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Abstract—The Fast Economic Growth Indicator, a newly developed metric leveraging big data, provides policymakers with timely 

insights crucial for assessing the economic impact of policies or events. Among various open-source datasets, aviation data stands out 

as a potential indicator of rapid economic growth, given its inherent graph structure with airports as nodes and flight connections as 

edges. However, global flight data, being dynamic and complex, poses challenges in analysis. To glean comprehensive insights, it's 

imperative to condense this graph data into representative vector values while preserving node relationships. In this study, we utilize 

the dynamic graph node embedding method to quantify the influence levels of airports relative to each other. Traditional node 

embedding methods often prioritize homophily over structural equivalence, challenging directly extracting influence levels. To address 

this limitation, we introduce anchored dynamic graph node embedding, employing a virtual node as a reference point in embedding 

space to enable direct calculation of influence levels. These influence metrics are then compared to the GDP of airport regions. Using 

USA domestic flight data from 1988 to 2021 as a case study, our methodology demonstrates promising results, boasting a 0.94 correlation 

coefficient with national GDP and a 0.9 correlation coefficient with state Gross State Product (GSP). This research aims to advance 

dynamic graph node embedding methods towards structural equivalence rather than homophily, enhancing applicability to tasks 

emphasizing node structure over neighborhood proximity. An example of the benefits of this research is its utility in addressing 

Influence Maximization Problems within dynamic graphs. 
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I. INTRODUCTION

In 2020, the global COVID-19 outbreak significantly 

impacted nations worldwide, prompting widespread travel 

restrictions to curb the virus's spread. However, these 

measures also led to economic slowdowns, plunging many 

countries into recession [1]. Such events underscore the need 

for economic indicators to swiftly capture and respond to 
emergent crises, natural disasters, disease outbreaks, or other 

disruptive phenomena. Traditional indicators, like Gross 

Domestic Product (GDP), often entail lengthy compilation 

times involving multiple data sources, limiting their utility for 

real-time policymaking [2]. 

Recognizing this gap, Haldane et al. [2] outlined criteria for 

a new economic indicator: high correlation with official 

government economic data, reliance on open data sources for 

reproducibility, and historical consistency for trend tracking 

and prediction. In recent years, researchers and government 

agencies have turned to big data analytics to develop near-

real-time economic indicators, leveraging diverse datasets 

such as shipping data, population mobility data, sentiment 

analysis of news articles, and social media analysis [3], [4], 

[5]. Many of these studies highlight the correlation between 

economic growth and population movement. 

Aviation data is a crucial source among these indicators, 

reflecting global trade and tourism patterns. The International 

Air Transport Association (IATA) reports that air 

transportation accounts for a substantial portion of global 

trade and travel [6]. While IATA's air connectivity index 

provides insights into the correlation between aviation and the 
economy, it primarily considers first-order proximity metrics 

like passenger numbers and flight frequencies, neglecting 

nuances like supply chain dynamics and transit flights. 

Aviation data, comprising flight schedules between 

airports, naturally forms a graph structure, facilitating deeper 

insights through graph analysis techniques. Traditional 

methods like node degree and centrality metrics offer valuable 

insights but require manual feature extraction and struggle to 

1842



capture dynamic changes over time. Representational 

learning, or node embedding, offers a promising alternative, 

aiming to capture graph centrality or influence over time. 

However, most node embedding methods prioritize tasks like 

link prediction [7], [8], [9] or node classification [10], [11], 

[12]. They often overlook the quantitative measurement of 

influence between nodes. Consequently, distances within the 

embedding space may not reflect the nodes' significance in the 

real world. 

In our research, which focuses on assessing the influence 
level of nodes within a dynamic graph, it's essential that 

distances in the embedding space accurately capture node 

influence in real space. However, achieving this requires 

measuring distances relative to a reference point. We propose 

an anchored dynamic graph embedding approach for graph 

centrality analysis. By introducing a virtual anchor node with 

minimal weight connecting to every graph node, we establish 

a reference point in the embedding space, enabling the 

calculation of node centrality relative to this anchor. We 

ensure that the embedding space distance accurately reflects 

node centrality by leveraging positive and negative sampling 
techniques based on node occurrence in random walks. 

Finally, we validate our approach by comparing graph 

centrality metrics with Gross Domestic Product (GDP) and 

Gross State Product (GSP) for airport regions, offering 

insights into their economic contributions. 

II. MATERIALS AND METHOD 

A. Static Node Embedding 

Static node embedding techniques aim to encode nodes 

into vector representations, commonly employing either 
random walk or graph neural network (GNN) approaches. 

Random walk-based methods, like NodeSig [13], node 

degree-based random walk [14], Hub-aware random walk 

[15], and Role-aware random walk [16], focus solely on the 

graph structure, neglecting node attributes. In contrast, GNN 

approaches, such as Graph Convolutional Networks (GCN) 

[17], GraphSAGE [18], Graph Attention Network (GAT) 

[19], and Graph Isomorphism Network (GIN) [20], 

incorporate node attributes for more comprehensive 

embeddings. GCN utilizes convolutional operations to 

propagate information between nodes, while GraphSAGE 
samples neighborhood nodes before feature aggregation. 

GAT employs attention mechanisms to weigh neighboring 

nodes' contributions, enhancing flexibility adaptively. GIN 

maximizes the discriminative power of node representation, 

making it suitable for classification tasks. Several methods are 

typically modifications of previously mentioned methods, 

such as [21], an extension of GraphSAGE, or [22], which is 

based on GAT. 

B. Dynamic Node Embedding 

In dynamic scenarios, graphs evolve over time by adding 

or removing nodes or edges. Consequently, relying solely on 

static node embedding methods leads to information loss. 

According to Kazemi [23], a task is inherently tied to the 

graph's representation of change. Typically, two central 

representations emerge: discrete-time dynamic graph 

(DTDG) and continuous-time dynamic graph (CTDG). In 

DTDG, dynamic graphs manifest as static snapshots per 

period. In contrast, CTDG portrays graph dynamics through 

changing events, such as adding a new edge at a specific 

timestamp (e.g., edge_addition, (v1, v2, t0)). While DTDG 

offers a more straightforward approach, it risks information 

loss when selecting periods that exceed the frequency of 

graph changes. This trade-off underscores the importance of 

selecting an appropriate representation that aligns with the 

underlying graph's dynamics and the embedding task's 

objectives.  

Dynamic graph embedding typically incorporates static 
graph embedding as a spatial component or structure. This 

spatial component encodes nodes at a specific period (t). To 

capture the graph's dynamics, a temporal component is 

integrated with the spatial component in a specific manner. 

There are various strategies employed for node embedding in 

dynamic graphs, but not limited to encompassing 

modification of node attributes or identities, graph sequence 

prediction, dynamic parameter strategies, and embedding 

sequence prediction. In the modification of node attributes or 

identities approach, time parameters are integrated into node 

attributes or identities, distinguishing the same node at 
different times as distinct entities. This results in an 

aggregated graph of all periods condensed into a single static 

graph. Studies like [24] exemplify this method. 

Graph sequence prediction strategies typically utilize 

autoencoder schemes. Here, the encoder processes input from 

multiple graph periods (e.g., t-n to t-1) to generate an 

embedding vector, while the decoder predicts the graph for 

the subsequent period. Examples include [25], which utilizes 

deep autoencoder architectures, and [26], which aggregates 

node features with their neighbors and previous periods 

through a convolution mechanism. The dynamic parameter 
strategy involves adjusting spatial component parameters for 

each period. This can entail integrating these parameters into 

models like RNNs. For example, [27] incorporates CNN 

parameters as input to the LSTM model for each period, while 

[28] employs an isolation strategy and expansion on GNN 

parameters. The embedding sequence prediction strategy 

predicts a series of embeddings, where a static embedding 

method generates embedding vectors for each period. These 

embeddings are then input into a temporal structure. For 

instance, [29] utilizes GCN as a spatial component and LSTM 

as a temporal component, while [30] utilizes the sleep-

attention mechanism in both spatial (GAT) and temporal 
(multi-head self-attention) components.  

Each approach presents unique advantages and 

disadvantages depending on the dataset characteristics and 

application. The approaches mentioned are not mutually 

exclusive, which means several approaches can be used 

simultaneously. Furthermore, researchers have the flexibility 

to separate spatial and temporal components using alternative 

methods based on their specific requirements. 

C. Node Centrality 

Graph-level centrality measures the importance of nodes 

relative to others within a graph, with various methods 

available depending on the perspective of node importance. 

Degree centrality, for instance, evaluates nodes based on their 

number of connections, emphasizing nodes with higher 

connectivity. Closeness and betweenness centrality gauge a 

node's importance by its proximity to others in the graph. 
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Eigenvector and Katz centrality, on the other hand, consider a 

node's significance concerning its neighbors' importance.  

Some studies are dedicated to gauging the centrality or 

influence of nodes within the embedding domain. One 

prominent application is Influence Maximization Problems, 

to identify influential nodes within a graph. For instance, [31] 

and [32] employ MLP on embedding outcomes, training to 

rank nodes based on influence. Additionally, [33] utilizes 

struct2vec-generated embeddings as features for each node, 

subsequently fed into a GNN. Moreover, [34] leverages an 
autoencoder to produce embedding vectors, followed by 

dimension reduction for distance-based identification of 

influential nodes. Meanwhile, in [35], DeepWalk was 

employed to generate node embeddings, followed by 

calculating the Euclidean distance between each node and 

every other node. The lower the average distance of a node to 

others, the higher its centrality. Generally, the approach to 

identifying influential nodes involves a two-stage model: the 

first stage entails obtaining the embedding vector, while the 

second involves determining the node's influence level. The 

latter stage employs various approaches, including a 
deterministic method that calculates distances and a heuristic 

approach using MLP with the training target to rank node 

influence levels. 

D. Centrality in Dynamic Graph 

The proposed method's main idea is to use the distance 

between nodes in the embedding space to measure influence. 

To connect this distance to influence, the embedding model 

needs to be trained with a parameter that defines how much 

influence a node has. While traditional metrics like 
betweenness, closeness, node degree, or eigenvector 

centrality can be helpful, they do not fully capture the 

complex influence dynamics in dynamic graphs like flight 

data, where influence depends on connections and how often 

flights occur. To tackle this, the method uses a random walk 

to simulate how often airports are visited in the flight network. 

However, a fixed random walk intensity would give similar 

results to other centrality methods. Instead, the method 

suggests a flexible random walk that adjusts the total number 

of flights, so more flights have a higher visitation rate. 

Another challenge is that existing centrality methods often 
rely on fixed reference points or ground truth data for training, 

which may not work well in unsupervised settings. Virtual 

nodes are added to the graph as reference points. These virtual 

nodes act as origin points, with centrality increasing as you 

move away from them and decreasing as you get closer. 

However, adding virtual nodes can affect the random walk 

process by giving them too much influence, so their weight 

must be minimized to keep it accurate. Virtual nodes make it 

harder for graph representation methods, especially Graph 

Neural Networks (GNNs), to learn effectively since GNNs 

aggregate features from neighboring nodes. An attention-
based GNN method, like Graph Attention Networks (GAT), 

is used to address this. This allows the importance of 

connections to and from virtual nodes to be adjusted 

dynamically, ensuring the learning process remains robust. 

E. Anchored Dynamic Graph Embedding 

The anchored dynamic graph embedding method builds 

upon the DySAT model with several key modifications. The 

training process depicted in Fig. 1 primarily involves two 

main components: generating positive and negative samples 

for the loss function calculation and the actual training 

process itself. The DySAT model makes three notable 

distinctions: the inclusion of virtual nodes, proportional 

random walk, and the context pairing model. 

 

Fig. 1 Training process of self-supervised anchored dynamic graph 

embedding flow diagram 

 

Virtual nodes are artificial nodes added to the original 
graph, acting as reference points in the embedding space to 

calculate each node's centrality. These virtual nodes are 

connected to every node in the graph with the minimum edge 

weight value. In the random walk process, the choice of the 

next target node depends on the probability of that node 

compared to its neighboring nodes from the source node. The 

probability of choosing a target node relies on two factors: the 

weight of the edge between the source node and the target 

node, and the total number of neighboring nodes connected to 

the source node. A higher edge weight from the source node 

to the target node increases the probability of selection. 
Additionally, if the source node has fewer neighboring nodes, 

the probability of selecting any single neighbor also increases. 

Typically, nodes that are considered more significant tend 

to have many neighbors, each with high edge weights. 

Conversely, less significant nodes usually have fewer 

neighbors and lower total edge weights. Adding a virtual node 

with minimal edge weights connected to every node in the 

graph makes it more likely to be chosen during the random 

walk when the source node is less significant, as its 

probability becomes higher compared to other neighbors. On 

the other hand, if the source node is significant, the chance of 
selecting the virtual node decreases because its probability is 

lower than that of the more significant neighbors. Thus, 

during the embedding process, the virtual node with minimum 

edge weight will end up closer to the less significant nodes 

and further away from the significant ones. 

In contrast to using a fixed walk length for all time steps, 

the proportional random walk approach calculates the walk 

length in proportion to the graph's total weight. Although 

there isn't a specific value for the divider of the total weight, 

a recommended walk length falls within the range of 20 to 50. 

Regarding context pairing, the choice of positive and negative 

context pairs is crucial for determining the model's objective 
function. Since the primary task of this research is to derive 

node centrality, node embedding should be based on 

structural equivalence rather than homophily. However, 

structural equivalence must also account for the edge weight. 

Positive and negative context pairs are sampled based on node 

occurrence rather than node degree to achieve this objective 

function. The proportional walk length ensures equitable node 

occurrence for each graph period, depending on the total 
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weight of each graph. Thus, the loss function of this objective 

function is formulated as: 

(1) 

The training process for embeddings is guided by the loss 
function used. In node embedding, the loss typically has two 

parts: positive loss and negative loss. Intuitively, the positive 

loss measures how close the target node's embedding is to 

nodes in the positive sample; the closer they are, the smaller 

the positive loss. Conversely, the negative loss decreases as 

the distance between the target node's embedding and nodes 

in the negative sample increases. The training process aims to 

minimize both positive and negative losses. Ultimately, the 

arrangement of node embeddings reflects a balance between 

positive and negative sampling. 

The proposed method uses cosine similarity to measure the 
distance between node embeddings, which is then used in the 

BCE logits function. �� represents the negative loss weight, 

usually set to a small value akin to the learning rate to 

facilitate better convergence. ��� and ��� denote the 

probability functions for positive and negative sampling of the 

target node �, respectively, defined as: 

 
(2)

 
(3)

Intuitively, nodes u in the vicinity of the target node � are 

more likely to be selected as positive samples. At the same 

time, those further away are more likely to be chosen as 

negative samples. Even though the virtual node boasts the 

highest node degree, its node occurrence is comparable to 

nodes with similar minimum edge weights during the random 

walk process. The Graph Attention Networks (GATs) model 

enables the integration of virtual nodes within the graph, as 

the training process dynamically adjusts the edges to or from 

nodes with varying node occurrences. This process of context 

pairing is shown in Fig. 2. 

 
Fig. 2  In the self-supervised anchored dynamic graph embedding method, 

the context pairing process initiates with graph generation, adding virtual 

nodes, proportional random walk, and, ultimately, positive and negative 

sampling of the target node. 

III. RESULTS AND DISCUSSION 

A. Dataset 

The US domestic flight schedule data from 1988 to 2021 

was sourced from Transtats, provided by the Bureau of 

Transportation Statistics (BTS) under the Department of 

Transportation (DOT). To model the dynamic nature of flight 

schedules, a discrete-time dynamic graph (DTDG) 
representation was employed, aggregating flight schedules 

over specified time intervals. Each year's data was then 

transformed into a graph, with flight frequency serving as the 

weight of the edges. 

Additionally, domestic flight passenger data covering the 

period from 1990 to 2021, necessary for calculating the IATA 

air connectivity index, was obtained from BTS DOT. 

Moreover, the US Gross Domestic Product (GDP) and Gross 

State Product (GSP) data were retrieved from the US Bureau 

of Economic Analysis (BEA) historical data, released in 2022. 

The SAGDP1 index (State Annual Gross Domestic Product) 
summary 1, available from 1997 to 2021, was utilized for 

analysis. 

B. Airport Centrality and Economic Growth 

The initial experiment conducted involved training the 

proposed model using input data comprising aggregated 

aviation graph data from 1988 to 2021. For the graph 

centrality task, the node embeddings generated by the 

proposed methods are utilized to compute the cosine 

similarity relative to the virtual node. This process involves 
measuring the cosine similarity between each node 

embedding and the embedding of the virtual node, thereby 

quantifying the centrality of each node in relation to the 

reference point provided by the virtual node. Formulated as 

follow: 

 

(4)

 
(5)

The centrality index (��
�) of node � 
 � in graph �� with 


��
�  as the embedding of the virtual node, is computed. ������

�  

represents the total centrality index at period t. This index is 

then compared to the US Gross Domestic Product (GDP), 

alongside other graph centrality methods. The calculation of 

the total centrality index applies to various methods including 

degree, betweenness, closeness, eigenvector, and Katz 

centrality. As a reference, the IATA (International Air 

Transport Association) air connectivity index is also utilized, 

calculated using the following formula [6]: 

 
(6)

The IATA air connectivity index at airport v at time t is 

computed by multiplying the airport's weight by the number 

of passengers departing from that airport. Airport weight is 

contingent on the type of flights the airport serves; typically, 

international airports carry a higher weight than domestic 

ones. However, since all the data in this research pertains to 

domestic flights, all airport weights are assumed to have the 
same value, 1. 

The proposed method's centrality index is then correlated 

with economic growth data (GDP), alongside several other 
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centrality measurement methods and the IATA air 

connectivity index. The trend graph for each of these methods 

is displayed side by side in Fig. 3. 

 

 

Fig. 3  Several methods linearly regressed total value of node centrality of 

aviation data and IATA air connectivity index compared to US GDP. 

 

Visually, the US GDP graph reveals four significant 

declines (recessions): 1990-1991, 2001-2002 (related to the 

9/11 attacks), 2007-2009 (Great Recession), and 2020 
(COVID-19 pandemic). In contrast, the proposed method 

exhibits more declines, yet still captures the overall trend in 

GDP. This could be attributed to the fact that the data utilized 

is solely domestic flight data, whereas GDP is influenced by 

both domestic and international flights. Consequently, several 

domestic events, such as presidential elections (1992, 1996, 

2000, 2004, 2008, 2012, and 2016), contribute to fluctuations 

in total centrality, resulting in discernible decreases during 

these periods. 

The correlation indices between each method and GDP and 

GSP are summarized in Table 1. Three correlation testing 

scenarios were conducted: the average Pearson correlation 
index between the total area centrality of the country and GDP 

per year (1990-2022), the average Pearson correlation index 

between total centrality of state areas and GSP per year (1997-

2021), and the Pearson correlation index between the 

concatenation of total state area centrality and GSP over time 

(1997-2021). 

TABLE I 

THE PEARSON CORRELATION INDEX OF EACH GRAPH CENTRALITY METHOD 

IS COMPARED TO THE US GROSS DOMESTIC PRODUCT (GDP) AND GROSS 

STATE PRODUCT (GSP). 

Graph 

Centrality 

Methods 

Mean Annually 

Correlation 

Index to GDP 

(1990-2022) 

Mean Annually 

Correlation 

Index to GSP 

(1997-2021) 

Total 

Correlation 

Index to GSP 

(1997-2021) 

IATA air 

connectivity 

index 

0.7249 0.8714 0.8552 

Degree 

centrality 
0.4760  0.8541  0.8395 

Betweenness 

centrality 
0.1432  0.4543 0.4517 

Eigenvector 

centrality 
0.7039 0.9211 0.9074 

Katz centrality 0.8512 0.8526 0.8351 

Proposed 

method 

0.9413 0.9122 0.8972 

 

The first experiment evaluates both spatial and temporal 

performance in line with GDP calculation, which aggregates 

state GSP within a country. By analyzing the average 

correlation between centrality indices and GSP, the model's 

stability to changes in centrality over time is clarified. This is 

particularly relevant because states usually have fewer 

airports than the national level, offering a clearer view of 

airport dynamics related to economic changes. 

The proposed model outperforms other methods 

significantly in this experiment, demonstrating better 

spatiotemporal performance. The eigenvector centrality 

method performs best in the second and third tests, though 

only slightly better than the proposed method. However, its 
performance declines on a broader spatial scale. Overall, the 

proposed method shows a more balanced and stable 

performance in both spatial and temporal aspects, surpassing 

the IATA reference method. 

This experiment also compares several representation 

learning methods on dynamic graphs to see how well they 

predict vertex centrality. Since other methods do not clearly 

convert the embedding vectors into centrality indices, we use 

proposed one, as predictors in a linear regression model. We 

use the IATA air connectivity index as the ground truth data 

because no data is available on the centrality index or 
economic contributions for each airport. 

The Ridge linear regression method is employed as the 

training model, with input airport embedding vectors from 

each dynamic graph embedding method. The training target 

is the IATA air connectivity index for each airport. The 

prediction results are then compared with the IATA air 

connectivity index to calculate each method's Mean Squared 

Error (MSE). 

TABLE II 

MSE SCORE OF RIDGE REGRESSION OF DYNAMIC GRAPH EMBEDDING 

METHODS TO IATA AIR CONNECTIVITY INDEX. 

Dynamic Graph Embedding 

Methods 

MSE to IATA air connectivity index 

DynGEM  0.12588 

DynAE 0.08689 

DynRNN 0.26178 

DynAERNN 0.21320 

CTGCN 0.55465 

Proposed method 0.07983 

 

The prediction error results for each method are 

summarized in Table 2. The proposed method exhibits the 

lowest error against the IATA air connectivity index, 
followed by DynAE. This indicates that the proposed method 

is well-suited for applications that characterize nodes based 

on their structural properties within a graph (structural 

equivalence). A comparison of the top 10 airport centrality 

rankings from several methods is presented in Table 3. 

TABLE III 

SAMPLE REFERENCE METHOD (IATA) AIRPORT CENTRALITY RANKING WITH 

THE PROPOSED METHOD AND DYNAE-BASED METHOD. THE HIGHLIGHTED 

CELLS ARE AIRPORTS THAT ARE RANKED IN THE TOP 10 OF THE IATA INDEX 

1990 2000 2010 2020 

IATA Propsd DynAE IATA Propsd DynAE IATA Propsd DynAE IATA Propsd DynAE 

ORD ORD ORD ATL ORD ORD ATL ORD ATL ATL ORD ATL 

ATL ATL DFW ORD DFW DFW ORD ATL ORD DFW ATL DEN 

DFW DFW ATL DFW ATL PHX DEN DFW LAX DEN DFW ORD 

LAX DEN SFO LAX STL LAX DFW DEN DFW ORD DEN DFW 

SFO STL PHX PHX MSP ATL LAX DTW DEN CLT MSP CLT 

DEN LAX LAX DEN DTW STL PHX MSP PHX LAX LAX LAX 

PHX PIT DEN LAS PIT DEN LAS LAX SFO LAS IAH PHX 

LGA PHX DTW STL PHX MSP CLT PHX LAS PHX PHX SEA 

STL CLT STL MSP DEN EWR MCO IAH IAH MCO DTW SFO 

DTW MSP BOS DTW LAX SFO IAH EWR JFK SEA CLT LAS 
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C. Experimenting with the model across different time 

aggregations. 

The third experiment involves testing the model that has 

been trained and then using input graphs with different time 
aggregation types compared to the training phase. While 

annual graph data was used during training, the testing phase 

will involve flight data aggregated monthly. Suppose the 

previous tests focused more on examining the model's 

performance concerning spatial scale changes (airport-level, 

state-level, and country-level). In that case, this experiment 

evaluates whether the proposed model can adapt to temporal 

scale changes (from annual to monthly). During the training 

process, the proposed method utilized 35 time periods. 

Consequently, during testing using monthly aggregated data, 

node embeddings are generated for each of the 35 monthly 
periods without any overlap. 

 

 
Fig. 4  The results of testing the proposed method using monthly aggregated 

flight schedule data are compared against other graph centrality methods and 

monthly GDP data for the United States from 1992 to 2022. 

 

The results of the monthly total centrality calculations for 

the proposed method, comparative methods, reference 

method, and monthly GDP are displayed in Figure 4. 

Generally, monthly data yields more fluctuating total 

centrality graphs than annual data. Visually, the trend in the 

proposed method's graph generally aligns with the monthly 

GDP graph, depicting both increases and decreases, such as 

during the 2008 recession and the COVID-19 pandemic in 

2020. However, there appears to be a recurring pattern in the 

proposed method's graph, especially noticeable in the 

repeated peaks every 35 months. Upon matching these peaks 
to the training data, they seem to coincide with the COVID-

19 period in 2020, indicating that the temporal self-attention 

mechanism attempts to compensate for the downturn. This 

suggests that temporal self-attention and time position 

encoding may be less effective when applied to time series 

data, as patterns from the training data are carried over when 

testing with different time ranges or aggregations. 

TABLE IV 

COMPARISON OF CORRELATION INDICES BETWEEN TESTING THE PROPOSED 

METHOD, THE REFERENCE METHOD (IATA), AND GRAPH CENTRALITY 

METHODS WITH MONTHLY FLIGHT GRAPH INPUT DATA AGAINST MONTHLY 

GDP (S&P GLOBAL INDEX) FOR THE UNITED STATES. 

Graph Centrality 
Mean Monthly Correlation Index to 

monthly GDP (1992-2022) 

IATA air connectivity index 0.5327 

node centrality 0.1426 

betweenness centrality 0.9181 

eigenvector centrality 0.7215 

Katz centrality 0.9272 

Proposed method 0.7844 

The correlation index results of centrality methods against 

monthly GDP are displayed in Table 4. The best correlation 

results are obtained with the Katz centrality method, followed 

by the betweenness centrality method, which even 

outperforms the results obtained with annual data. Generally, 

graph centrality methods yield better predictions than the 

IATA air connectivity index method. However, incorporating 

temporal components based on a combination of time position 

encoding and self-attention leads to poorer correlation index 

values than the previous testing. This is attributed to the 
compensatory patterns of the temporal component against the 

training data being carried over to the testing data, resulting 

in recurring patterns in the longer time range data. 

IV. CONCLUSION 

This study has delved into dynamic graph representation 

learning to ascertain node centrality within the graph. 

Employing virtual nodes and a loss function rooted in 
probability-based random walks with proportional steps, the 

resultant node embedding vectors can directly compute their 

centrality indices based on the degree of similarity with the 

artificial node embeddings. Comparative analyses with other 

methodologies, including reference standards (like the 

standard IATA), graph centrality techniques, and alternative 

dynamic graph learning approaches for GDP prediction, 

exhibited superior outcomes. Nevertheless, testing with 

varied time aggregations yielded suboptimal predictions due 

to recurrent patterns arising from the temporal components 

grounded in time position encoding and self-attention. 

However, overall, graph-centric centrality/connectivity 
analysis methods utilizing solely open-source data (such as 

flight schedules) generated relatively accurate predictions 

compared to standard references (IATA) relying on closed-

source data (such as passenger counts on flights). 

While the proposed method adeptly measures centrality 

indices, the potential utilization of node embeddings within 

the graph can extend to various applications, encompassing 

relationship prediction, node classification, and more. Despite 

the method's inclination towards structural equivalence rather 

than local similarity (homophily), it demonstrates robustness 

across diverse scenarios. 
Including time position encoding and self-attention models 

within the temporal component markedly influenced testing 

across different time ranges or aggregations from the training 

data. To enhance outcomes, exploring tailored self-attention 

or transformer methods explicitly optimized for time series 

data may offer promising avenues. 

This paper also tests the practical use of airport centrality 

measurements based on dynamic graph embedding to 

illustrate economic growth trends. The results show a strong 

correlation between an airport's centrality and the economic 

growth of its surrounding area. This approach allows us to 
assess the economic growth of regions connected by air 

transport in real-time. Stakeholders can use this data to guide 

policy decisions. Additionally, the impact of a policy can be 

reflected in the changes in airport centrality in those areas. 

Furthermore, the dynamic graph embedding method can 

work with heterogeneous data. For example, it can combine 

air, land, and sea transport modes. It uses airports, terminals, 

stations, and ports as nodes, with travel relationships, 

passenger numbers, or travel frequency as edges and weights. 
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This way, we can gain a more comprehensive view of 

economic growth trends across different transport modes. 
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