution across all classes, assigning a 

probability value to each class between 0 and 1. These 

probabilities signify the model's confidence in each class 

prediction, collectively summing to 1 across all classes. 
Ultimately, the class with the highest probability is identified as 

the output of the classifier, representing the predicted expertise 

level for the given input data. 

III. RESULTS AND DISCUSSION 

In this section, we present the results of our experiments 

conducted using Python 3 and TensorFlow. We trained the 

model using the Adam optimizer for 50 epochs, with various 

hyper-parameters tuned for optimal performance. 
Experimental results showed that performance plateaued at 50 

epochs, with additional training increasing the risk of 

overfitting. This approach aligns with findings in video 

classification research [24], [25]. Early stopping was used to 

preserve model generalization by capturing the best-

performing weights. Various hyper-parameters were tuned to 

ensure optimal performance of each model. All computations 

were performed on a P100 GPU, facilitating efficient 

processing and experimentation. 

A. Performance Metrics 

In laparoscopic surgical skill expertise classification, 

accuracy is crucial for assessing the model's performance. It 

measures the ratio of correctly classified instances (TP and 

TN) to the total evaluated instances, providing a 
comprehensive evaluation of the model's ability to correctly 

identify true positives (TP) and true negatives (TN) while 

distinguishing false positives (FP) and false negatives (FN). 

Accuracy serves as a valuable metric for gauging the model's 

effectiveness in skill classification tasks, reflecting its 

proficiency in accurately distinguishing between different 

skill levels. Accuracy is denoted by formula (2), which 

calculates the ratio of correctly classified instances (TP and 

TN) to the total evaluated instances, thus providing a 

comprehensive evaluation of the model's performance in 

laparoscopic surgical skill expertise classification. 

�������� =
�� + � 

�� + � + !� + ! 
 (2) 

B. Model Improvement 

The model improvement process primarily involved 
hyperparameter tuning, including adjustments to batch size, 

learning rate, and dropout rate. Specifically, we experimented 

with batch sizes of 4 and 8, learning rates of 0.001, 0.0001, 

and 0.00001, and dropout rates of 0, 0.25, and 0.5. These 

adjustments aimed to optimize the model's performance by 

finding the most suitable combination of hyperparameters 

compares the impact of hyperparameter configurations on the 

performance of 3D ResNet-18 and InceptionV3-GRU models 

trained for suturing, knot-tying, and needle-passing task.  

Table 3 provides a detailed comparison of hyperparameter 

configurations and performance metrics for 3D ResNet-18 

and InceptionV3-GRU models across the suturing, knot-
tying, and needle-passing tasks, with the best performances 

highlighted in bold for each task. Notably, the 3D ResNet-18 

model achieves optimal performance with a batch size of 4, a 

learning rate of 0.0001, and a dropout rate of 0.25, yielding a 

test accuracy of 100% on suturing task. In contrast, the 

InceptionV3-GRU model reaches its peak accuracy of 

85.71% with a similar configuration but without dropout, 

albeit with a higher test loss. For the knot-tying task, the 3D 

ResNet-18 model again outperforms the InceptionV3-GRU 

model, achieving 100% accuracy with a batch size of 4, a 

learning rate of 0.001, and no dropout. The InceptionV3-GRU 
model achieves its highest accuracy of 77.42% with batch size 

of 8, learning rate of 0.001, and dropout rate of 0.25. In the 

needle-passing task, the 3D ResNet-18 model achieves 100% 

accuracy and 0.007 test loss with a batch size of 4, a learning 

rate of 0.0001, and a dropout rate of 0.25, while the 

InceptionV3-GRU model also reaches 100% accuracy but 

with a slightly higher test loss of 0.0547 on batch size of 8, 

learning rate of 0.0001, and no dropout. Across all tasks, the 

3D ResNet-18 model consistently outperforms the 

InceptionV3-GRU model, demonstrating superior 

generalization, accuracy, and lower test loss across various 

hyperparameter configurations. 
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TABLE III 

HYPERPARAMETER TUNING RESULTS AND BEST PERFORMING MODELS FOR 3D RESNET-18 AND INCEPTIONV3-GRU ACROSS SUTURING, KNOT-TYING, AND 

NEEDLE-PASSING TASKS 

No 
Batch 

Size 

Learning 

Rate 

Drop

out 

Suturing Knot-Tying Needle-Passing 

Test Accuracy Test Loss Test Accuracy Test Loss Test Accuracy Test Loss 

3D 

ResNet

-18 

Incepti

onV3-

GRU 

3D 

ResNet

-18 

Incepti

onV3-

GRU 

3D 

ResNet

-18 

Incepti

onV3-

GRU 

3D 

ResNet

-18 

Incepti

onV3-

GRU 

3D 

ResNet

-18 

Incepti

onV3-

GRU 

3D 

ResNet

-18 

Incepti

onV3-

GRU 

1 4 0.001 0 100.00 83.33 0.0706 0.3843 100.00 70.97 0.0008 0.9279  96.00 92.00 0.0706 0.1573  

2 4 0.001 0.25 90.48 76.19 0.1638 0.4779 96.80 70.97 0.0352 0.8821  96.00 84.00 0.1638 0.3298  

3 4 0.001 0.5 97.62 71.43 1.1195 0.6832 100.00 74.19 0.0009 0.9531  60.00 92.00 1.1195 0.3316  

4 4 0.0001 0 100.00 85.71 0.0264 0.3633 100.00 70.97 0.0026 1.0659  100.00 88.00 0.0264 0.3609  

5 4 0.0001 0.25 100.00 83.33 0.007 0.5169 100.00 58.06 0.0065 1.0132  100.00 84.00 0.007 0.4753  

6 4 0.0001 0.5 100.00 66.67 0.0052 0.8452 100.00 67.74 0.0076 1.2087  100.00 88.00 0.0052 0.2899  

7 4 0.00001 0 92.86 59.52 0.0265 0.8839 96.80 45.16 0.0605 1.0727  100.00 76.00 0.0265 0.6242  

8 4 0.00001 0.25 100.00 59.52 0.0342 0.9299 96.80 58.06 0.0695 0.9908  100.00 68.00 0.0342 0.9189  

9 4 0.00001 0.5 95.24 64.29 0.022 0.7707 96.80 38.71 0.1139 1.1322  100.00 76.00 0.022 0.6354  

10 8 0.001 0 47.62 71.43 0.1243 0.6907 100.00 70.97 0.0026 0.8944  96.00 88.00 0.1243 0.3100  

11 8 0.001 0.25 80.95 71.43 0.0868 0.6851 100.00 77.42 0.0026 0.8653  96.00 88.00 0.0868 0.2615  

12 8 0.001 0.5 90.48 69.05 0.153 0.7815 93.60 74.19 0.1605 0.9036  92.00 92.00 0.153 0.1307  

13 8 0.0001 0 100.00 73.81 0.0357 0.8504 100.00 77.42 0.0183 1.2238  100.00 100.00 0.0357 0.0547  

14 8 0.0001 0.25 100.00 69.05 0.0762 0.8511 100.00 70.97 0.0141 1.0320  96.00 96.00 0.0762 0.0769  

15 8 0.0001 0.5 100.00 80.95 0.0345 0.4757 100.00 67.74 0.0106 1.1135  100.00 92.00 0.0345 0.2271  

16 8 0.00001 0 100.00 57.14 0.0354 0.9225 100.00 35.48 0.0716 1.1086  100.00 80.00 0.0354 0.6822  

17 8 0.00001 0.25 100.00 50.00 0.0531 1.0028 96.80 54.84 0.1017 1.0315  100.00 72.00 0.0531 0.8286  

18 8 0.00001 0.5 97.62 71.43 0.0345 0.8417 96.80 45.16 0.0826 1.1389  100.00 68.00 0.0345 0.7235  

C. Performance Analysis 

The bar graph in Error! Reference source not found. 

presents a comparative analysis of test accuracy between two 

machine learning models, namely 3D ResNet-18 and 

InceptionV3-GRU, across three distinct surgical skills: 
suturing, knot-tying, and needle-passing. Notably, both 

models achieved perfect test accuracy of 100% for needle-

passing tasks. However, for suturing and knot-tying, while 3D 

ResNet-18 maintained a flawless score, InceptionV3-GRU 

exhibited a decrease to 86% for suturing and 77% accuracy 

for knot-tying. Overall, the graph highlights the strong 

performance of both models on the test set, with 3D ResNet-

18 showcasing consistent perfect accuracy across all skills 

and InceptionV3-GRU demonstrating decreases in suturing 

and knot-tying accuracy. 

 
Fig. 4  Test accuracy comparison between 3D ResNet-18 and InceptionV3-

GRU 

 

The superior performance of 3DResNet-18 compared to 

InceptionV3-GRU in suturing and knot-tying tasks can be 
attributed to its ability to seamlessly integrate spatial and 

temporal information through 3D convolutions, enabling the 

model to capture the fine-grained spatiotemporal dynamics 

inherent in these complex surgical gestures. Unlike 

InceptionV3-GRU, which processes spatial and temporal 

features separately—potentially leading to temporal 

discontinuities—3DResNet-18 simultaneously analyzes 

multiple frames, preserving temporal continuity and 

contextual information. Additionally, the residual 
connections in 3DResNet-18 enhance gradient flow, reducing 

overfitting and improving generalization, particularly on 

smaller datasets like JIGSAWS [13], [21], [26]. 

TABLE IV 

COMPARISON OF COMPUTATIONAL AND MEMORY COSTS BETWEEN 3D 

RESNET-18 AND INCEPTIONV3-GRU MODELS 

Model 
#Trainable 

Params 

#Non-

Trainable 

Params 

Memory 

Size 

Train 

Time/Epoch 

3D 

Resnet-18 
15,404,675 1,152 58.77 MB 5s 

Inception

V3-GRU 
431,043 21,802,784 83.17 MB 11s 

 

Table 4 highlights notable differences in computational 

demands, memory consumption, and training efficiency 

between the 3D ResNet-18 and InceptionV3-GRU models. 

Despite ResNet-18 possessing a significantly larger number 

of trainable parameters (15,404,675 parameters) compared to 

the InceptionV3-GRU (431,043 parameters), it demonstrates 

faster training performance, completing an epoch in 5 

seconds, while InceptionV3-GRU requires 11 seconds per 
epoch. This slower training time for InceptionV3-GRU can be 

attributed to its more complex architecture, where the 

InceptionV3 module must first extract image features before 

passing them to the GRU layer for temporal sequence 

modeling. This multi-stage feature extraction process imposes 

additional computational overhead, despite the fewer 

parameters being updated during training. Furthermore, 

InceptionV3-GRU contains a substantial number of 

parameters (total of 22,233,827 parameters) compared to 3D 

ResNet-18 (total of 15,405,827 parameters) with higher 
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memory consumption, requiring 83.17 MB, in contrast to 3D 

ResNet-18’s 58.77 MB. The efficiency of ResNet-18 can be 

attributed to its streamlined residual architecture, which 

enables effective training of a larger parameter set without 

excessive computational complexity. In contrast, the 

InceptionV3-GRU model prioritizes feature extraction at the 

cost of slower training speed and greater memory usage, 

reflecting its design for tasks that benefit from comprehensive 

pre-trained feature representation. 

In addition to the initial approach, we aim to investigate the 
impact of frame count and frame steps on our selected 

architectures. Inspired by the methodology employed by 

Funke et al. [13], who utilized 64 frames with 10 Hz snippets 

(equivalent to 64 frames with 3 frame steps), our investigation 

will explore various combinations of frame count and frame 

steps. Specifically, we will evaluate configurations 

employing 32 and 64 frames, paired with frame steps of 3, 5, 

10, and 15. Through systematic exploration of these 

parameters, we endeavor to elucidate their influence on the 

performance and efficacy of our architectures, thereby 

contributing valuable insights for the optimization of similar 
systems. However, it's worth mentioning that knot-tying data 

lacks the necessary length to accommodate the configuration 

involving 64 frames with a 15-frame step. Therefore, this 

configuration will be omitted from our experiment. 

The experimental findings presented in Table 5 shed light 

on the intricate relationship between frame count, frame steps, 

and model performance across various surgical tasks. Firstly, 

the 3D ResNet-18 architecture emerges as a robust performer 

across different configurations, showcasing consistent high 

accuracy levels across suturing, knot-tying, and needle-

passing tasks. Despite minor fluctuations, its resilience 
underscores its suitability for handling diverse data 

configurations effectively. This stability underscores the 

adaptability of the model, which is crucial in real-world 

surgical applications where data variability is inevitable. 

In contrast, the InceptionV3-GRU model exhibits more 

variability in performance across different configurations. 

While it struggles with lower accuracy in certain setups, 

particularly evident in knot-tying tasks, it still demonstrates 

commendable performance in other configurations. This 

variability offers valuable insights into the nuanced impact of 

frame count and frame steps on model accuracy, emphasizing 

the importance of careful configuration selection to optimize 
performance. Moreover, the InceptionV3-GRU model's 

ability to maintain competitive accuracy levels in favorable 

configurations highlights its potential for adaptation to 

specific task requirements. 

The analysis of frame count and frame steps from Table 5 

also reveals intriguing patterns in model performance across 

surgical tasks. Notably, for 32 frames, both Suturing and 

Needle Passing tasks exhibit optimal performance with a 

frame step of 15, suggesting a preference for generalized 

information from a broader temporal context. However, as the 

frame step decreases, indicating a finer-grained temporal 
resolution, performance diminishes and only gradually 

recovers, failing to surpass the accuracy achieved with a 15 

frame steps. This trend suggests that these tasks benefit from 

assimilating information from multiple points across time 

rather than relying on narrow, detailed windows. Conversely, 

the Knot-Tying task showcases a distinct behavior, as models 

perform best with lower frame steps, particularly excelling 

with 5 frame steps, indicating a need for finer-grained 

information to achieve optimal accuracy. 

TABLE V 

EFFECT OF FRAME COUNT AND FRAME STEPS ON MODEL PERFORMANCE 

ACROSS SURGICAL TASKS 

Model 
Snippet 

Configuration 

Accuracy 

Suturing 
Knot-

Tying 

Needle-

Passing 

3D Resnet-18 

32 frames, 

frame steps=15, 

5, 15 

100.00 100.00 100.00 

3D Resnet-18 
32 frames, frame 

steps=15 
100.00 84.21 100.00 

3D Resnet-18 
32 frames, frame 

steps=10 
100.00 100.00 100.00 

3D Resnet-18 
32 frames, frame 

steps=5 
100.00 100.00 100.00 

3D Resnet-18 
32 frames, frame 

steps=3 
100.00 100.00 100.00 

3D Resnet-18 
64 frames, frame 

steps=15 
73.07 - 100.00 

3D Resnet-18 
64 frames, frame 

steps=10 
88.37 75.00 100.00 

3D Resnet-18 
64 frames, frame 

steps=5 
100.00 100.00 100.00 

3D Resnet-18 
64 frames, 

frame steps=3 
100.00 100.00 100.00 

InceptionV3-

GRU 

32 frames, 

frame steps=15, 

5, 15 

85.71 77.42 100.00 

InceptionV3-

GRU 

32 frames, frame 

steps=15 
85.71 26.32 100.00 

InceptionV3-

GRU 

32 frames, frame 

steps=10 
61.50 51.72 80.03   

InceptionV3-

GRU 

32 frames, frame 

steps=5 
70.59 77.42 92.96 

InceptionV3-

GRU 

32 frames, frame 

steps=3 
76.95 69.60 94.51 

InceptionV3-

GRU 

64 frames, frame 

steps=15 
69.23 - 80.00 

InceptionV3-

GRU 

64 frames, frame 

steps=10 
48.69 58.33 88.79 

InceptionV3-

GRU 

64 frames, frame 

steps=5 
51.68 60.38 89.64 

InceptionV3-

GRU 

64 frames, 

frame steps=3 
73.33 62.13 92.19 

I3D ConvNet 

(RGB) [13] 

64 frames, 

frame steps=3 
100.00 95.80 96.40 

I3D ConvNet 

(OF) [13] 

64 frames, 

frame steps=3 
100.00 95.10 100.00 

 

When considering 64 frames, a consistent trend emerges 

across all tasks, with models performing better with lower 

frame steps. Surprisingly, even tasks like Suturing and Needle 

Passing, which benefit from generalized information, exhibit 

this trend. This phenomenon suggests that while higher frame 

steps facilitate generalization, an excess of fine-grained 

information inherent in higher frame counts can overwhelm 
the model, leading to decreased performance. This is evident 

when comparing the accuracy of the more generalized 32 

frames, 15 frame steps configuration against the more fine-

grained 64 frames, 3 frame steps set up, where the former 

consistently outperforms the latter across tasks. Despite these 

nuances, the 3D ResNet-18 model consistently outshines its 

counterparts, achieving perfect scores on numerous 

configurations across all tasks, surpassing even the 

performance of the I3D ConvNet by Funke et al. [13] in 

several instances, showcasing its robustness and adaptability 

in modeling surgical tasks. 
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TABLE VI 

COMPARISON WITH OTHER MODELS 

Model 

Accuracy 

Suturing 
Knot-

Tying 

Needle-

Passing 

CNN-LSTM [27] 98.40 94.80 98.40 

CNN [28] 100.00 92.10 100.00 

I3D ConvNet (RGB) 

[13] 
100.00 95.80 96.40 

I3D ConvNet (OF) [13] 100.00 95.10 100.00 

MT-TSN [14] 

 w/o attention 
100.00 97.20 100.00 

MT-TSN  [14] 

with attention 
100.00 97.20 100.00 

3D Resnet-18 (Ours) 100.00 100.00 100.00 

InceptionV3-GRU 

(Ours) 
85.71 77.42 100.00 

 

In Table 6, we benchmark our models—3D ResNet-18 and 

InceptionV3-GRU—against existing state-of-the-art models 
evaluated on the JIGSAWS dataset. Previous studies, such as 

Funke et al. [13] with the I3D ConvNet (RGB) model, 

achieved 100% accuracy in suturing, 95.8% in knot-tying, and 

96.40% in needle-passing while the I3D ConvNet (OF) 

variant reached 100% in suturing, 95.1% in knot-tying, and 

100% in needle-passing. Jian et al. [14], using their multi-task 

TSN (MT-TSN) model, achieved up to 100% in suturing and 

needle-passing as well as 97.2% accuracy in knot-tying both 

with and without attention mechanisms. These models have 

set a high benchmark for video-based surgical skill 

assessment. Compared to these approaches, our 3D ResNet-

18 model performs exceptionally well, achieving 100% 
accuracy across all three tasks—suturing, knot-tying, and 

needle-passing—representing a substantial improvement over 

models like CNN-LSTM [27], which achieved lower 

accuracy in suturing (98.4%), knot-tying (94.8%) and needle-

passing (98.4%) as well as CNN [28] with lower accuracy in 

knot-tying (92.1%). Our InceptionV3-GRU model, while 

competitive with 100% accuracy in needle-passing, showed 

mixed results with 85.71% in suturing and 77.42% in knot-

tying, suggesting potential limitations in the GRU's ability to 

capture intricate temporal patterns compared to the 3D 

ResNet-18 and I3D ConvNet. 
One of the primary limitations of the JIGSAWS dataset is 

its focus on controlled, simulated environments, which do not 

fully reflect the complexities of real-world surgical 

procedures. While simulators provide consistency and 

control, they lack the realism needed to assess the nuanced 

challenges that trained surgeons face during live surgeries. In 

contrast, using actual surgical data, such as video recordings 

and motion data, offers more accurate skill assessments but 

presents difficulties in standardization, making 

reproducibility a challenge. To further enhance these systems, 

expanding datasets to include more varied and representative 
surgical procedures is essential. This could involve 

incorporating virtual reality (VR) simulations, offering a 

realistic and controlled environment for assessing technical 

skills and training on rare but significant intraoperative 

events, such as hemorrhage or vascular injury [29], [30]. 

Additionally, the integration of AI into surgery brings forth 

significant ethical considerations, including privacy, 

transparency, accountability for errors, technical robustness, 

bias, and discrimination. Addressing these ethical challenges 

and ensuring the technical reliability of AI technologies are 

crucial to safeguarding patient safety and fostering trust in AI-

driven surgical assessment tools [31]. 

The integration of advanced deep learning models, such as 

3D ResNet-18 and InceptionV3-GRU, into laparoscopic 

surgical skill assessment has significant practical implications 

for clinical training and real-time evaluation. These models 

can automatically analyze video-based data from laparoscopic 

procedures, offering objective, consistent assessments of 

critical surgical tasks, including suturing, knot-tying, and 

needle-passing. This method addresses the limitations of 
traditional assessment frameworks, which are often subjective 

and reliant on expert evaluation. By providing automated, 

data-driven feedback, such systems can enhance both the 

accuracy and efficiency of skill evaluation during surgical 

training. This trend towards automation aligns with the 

broader movement in surgery to reduce human error and 

improve patient outcomes through the application of data 

science and machine learning [8], [30].  

IV.  CONCLUSION 

In this study, we evaluated the classification of 

laparoscopic surgical skill expertise using advanced deep 

learning models—specifically, 3D ResNet-18 and 

InceptionV3-GRU—within the Temporal Segment Network 

framework applied to the JIGSAWS dataset. The 3D ResNet-

18 model demonstrated exceptional performance, 

consistently achieving 100% accuracy across suturing, knot-

tying, and needle-passing tasks, outperforming the 

InceptionV3-GRU architecture and surpassing existing state-

of-the-art models. Our analysis of frame count and frame 
steps revealed that while 3D ResNet-18 maintained robust 

performance across various configurations, optimal settings 

varied depending on the specific surgical task, highlighting 

the importance of tailored approaches in skill assessment. The 

integration of models like 3D ResNet-18 offers objective and 

consistent evaluations of critical surgical tasks, enhancing the 

accuracy and efficiency of skill assessment in surgical 

training.  

Future work should involve expanding datasets to include 

more varied and representative surgical scenarios, potentially 

incorporating virtual reality simulations to provide realistic 
yet controlled environments. Additionally, addressing ethical 

considerations such as privacy, transparency, and bias is 

crucial for the safe integration of AI-driven assessment tools 

in surgical practice. Future developments in this field hold 

significant potential for improving surgical education and 

patient outcomes through the application of deep learning and 

artificial intelligence. 
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