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Abstract—Value at Risk (VaR) and Expected Shortfall (ES) are critical metrics for quantifying financial risk. VaR estimates the 

maximum potential loss within a specific timeframe, while ES captures the average loss that exceeds the VaR threshold. Accurate 

estimation of these risk measures is vital for financial institutions; however, traditional methods often falter in addressing the dynamic 

volatility of financial data. This study explores the One-Factor Generalized Autoregressive Score (GAS-1F) semiparametric model, a 

novel approach that incorporates elicitability into its score function to circumvent distributional assumptions. Elicitability guarantees 

alignment between the estimated loss function and the true underlying risk measure. The GAS-1F model excels as a two-tiered, 

semiparametric framework for estimating VaR and ES. By applying this model to historical data from the S&P 500 index, we 

demonstrate its effectiveness in estimating these risk metrics. The model operates in two stages: first, it estimates the volatility of the 

data, reflecting the extent of price fluctuations. This estimated volatility is then utilized to calculate VaR and ES for each data point, 

generating a time series of daily values that offer a comprehensive view of potential risks investors face. The Diebold-Mariano test 

reveals that the GAS-1F model achieves superior accuracy compared to the widely used GARCH parametric model in estimating VaR 

and ES for stock prices. This enhanced accuracy can significantly benefit financial institutions, providing informed risk management 

decisions and valuable insights for short-term investors, particularly day traders, by facilitating more effective risk management 

strategies. 
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I. INTRODUCTION

Risk analysis is a critical tool for investors in providing a 
comprehensive understanding of potential risks [1]. It 

empowers them to implement appropriate strategies to 

mitigate or effectively manage the risks faced. Value at Risk 

(VaR) and Expected Shortfall (ES) are the two primary 

metrics employed [2]. VaR emerged as a prominent measure 

to quantify potential losses within a specific timeframe for a 

given asset [3]. Initially introduced by JP Morgan in 1996, 

VaR gained widespread adoption as a standard risk 

measurement tool after being implemented by the Basel 

Committee on Banking Supervision (BCBS). 

Mathematically, if � represents the collection of return rates

y�  observed for an asset over a specific period, with a

conditional distribution denoted by F�, then the �-level VaR

can be defined as: 

�	
 ≡ inf�Y|F��y�� � α� , � � 1, … , � (1) 

However, VaR has been criticized for failing to satisfy one 

of the four axioms of coherence proposed by Artzner et al. [4]. 

These axioms establish a set of desirable properties for a risk 

measure. A measure is considered coherent if it adheres to all 

four axioms. VaR specifically violates the subadditivity 
axiom, which states that the combined risk of multiple 

investment portfolios should not exceed the sum of the 

individual portfolio risks. Additionally, VaR focuses solely 

on the potential loss threshold, neglecting the severity of 

losses exceeding that threshold [5]. 

The limitations of VaR, particularly its inability to capture 

extreme risks and significant potential losses, became 

increasingly evident during the 2007-2008 financial crisis. 

This shortcoming prompted the Basel Committee on Banking 

Supervision (BCBS) to advocate for a transition from VaR to 

Expected Shortfall (ES) within its Basel III framework [6]. 

Rockafellar and Uryasev [7] refer to ES as Conditional Value 
at Risk (CVaR), defining it as the anticipated loss for an asset, 

887



considering only returns that fall below the distribution 

quantile, which is VaR, as follows: 

 �� ≡ ���| � ≤ �	
", � � 1, … , �  (2) 

In contrast to VaR, Expected Shortfall (ES) incorporates 

the severity of potential losses beyond the VaR threshold, 

considering the shape of the loss distribution's tail [8]. This 

characteristic makes ES more adept at capturing the risk 

associated with extreme events, even those with a low 

probability of occurrence, which can significantly impact 
portfolio performance [9]. Furthermore, ES satisfies all four 

axioms of coherence, solidifying its suitability as a risk 

measure [10]. 

In practice, the VaR and ES formula can be used to estimate 

these risk measures based on historical data without relying 

on a particular model. However, this method has limitations 

in the assumption of volatility. Volatility is the fluctuation of 

a set of assets which measures the level of dispersion [11]. 

The VaR formula assumes constant volatility 

(homoscedasticity), whereas in real financial data, this is often 

violated because volatility often changes over time, i.e. 
heteroscedasticity occurs [12]. Therefore, the VaR and ES 

formulas may not capture extreme events or changes in 

market conditions that are not adequately represented in 

historical data [13]. 

In response to these challenges, diverse methodologies 

have emerged for estimating the risk metrics. These 

methodologies encompass volatility modeling, a process 

involving the prediction of future volatility by analyzing 

historical return data through a conditional variance or 

conditional heteroscedasticity models capable of 

accommodating time-varying variability [14]. Subsequently, 

the outcomes of these models are applied within the VaR 
framework to derive ES, constituting a two-stage estimation 

approach. Noteworthy among these models are various forms 

of conditional heteroscedasticity models, such as the 

Generalized Autoregressive Conditional Heteroskedasticity 

(GARCH) model by Bollerslev [15], which led to the 

development of the class of Generalized Autoregressive Score 

(GAS) model [16], [17] . 

According to Creal et al. [18], the GAS model represents a 

broader version of traditional autoregressive (AR) models, 

where parameters are estimated through a score function [17]. 

Specifically, by selecting the appropriate score function, the 
GAS model can encompass other conditional 

heteroscedasticity models, including the GARCH model. 

Creal et al. [18] introduced this class of model to offer a 

straightforward, unified approach for accommodating the 

various models that have developed. A key advantage is its 

simplicity in evaluating the likelihood function and its 

potential for extension to other models without introducing 

additional complexity [19]. 

On the other hand, the concept of elicitability gained 

attention, prompting several researchers to explore its 

application in risk estimation [20]. A risk measure is said to 

be elicitable if there exists a loss function that minimizes 
expected losses, making the measure a solution [21]. The 

introduction of Basel III by the BCBS triggered discussions, 

particularly regarding ES non-elicitability, contrasted with 

VaR established elicitability. However, Fissler and Ziegel 

[22] demonstrated that ES, in conjunction with VaR, is jointly 

elicitable. This suggests that VaR and ES can be estimated 

simultaneously by minimizing a loss function. They proposed 

a class of loss functions named FZ Loss, which has been 

shown to derive VaR and ES when minimized effectively 

[23]. 

Amidst the diverse methodologies for estimating VaR and 

ES, Song and Li [13] categorized the methods into three 

groups: parametric, nonparametric, and semiparametric. 

Parametric models operate under the assumption that return 

value distributions adhere to specific distributions. However, 
this assumption may not always hold, potentially leading to 

inaccuracies in model outputs. Nonparametric models, in 

contrast, do not use distributional assumptions, offering 

greater flexibility. Nevertheless, they necessitate careful 

parameter selection, adding complexity to the estimation 

process [24], [25]. 

The Generalized Autoregressive Score (GAS) was 

introduced by Patton et al. [26] as semiparametric approach  

for estimating VaR and ES by minimizing the FZ Loss 

function [23]. These models employ a parametric structure to 

capture the dynamics of VaR and ES through lagged 
information, without presuming the distribution of returns. 

This approach offers a middle ground between parametric and 

nonparametric models. However, if the data adheres to a 

specific distribution, employing a parametric model with 

maximum likelihood estimation and appropriate distribution 

assumptions may yield more precise estimates [27]. This 

raises the research inquiry of this study: whether 

semiparametric models can deliver more accurate estimates 

compared to parametric models, which rely on specific 

distributional assumptions. Consequently, this study 

concentrates on the GAS-1F semiparametric model 
introduced by Patton et al. [26] for joint VaR and ES 

estimation utilizing elicitability principles. 

This paper is structured as follows. Section 2 introduces the 

GAS-1F model for VaR and ES estimation. Section 3 features 

simulation studies employing the Nelder-Mead method to 

estimate the proposed model. Subsequently, the constructed 

model is applied to out-of-sample data to further estimate 

VaR and ES. The Diebold-Mariano test is then employed to 

evaluate the performance of the GAS-1F model's estimates. 

Finally, Section 4 presents a discussion of the findings and 

draws conclusions. 

II. MATERIALS AND METHOD 

In this section we study the GAS-1F model proposed by 

Patton et al. [26]  for ES and VaR estimation. The following 

GAS-1F model were proposed as a semiparametric model by 

exploiting the loss function proposed Fissler and  Ziegel [22] 

and the GAS framework [18]. 

A. #$%& Loss Function 

Fissler and Ziegel [22] introduced a class of loss functions 

called FZ Loss, denoted by #$% as follows:  

#$%��, ', (; �, *+, *,� 

� �-�� ≤ '� − �� /*+�'� − *+��� + 1
� *,�(�'1 

−*,�(� 2+
3 -�� ≤ '�� − (4 − 5,�(�  

(3) 

888



� represents the collection of rates of return, ' denotes the 

VaR, and ( signifies the ES. An indicator function, denoted 

by -, plays a key role. This function outputs a value of one if 

the rate of return  ∈ � is less than or equal to the VaR 

threshold ', indicating an exceedance of the VaR level. In all 

other cases, the indicator function returns a value of zero. *+  

and *,  are both unspecified index function with 5,7 � *, . It is 

shown that any loss function from the FZ loss class meets the 

criteria as a consistent score function for the VaR and ES pair, 

i.e. minimizing the expected loss using any function within 

this class yields the true VaR and ES values [21]. 

A crucial aspect is choosing *+  and *,  such that the 

resulting loss function generates a difference that is 

homogeneous of degree zero. This property has been shown 

in volatility forecasting applications to lead to higher power 
in Diebold and Mariano tests [28]. Nolde and Ziegel [29] 

shows that, in general, there is no FZ loss function that 

produces a homogeneous loss difference of zero degree. 

However, in risk management applications, for values of � 

that are of interest (ranges from 0.01 to 0.1), it can be assumed 

that ', ( < 0 [26]. Thus, following this fact, the FZ loss 

function class yields exactly one function that produces a 

homogeneous loss difference of zero degree, denoted by #$%&: 

#$%&��, ', (; �� 

� − +
3; -�� ≤ '��' − �� + <

; + =>?�−(� − 1   (4) 

which is obtained by specifying *+�@� � 0 and *,�@� � − +
A. 

The FZ0 loss function enables the exploration of the 

semiparametric dynamic model GAS-1F for estimating 

Expected Shortfall (ES) and Value at Risk (VaR). 

B. GAS-1F Model for VaR and ES 

Consider a dataset containing historical return rates  � of 

an asset for a defined period � �  1, . . . , �. To effectively 
estimate VaR and ES while incorporating time-varying 

volatility, the semiparametric GAS-1F model estimates the 

variable B� which represents the component of volatility at 

time point �. VaR and ES is then calculated using the 

estimated volatility, as follows: 

 B� � C + DB�E+ + FG�E+H�E+ (3) 

 '� � 	 exp�B�� (4) 

 (� � L exp�B�� , L < 	 < 0 (5) 

exp�B�� : volatility at time �  

G�E+  : scale factor at time � − 1 

H�E+ : score function at time � − 1 

'�  : VaR at time � 

(�  : ES at time � 

	, L, C, D, F : parameters to be estimated 

 

The GAS-1F model shown above is constructed based on 
the GAS framework by Bogdan et al. [17]. However, the 

GAS-1F model utilizes the loss function #$%& instead of a 

likelihood function in constructing the scale factor and score 

function, circumventing the need for specific assumptions 

about the underlying data distribution [26].  

Based on how the VaR and ES are defined in (6) and (7), it 

can be obtained that: 

 
M<N
MON � MP<N

MONP
� 	 exp� B�� � '� (6) 

 
M;N
MON � MP;N

MONP
� L exp� B�� � (� (7) 

Therefore, replacing the log-likelihood function with the 
#$%& function yields the following score function and scaling 

factor: 

 H� ≡ MQRST��N,<N,;N;3�
MON

� − 2 +
3�U VWX�ON��  1��� ≤ 	 exp�B����� − 14 (8) 

 G� ≡ MPYNZ[�QRST��N,<N,;N;3�"
MONP

� − +
3;N

\]��'��^�'��, + 1 (9) 

However, it is found that the scaling factor G� above 

depends on the unknown distribution of �� . To avoid using 

distribution assumptions, Patton et al. [26] used an 

approximation that ��  can be written as a multiplication of a 

random variable _� with a volatility ̀ � , that is, �� � `� . _� ⟺
 _� � �N

bN where _�~dde. This way, it can be obtained that 

]��'�� is proportional to '�E+, that is:  

 ]��'�� � f
<N ]g�	� � h

<N (10) 

by assuming i � 	]g�	� < 0. Consequently, putting 

]��'�� � h
<N in the scaling factor G� results as follows: 

 G� � 1 − h
3

f
U (11) 

where i < 0 < f
U < 1. In this context, G� turns out to be a 

positive constant of unknown value. This implies that the 

model needs to estimate a positive constant as its scaling 

factor. Patton et al. [26] have observed that employing a larger 

scaling factor tends to lead to significant loss values. Thus, for 

simplicity, G� is set to 1. Consequently, the final form of the 

GAS-1F model can be expressed as follows: 

B� � C + DB�E+ + F 1
L exp�B�E+� /1

� -���E+
≤ 	 exp�B�E+����E+
− L exp�B�E+�1 

(14) 

C. GAS-1F Parameter Estimation for VaR and ES 

Based on the previous section, GAS-1F model involves 

five parameters: 	, L, C, D, and F, where C represents a 

constant. Patton et al. [26] found that there exist multiple sets 

of parameters that can yield the same time series B� (i.e. no 

unique solution). Assigning a value to C can address this issue 

[26]. For simplicity, we set C � 0. Consequently, there are 

four parameters which require estimation in this study, 

namely j � �	, L, D, F�.  

Building upon the work of Lazar and Xue [21], who 

demonstrated the effectiveness of minimizing expected loss 

using the #$%& function for estimating VaR and ES, this study 

seeks to identify the optimal parameter values by using this 

concept. Specifically, the objective is to find the parameter 

vector j that minimizes the #$%& function at each time point �. 
This optimization problem can be mathematically formulated 

as follows: 

 jk ≡ arg minp∈ℝ \?�j�^ (12) 
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 ?�j� � +
r s∑ #$%&N���, '��j�, (��j�; ��r�u+ v, � � 1, … , � (13) 

wx : GAS-1F parameter estimate 

?�w� : objective function 

'��w� : VaR evaluated using parameter w 

(��w�     : ES evaluated using parameter w 

 

However, while the chosen loss function offers advantages, 

it presents challenges for optimization. The function 

incorporates the indicator function -��� ≤ '�� which exhibits 

discontinuity at points where �� � '�.  
 

 
Fig. 1  Visualization of indicator function -��� ≤ '�� discontinuity 

 

This discontinuity renders gradient-based optimization 

methods infeasible. On the other hand, direct search methods, 

while potentially viable, are unsuitable due to their sensitivity 

to initial parameter values [30]. Building upon [26] this study 

incorporates a logistic linking function to address these 

limitations, which is defined as follows:  

 Γ��� , '�, ; z� � +
+{VWX �|��NE<N��  , z } 0  (14) 

The smoothing parameter, denoted by z, represents the 

degree of smoothness in the model. The function above 

converges to the indicator function as z approaches ∞. 

Therefore, by replacing the indicator function in the loss 

function #$%& with the logistic linking function, we obtain the 
smoothed version of the loss function, defined as follows: 

#$%&� 
���� , '�, (�; �, z� 

� − 1
�(�

/ 1
1 + exp�τ�Y� − v��� 1 �'� − ��� + '�

(�+ =>?�−(�� − 1 

(18) 

With the smoothed loss function #$%&� � in hand, gradient 

search optimization becomes feasible. This allows us to 

obtain parameter values wx| that intuitively represent close 

approximations to the true parameter estimates wx. Next, the 

Nelder-Mead optimization is utilized as a direct search 

method to estimate the true values of w using the unsmoothed 

loss function �����  and the initial parameter values wx| obtained 

from gradient search. This approach effectively addresses the 

sensitivity of direct search methods to initial values [26]. The 

true parameter estimates, denoted by wx, are then employed to 
construct the GAS-1F model. With the constructed GAS-1F 

model, the VaR and ES estimates can be obtained, which is 

'�� and (̂� for � � 1,2, … , �. These values represent the 

estimated VaR and ES at each time point, accounting for the 

volatility at that specific time point. 

III. RESULTS AND DISCUSSION 

In this section, we apply the previously discussed GAS-1F 

model to a dataset comprising daily rate of return data from 

S&P 500 index share prices, covering the period from January 
3, 1990, to December 30, 2016, with a total of 6,800 

observations.  

 
Fig. 2  Visualization of S&P 500 index share prices dataset from January 3, 

1990, to December 30, 2016 

TABLE I 

SUMMARY STATISTICS 

Mean 0.02690 

Std. deviation 1.12620 
Max 10.9572 
Min -9.4695 

'�3u&.&� -1.7315 

(̂3u&.&� -2.6972 

From the statistics shown above, it can be interpreted that 

during the period from January 3, 1990, to December 30, 

2016, the risk of loss at a 95% confidence level is -1.7315%, 

and in cases where the risk exceeds this value, the loss faced 

is -2.6972%. However, it is evident that the minimum 
observed value is at -9.4695%. In other words, there exists 

loss more severe than the estimates by more than 6% of the 

value of (̂3u&.&�. This indicates that neither  
'�3u&.&� nor (̂3u&.&� provide sufficient information to account 

for the volatility in the dataset. Therefore, the GAS-1F model 

is constructed to estimate VaR and ES. 

Before estimating the parameters of the GAS-1F model, the 

S&P 500 rate of return dataset is divided into two subsets. The 

rate of return values observed during the first ten years 

(January 3, 1990, to December 31, 1999) is used as training 
data, comprising 2525 observations. The rate of return values 

observed after December 31, 1999, is used as testing data, 

comprising 4,275 observations. 

A. In-sample Estimation 

We now present estimates of the parameters of the models 

presented in Section 2. To analyze the impact of different z 

values on the resulting loss, the gradient search optimization 

is performed three times, with smoothing parameters set to 

z � 5, z � 20, and z � 100. 
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Fig. 3 Visualization of the logistic function with z � 5 compared to the 

indicator function -��� ≤ '�� 

 

 
Fig. 4 Visualization of the logistic function with z � 20 compared to the 

indicator function -��� ≤ '�� 

 

 
Fig. 5  Visualization of the logistic function with z � 100 compared to the 

indicator function -��� ≤ '�� 

 

TABLE II 

PARAMETER ESTIMATES OBTAINED FROM GRADIENT SEARCH OPTIMIZATION 

wx� z � 5 z � 20 z � 100 

	�| -0.6218 -1.1553 -1.1904 

Lk| -0.8959 -1.7437 -1.8172 

F�| 0.0142 0.0073 0.0069 

D�| 0.9862 0.9925 0.9945 

To determine the best parameter set, the results from these 

optimizations are then used for direct search optimization 

using the actual objective function. In other words, the direct 

search optimization is conducted three times, each using 

wx|u� , wx|u,&, and wx|u+&& as the initial values. The method 

utilized for this direct search optimization is the Nelder-Mead 

method [31]. 

TABLE III 

PARAMETER ESTIMATES OBTAINED FROM DIRECT SEARCH OPTIMIZATION 

wx� wx|u� wx|u,& wx|u+&& 

	� -0.6294 -1.1642 -1.1876 

Lk -0.9168 -1.7565 -1.8063 

F� 0.0102 0.0068 0.0069 

D� 0.9983 0.9946 0.9952 

?�wx| � 0.6164 0.6025 0.6040 

 

It can be observed from the table above that the smallest 
objective function value was obtained from the second 

optimization, which used wx|u,& as the initialization point. 

Consequently, the GAS-1F model obtained is as follows: 

Bk� � 0.9946Bk�E+ + 0.0068 1
(̂�E+

/1
� 1���E+

≤ '��E+���E+ − (̂�E+1 

(19) 

 '�� � −1.1642 exp�Bk��  (15) 

 (̂� � −1.7565 exp�Bk��  (16) 

B. Out-of-sample Estimation 

It can be assumed that Bk+ � 0, i.e. there is no volatility 

when there is only one observation. Consequently, the values 

'�� and (̂� for � � 1, . . ,6800 can be calculated using the 

constructed GAS-1F model as presented in the previous 

section. 

 
Fig. 6  VaR and ES estimates using GAS-1F model over S&P 500 index share 

prices from January 3, 1990, to December 30, 2016 

 

As illustrated in Figure 6, the time series estimates of VaR 

and ES intuitively capture the overall pattern of daily return 

values. This allows us to predict at which points in time the 

returns are increasing or decreasing and estimate the potential 
magnitude of losses on those days. However, despite the time 

series of VaR and ES capturing the return pattern, Figure 1 

shows that there are still instances where the return values are 

lower than the estimated VaR and ES for that day. This can 

occur when the return values drop drastically, indicating 

significant volatility spikes [31], [32]. Such sudden sharp 

increases may result in less accurate VaR and ES estimates 
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using the GAS-1F model on those days. Nevertheless, 

instances of losses being more severe than the VaR and ES 

estimates are relatively rare. To evaluate the GAS-1F model's 

effectiveness in estimating VaR and ES, we conducted a 

performance comparison using the Diebold-Mariano Test. As 

the benchmark model, we employed the widely used 

GARCH(1,1) model using standard normal distribution 

assumption, a common parametric approach for stock price 

modeling [33], denoted as GARCH(1,1)-N. Firstly, the 

GARCH(1,1)-N model is constructed using the same training 

data, that is, the rate of return data for � � 1, … ,2.525. The 

model obtained is as follows: 

 ��, � 0.0055 + 0.0518��E+, + 0.9420��E+,  (17) 

 �� � �� − 0.0588 (18) 

The VaR and ES estimates are calculated as follows: 

 '��� � �E+�0.05��� + 0.0588 (19) 
 (��� � − �2$Z[�&.&��4

&.&� �� + 0.0588  (20) 
This model is then used to estimate VaR and ES quantities 

over in-sample and out-of-sample period, similarly to the 

GAS-1F model. The value of �+, is set to be the sample 

variance. 
 

 
Fig. 7  VaR and ES estimates using GARCH (1,1)-N model over S&P 500 

index share prices from January 3, 1990, to December 30, 2016 

 

The performance of the two models is then compared by 

examining the loss values produced by each model over the 
out-of-sample period. Using the #$%& function, the average 

loss generated by both models is calculated as follows: 

 =�̅� � 0.8528, =�̅�� � 0.8763  (21) 
It is found that the average loss for the GAS-1F model is 

less than that for the GARCH (1,1)-N model. However, to 

assert that the VaR and ES estimates using the GAS-1F model 

are more accurate, the significance of the difference in loss 

values between the two models needs to be tested. The 

Diebold-Mariano test is employed for this case.  

The loss difference is firstly calculated at each time point 

over the out-of-sample period, that is, e� � =� − =��  for � �
2,526, … ,6,800. Then, the mean of sample e�  can be 

calculated as follows: 

 e̅ � � +
� .¡&&E,.�, � ∑ e� .¡&&�u,.�,  ¢ � −0.0235 (22) 

In calculating the sample variance, Newey-West standard 

errors are utilized to account for potential heteroschedasticity 

in the data [33]. The resulting test statistic is as follows: 

 £¤ � ¥¦
§�̈©ª P  � E&.&,«� 

√&.&&&+  −2.311  (23) 

Since £¤ � −2.311 < −®0.05
2

� −1.96, we can conclude 

that the null hypothesis is rejected. This indicates that there is 

a significant difference in the accuracy of the forecasts 

produced by the two models. Therefore, it can be concluded 

that, as a semiparametric model, the GAS-1F model 

successfully provides a better risk assessment for the S&P 500 

index return data through more accurate VaR and ES 

estimates compared to the parametric GARCH (1,1)-N model. 

IV. CONCLUSION 

The GAS-1F model shines as a two-stage, semiparametric 

tool for estimating VaR and ES. It avoids data distribution 

assumptions by using a nonparametric structure to estimate 

volatility via a loss function, replacing the usual log-

likelihood function. This estimated volatility is then used to 

calculate VaR and ES. We validated the GAS-1F model on 

S&P 500 data, generating daily VaR and ES series. Compared 

to a benchmark model, the GAS-1F model displayed superior 

accuracy, as confirmed by the DM test. This flexible approach 

is ideal for VaR and ES estimation, especially when data 

distributions are uncertain. Future research could delve into 
the FZ Loss function class, particularly FZ0 Loss, and explore 

alternative factors and coefficients within the GAS-1F model. 

Testing its performance on diverse data sets would further 

solidify its capabilities. 
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