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Abstract—The rapid evolution of software, hardware, and internet technology has enabled the proliferation of internet-connected sensor 

tools that gather information and observations from the physical world. The IoT comprises billions of intelligent devices, extending 

physical and virtual boundaries. However, traditional data processing methods face significant challenges in handling the vast volume 

and variety of IoT data. This paper systematically reviews. These devices generate vast amounts of data daily, with diverse applications 

crucial for generating new knowledge, identifying future trends, and making informed decisions. This underscores IoT's value and 

enhances technology. Deep learning (DL) has significantly enhanced IoT and mobile applications, demonstrating promising outcomes. 

Its data-driven, anomaly-based approach for detecting emerging threats positions it well for IoT intrusion detection. This paper 

proposes a comprehensive framework leveraging DL techniques to address data processing challenges in IoT environments and enhance 

intelligence and application capabilities. Furthermore, this study systematically reviews and categorizes existing deep learning 

techniques applied in IoT, identifies critical challenges in IoT data processing, and provides actionable insights to inspire further 

research in this domain. It discusses the introduction of IoT and its data processing challenges and explores various DL approaches 

applied to IoT data. Significant DL efforts in IoT are surveyed and summarized, focusing on datasets, features, applications, and 

challenges to inspire further advancements in this field.  
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I. INTRODUCTION

Smartphone, sensor, and actuator technologies have 
improved application intelligence, enabling devices to 
communicate and perform complex tasks. However, the 
exponential growth of IoT data hpas surpassed traditional 
processing capabilities, requiring innovative approaches like 
deep learning to address challenges such as scalability and 
real-time analytics. Current machine learning approaches 
often fail to address the challenges of data volume, variety, 
and velocity inherent in Internet of Things (IoT) systems, 
leading to inefficiencies in processing and analysis. 
Furthermore, there is a lack of integrated frameworks that 
combine deep learning techniques to unlock the full potential 
of IoT data in diverse applications. Be that as it may, in 2008, 

the number of devices connected to networks exceeded the 
total number of people on the planet. Since then, it has been 
growing exponentially [1]. In the present age of the IoT, a 
wide range of devices—including smartphones, integrated 
systems, wireless sensors, and almost every other sort of 
device—are linked together via local networks or the internet 
[2]. The rapid use of IoT technology, such as smartphones, 
sensor networks, unmanned aerial vehicles (UAVs), cognitive 
smart systems, and other related breakthroughs, has fueled the 
creation of various unique mobile and remote applications [3], 
[4]. New technologies are being created to analyze this data, 
providing actionable insights and informed decision-making. 
However, efficiently processing and analyzing the ever-
increasing amount of IoT data remains a significant challenge. 
Existing solutions often struggle with the complexities of data 
heterogeneity, real-time processing, and scalability, which are 
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critical for IoT systems. Addressing these challenges is 
essential to enable IoT applications to meet current and future 
demands across various sectors. This is taking place as the 
quantity of data collected by those gadgets and the sheer 
amount of devices continue to grow. The implementation of 
artificial intelligence ("AI") strategies, such as Machine 
Learning (ML), and Deep Learning (DL), has been made 
possible as a consequence of this breakthrough.  However, the 
lack of comprehensive approaches to integrating deep 
learning techniques into IoT applications limits the ability to 
address the challenges of big data processing, scalability, and 
real-time analysis challenges. This study aims to bridge this 
gap by proposing an integrated framework leveraging deep 
learning techniques to address these pressing challenges. This 
study makes several significant contributions to IoT and deep 

learning. First, it systematically reviews and categorizes state-
of-the-art deep learning techniques applied in IoT 
environments, providing a structured overview for 
researchers and practitioners. Second, it identifies critical 
challenges in IoT data processing, such as heterogeneity, 
scalability, and real-time analytics, and highlights potential 
solutions leveraging deep learning. Third, this paper proposes 
a novel framework that integrates deep learning to address 
these challenges effectively, offering a practical approach to 
enhance IoT application performance. Lastly, it provides 
actionable insights and identifies promising research 
directions to advance the intersection of IoT and deep learning 

Our method uses a comprehensive workflow model that 
covers data acquisition, processing, display, and assessments, 
as shown in Figure 1 [5].  

 

 
Fig. 1  Workflow Model for Deep Learning in IoT Data Analysis 

 
Utilising this methodology allows for developing Internet 

of Things apps that are both effective and efficient. Data 
analysis has typically depended on technical knowledge and 
machine learning methods such as logistical regression, 
support vector regression, and random forests for tasks 
including traffic forecasting [6], tracking of vehicles [7], and 
shipment time estimate [8]. These approaches have been used 
for a variety of applications. This is because data analysis is a 
crucial component that requires a significant amount of 

computational power. On the other hand, traditional methods 
often fail to handle the enormous amounts of volatile and 
unpredictable data created from various Internet of Things 
databases in this era of "big data." Traditional techniques 
often emphasize the fundamental characteristics of the subject 
matter and rely significantly on previous expertise in specific 
areas. Therefore, advanced methodologies are needed to 
manage IoT data efficiently. This research identifies a critical 
gap in integrating deep learning techniques with IoT 
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applications, particularly in addressing data heterogeneity, 
real-time processing, and scalability. By addressing these 
issues, this study aims to provide a comprehensive framework 
that enhances the intelligence and efficiency of IoT 
applications. Most learning algorithms in these systems use 
shallow structures, severely restricting their modeling and 
representational capacities.  

The ability to accurately explain and comprehend data is of 
the highest significance due to this consideration. For this 
purpose, there is a pressing requirement for statistical 
instruments that are more successful to fully utilize the 
possibilities of the initial information that is provided by a 
broad range of applications that are connected to the Internet 
of Things. According to a study that McKinsey carried out on 
the subject of the international economic consequences of the 
IoT, it is anticipated that the IoT would have an impact on the 
global economy that is likely to range around $2.7 trillion and 
the amount of $6.2 trillion by 2025, according to the study. 
[9]. Following the industrial sector, which is forecast to 
contribute 33% of the overall effect, and the oil industry, 
which is anticipated to contribute 7% of the total impact, the 
healthcare sector will likely be the most major contributor, 
accounting for 41% of the entire impact. Furthermore, 
transportation, irrigation, public infrastructure, security, and 
commerce combined account for more than fifteen percent of 
the Internet of Things business [10].  

According to these forecasts, the Internet of Things 
ecosystem will undergo significant and fast expansion, 
particularly regarding the services, data creation, and 
associated demand related to the ecosystem. Machine learning 
is the automated process by which computers amass 
knowledge to execute complex analyses, make accurate 
evaluations, and design novel problem-solving solutions [11]. 
In addition, the paper by McKinsey dives into the economic 
repercussions of machine learning. Within this paper, the 
primary factors that are responsible for these technical 
developments are investigated. Particularly noteworthy is the 
fact that developments in machine learning, such as deep 
learning and neural networks, have made it possible to 
automate the processing of large data sets. The use of this 
automation is essential for the production of significant 
insights and the improvement of decision-making procedures. 

Machine-to-machine (M2M) interactions are made 
possible by various communication technologies essential to 
deploying Internet of Things devices. Systems like Wi-Fi, 
Bluetooth, and ZigBee are technologies that make 
communicating easier across shorter distances. Conversely, 
long-range communication may be performed by many 
mobile networks, including Sigfox, LoRa, M1 CAT, GSM, 
4G, LTE, and eventually 5G networks [12]. These various 
communication methods are essential to ensure that Internet 
of Things devices can function without interruption and 
remain connected across various applications and settings. 

To keep the Internet of Things devices affordable, it is 
essential to accomplish key features like data gathering and 
machine-to-machine (M2M) interactions. Because of the 
continual acquisition and distribution of vast quantities of 
information by IoT devices, there is a significant link between 
the notion of "big data" and the IoT [13]. This is because they 
both collect and distribute information. One of the most 
important aspects of Internet of Things design is the ability to 

effectively manage, organize, and analyze these vast data 
streams [14]. AMQP, MQTT, CoAP, and HTTP are some 
protocols that have made it easier for machines to communicate. 
This has enabled Internet of Things platforms such as 
Thingsboard, Thingspeak, DeviceHive, and Mainflux to be 
integrated into Internet of Things infrastructures [15], [16]. 

Edge computing is essential to the IoT since it entails data 
processing directly on Internet of Things devices under certain 
circumstances. However, because of the limits of low-end 
Internet of Things devices, it is necessary to use intermediate 
nodes, sometimes known as "fog nodes," to undertake 
complicated processing jobs closer to the network's edge. This 
strategy considerably reduces the burden of moving data to 
other cloud nodes for additional processing. After some time, 
the data is saved in cloud storage and submitted to more 
complex analyses employing machine learning (ML) and deep 
learning techniques. Through this approach, intelligent apps 
with expanded capabilities that can be distributed across many 
devices may be developed. [17], [18], [19].  

Since deep learning solves the constraints of standard 
machine learning approaches in terms of satisfying the 
requirements of IoT systems, it has received a large amount 
of interest due to its considerable analytical capabilities. Even 
though there have been significant developments in the IoT, 
the use of deep learning technologies in IoT settings is still in 
its early phases. Several researchers have performed reviews 
on a variety of topics, including the application of deep 
learning techniques in the IoT for the analysis of big and 
streaming data [20], the use of machine learning techniques 
in sensor networks with wireless connections (WSN) [21], the 
application of deep learning in the medical field [22], and the 
use of deep learning (DL) algorithms for intelligent 
advancement [23], [24]. Although there is a noticeable 
absence of comprehensive evaluations that extensively 
analyze the wide variety of Internet of Things devices that use 
deep learning, there is an apparent absence of such 
assessments. 

This publication thoroughly reviews the most recent 
research achievements and underlying ideas in using deep 
learning methods to improve the Internet of Things or IoT 
programs. Deep learning has a wide range of applications, 
which are shown in a variety of fields. These fields include 
safety monitoring, illness analysis, urban localization, 
intelligent control, traffic estimation, domestic robots, drive 
automation, defect assessment, and factory inspection. In 
addition, this paper investigates the difficulties and problems 
that arise when implementing deep learning software for 
Internet of Things applications and suggests possible research 
avenues that should be pursued to progress this promising 
topic. The organization of this document's structure may be 
summarised as follows: In the second section, a 
comprehensive examination of effective architectures for 
deep learning and cutting-edge deep learning approaches is 
presented. This section also provides an extended overview of 
various deep learning neural network (DNN) architectures 
with various applications. In the third section, we investigate 
the use of deep learning in the IoT across various industries, 
such as intelligent towns and cities, education, manufacturing, 
medicine, transportation information systems (ITS), and 
agriculture. We also discuss the unique issues connected with 
these types of industries. The text's conclusion is presented in 
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Section 4, which summarises the most important results and 
suggests topics that should be investigated further.  

The purpose of this document is to provide a 
comprehensive and in-depth review of the most current 
developments in research and underlying concepts. This text's 
primary emphasis is on using deep learning methods to 
improve the efficiency and capabilities of IoT systems. The 
practical applications of deep learning have been proven in a 
wide variety of fields, including but not limited to the 
following: safety monitoring, illness analysis, indoor 
localization, synthetic control, traffic estimation, domestic 
robots, drive automation, defect assessment, and factory 
inspection. In addition, this article goes into the many 
difficulties and problems that occur when deep learning is 
used in Internet of Things contexts and suggests prospective 
research avenues that should be pursued to progress this 
promising topic further. The following makes up the 
document's structure: This section thoroughly reviews several 
deep neural networks, also called structures with broader 
applications. It assesses efficient deep learning designs and 
the most recent deep learning approaches. In the third section, 
we study the use of deep learning in the IoT across a range of 
industries, such as cities that are smart, education, 
manufacturing, medical care, intelligent transport systems 
(ITS), and agriculture. With this investigation, we address the 
distinct issues that are present in each of these fields. In the 
last section of the publication, Section 4, a summary of the 
most important results and some suggestions for areas that 
may be the subject of further study are presented. This study 
proposes a systematic workflow model integrating deep 
learning architectures to address critical challenges in IoT 
data processing, including anomaly detection, big data 
management, and efficient distributed training 

The application of deep learning (DL) techniques in IoT 
has gained significant attention due to their ability to 
efficiently process and analyze large volumes of data. 
Previous studies have focused on various aspects of IoT and 
DL integration: 

A. DL in IoT for Healthcare 

Researchers have explored DL for health monitoring and 
diagnosis. For example, Bordoloi et al. [22] highlighted using 
DL in healthcare to enhance service quality, specifically 
focusing on patient monitoring systems. However, their work 
does not address real-time analytics, a critical requirement for 
healthcare applications. 

B. DL in Smart Cities 

Smart city applications extensively utilize IoT and DL. 
Studies by Tanwar et al. [23] examined streaming data 
analytics for smart cities. While their methods are promising, 
the scalability of these solutions remains a challenge in large-
scale implementations. 

C. Big Data Analytics in IoT 

Mohammadi et al. [20] surveyed DL techniques for big 
data and streaming analytics in IoT, identifying key 
challenges such as data heterogeneity and processing latency. 
Their review, however, lacks a structured framework to 
address these challenges. 

 

D. DL Techniques for IoT in Agriculture 

Gupta et al. [25] proposed IoT-enabled smart farming 
systems utilizing DL for soil quality monitoring. While this 
approach shows potential, it is constrained by limited 
computational resources in rural areas. Despite these 
advances, there is a noticeable lack of comprehensive 
frameworks integrating DL techniques to address IoT 
challenges, such as scalability, real-time processing, and data 
heterogeneity. This study addresses these gaps by proposing 
an integrated framework that leverages state-of-the-art DL 
techniques. 

II. MATERIAL AND METHOD 

A. Deep Learning Techniques 

It is of the utmost importance that stakeholders maintain a 
complete grasp of the IoT and the enormous amounts of data 
that it creates. This understanding should include the 
relevance of the IoT, as well as its essential components, 
possibilities, and problems. There are two aspects to the link 
between the IoT and big data: first, the IoT makes a 
substantial contribution to the creation of enormous amounts 
of data; second, the goal of considerable data research is to 
improve the services and processes that are associated with 
the Internet of Things [25]. Because research has proved the 
significance of the Internet of Things big data to society, it is 
vital to investigate the distinctive characteristics of IoT data 
and how they vary from conventional big data to properly 
establish the needs for IoT data analytics [26], [27].  

At present, there is an ongoing discussion over the 
superiority of deep learning (DL) over traditional machine 
learning (ML) methodologies, especially concerning the 
advantages that DL provides in IoT applications [28], [29]. 
Deep learning has an extraordinary potential of extracting 
detailed patterns from vast amounts of unprocessed data 
spread across various Internet of Things applications [30]. 
This is in contrast to the classic machine learning approaches 
that are currently in use. The ability to analyze data is highly 
impacted by the complexity and variety of structures that 
learning models, particularly convolutional architectures, 
possess. Therefore, it is predicted that deep learning models 
would display improved performance in situations involving 
significant volumes of data. Still, standard learning models 
may have difficulties managing the large amount of data 
being presented to them. Because of its end-to-end approach, 
deep learning can autonomously gather and extract useful 
features from raw data. This is made possible by eliminating 
the requirement for manually produced applications requiring 
much time and effort to construct. The rise in popularity of 
deep learning models over the last several years may be 
attributed to the autonomous feature extraction that has been 
taking place. 

Deep learning is a sophisticated approach for training 
multi-layered neural networks that has broadened the bounds 
of artificial intelligence and increased the quality of 
interaction between people and computers. One of the most 
significant changes that deep learning has brought about in the 
field of machine learning is the profound transformation that 
it has brought about. Deep belief networks (DBNs) and 
convolutional neural networks (CNNs) have both been shown 
to have a high level of accuracy in tests that were conducted 
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using the MNIST and real-life handwritten character 
databases [31]. A semi-white box scenario, in which just the 
structure and parameters of the system model are known but 
not the user data, has been demonstrated to offer significant 
hazards [32]. The effect of membership inference attacks 
(MIA) on deep-learning-based face recognition systems has 
been shown to pose significant dangers.  

 

 
Fig. 2  Neural Network Structure in Deep Learning 

 

Deep learning methods are used extensively in various 
fields, including predicting time series, managing large 
datasets, and completing computationally tricky tasks such as 
detecting picture patterns and identifying speech [33], [34]. 
Although it needs skilled computer skills and much work for 
model training, deep learning has gained favor as a data 
processing and modeling approach in this age of big data. 
Additionally, it has gained popularity in recent years. 
Thankfully, these issues have been overcome by the advent of 
powerful graphics processing units (GPUs), making it 
possible to train deep learning models effectively. 
Functionality estimate may be automated by using dense layer 
configurations in DL approaches, which eliminates the 
requirement for human feature computation and extraction. 
These approaches have been used by researchers to measure 
and analyze EEG characteristics to get a better understanding 
of the neurological abnormalities that are brought on by 
strokes [35]. Additionally, biomarkers have been utilized to 
differentiate between people who have had an ischemic stroke 
and those who are in good condition [36], [37]. 

Deep learning models provide considerable gains over 
traditional machine learning techniques during either the 

learning or forecast stages. These benefits include reducing 
the requirement for human guidance and the autonomous 
extraction of less noticeable elements [38], [39]. Supervisory 
learning, in which models are trained on data that has been 
labeled, and unsupervised learning, in which models are 
trained on data that has not been labeled, are the two primary 
categories used in machine learning. 

B. Learning Through Supervision 

The process of constructing a system model using a labeled 
training set is known as supervised learning. The 
backpropagation approach is the most common strategy used 
in supervised learning. This method modifies the weights of 
the model depending on the amount of inaccuracy it produces 
in its predictions [40]. 

C. RNNs, which stand for recurrent neural networks 

Recurrent neural networks, often known as RNNs, have 
been conceptualized to handle sequential and time series data 
efficiently. Recurrent neural networks (RNNs) are suited for 
applications that are reliant on input sequences because they 
take into account prior inputs in their calculations. Every 
neuron that makes up an RNN has an innate memory function 
responsible for storing and maintaining prior data estimations. 
Backpropagation across Time (BPTT) is a method of training 
recurrent neural networks (RNNs) that differs from regular 
backpropagation in that it involves unrolling the network 
across time to compute gradients [41], [42]. Recurrent units 
with gates (GRUs) and LSTM networks, which stand for 
Long Short-Term Memory, are two examples of creative 
techniques that have been developed to solve the limitations 
of recurrent neural networks (RNNs) [43], [44]. These 
constraints are caused by gradient diffusion and a longer-term 
dependence. 

D. Memory for the Long-Term and Short-Term (LSTM) 

A form of recurrent neural network (RNN) known as 
LSTM networks is beneficial for managing data that is time-
stamped, sequential, and reliant on the long term [46]. To 
govern the flow of facts, LSTMs make use of unit gates [47]. 
This enables them to recall pertinent material while 
simultaneously dismissing inputs that are irrelevant. 
Feedback chains, recall gates, read gates, and writing gates 
are all components of this architecture that are responsible for 
managing data access and memory maintenance. In tasks that 
require a sustained temporal dependence, LSTMs perform 
better than typical RNNs [48]. Additionally, LSTMs have 
been effectively used to anticipate sequences and labeling 
tasks according to Song et al. [49], Safaei et al. [50], Gers and 
Schmidhuber [51], and Han et al. [52].  

E. CNNs (Convolutional Neural Networks) 

The primary applications of CNNs are in the areas of 
recognition of images and classification. Some hidden layers, 
including layers of convolution, layers of pooling, and fully 
connected layers, are included in their composition. 
Additionally, they include an input layer and an output layer. 
While extracting high-quality features from the input data, the 
convolutional layers apply filters to the data, while the 
pooling layers lower the dimensionality of the data. 
Conventional neural networks (CNNs) are able to effectively 
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analyze two-dimensional input data and overcome the issues 
that highly connected neural networks encounter while 
performing vision-based tasks [53], [54], [55].  

Deep neural networks are based on transformers, which 
are sequence-to-sequence neural network designs that rely on 
self-attention processes to capture global relationships in data 
[56]. Transformers are used to understand and analyze data 
[57]. NLP, natural language processing, and computer vision 
are two areas in which they have become more prominent [58]. 
The transformer-based model known as BERT has shown 
state-of-the-art performance in various natural language 
processing applications. Transformers have recently been 
used in the process of picture classification and object 
recognition, which has resulted in the simplification of these 
jobs by removing the need for components that were 
developed by Wang et al. [59], Özçift et al. [60], Sánchez et 
al. [61], and Zhang et al. [62]. 

F. Learning Without Supervision  

Unsupervised learning is a very useful when dealing with 
large volumes of unlabeled data. Methods such as stacked 
restricted Boltzmann devices (RBMs) and autoencoders with 
stacks are used for training. These methods enable 
initialization, reverse propagation, and global adjustments. 
Without the need for labeled outputs, these strategies make it 
possible for models to learn the underlying data structures 
[63], [64].  

G. Autoencoders, often known as AEs  

Neural networks intended to transfer input information for 
output data are called autoencoders. This allows for the 
successful extraction of features and the reduction of the 
amount of the data. Specifically, they are made up of an 
encoder that converts the data entered into an unnoticed image 
and a device called a decoder that restores the data input from 
the disguised representation. As a result of their ability to 
reconstruct the input at the output stage, autoencoders are 
used widely in diagnostics and defect diagnosis. This is 
because they provide valuable insights into the structure of the 
data that lies under the surface [65], [66], [67]. 

H. Machines created by Boltzmann (RBMs) 

Feature extraction, dimensionality reduction, and data 
categorization are all aspects that may be accomplished using 
RBMs, which are generative models. These probabilistic 
graphical models have a bipartite structure, allowing them to 
link visible versus hidden neurons without requiring 
connections between internal layers. In deep belief networks 
(DBNs), recurrent neural networks (RBMs) are trained to 
optimize the probability of products belonging to visible units. 
They serve as the backbone of DBNs. RBMs are comparable 
to autoencoders' ability to measure latent parameters for data 
reconstruction [68].  

I. Deep Belief Networks, often known as DBNs  

An example of a generative approach is the DBN, which 
combines fundamental unsupervised networks such as RBMs 
and AEs. Layer by layer, they are taught, with each hidden 
layer acting as the visible layer for the subsequent layer in the 
training process. Deep neural networks (DBNs) are a 
relatively quick and effective method for deep learning. They 

combine supervised and unsupervised training to produce 
robust models. The first phase is centered on the processing 
of data with unidentified information. At the same time, the 
following step is concerned with bringing DBN and labeled 
data into harmony to achieve optimum solutions. Done by 
both Wang et al. [69] and Zhang et al. [70].  

The purpose of this in-depth analysis is to emphasize the 
relevance of deep learning methods in improving Internet of 
Things applications, to illustrate their potential across a 
variety of sectors, and to emphasize the need for continuing 
development and research in this promising subject 

III. RESULT AND DISCUSSION 

A. IoT Applications and Challenges 

Data analysis is an essential component of the IoT. This 
section explores the distinctive qualities of IoT data, 
investigates its many uses, and examines the most critical 
concerns and obstacles associated with advancing IoT data 
analysis, with a specific focus on deep learning. 

B. Indicators of Internet of Things Data 

Data is the foundation upon which knowledge extraction is 
built, highlighting the importance of access to high-quality 
information. IoT, which stands for the Internet of Things, is a 
complicated paradigm with properties that vary from one area 
to another [71]. 

One of the most important aspects of the Internet of Things 
is connectivity, which makes it possible for everyday devices 
to be included in a linked network. By integrating smart 
devices and apps into a single network, this connection makes 
it easier for devices to communicate with one another, which 
in turn helps to cultivate collective intelligence within the 
Internet of Things ecosystem and generates new business 
prospects. 

C. Dynamic Data Collection  

The Internet of Things entails collecting data from the 
physical environment, necessitating several devices 
undergoing complicated transitions. These devices possess 
characteristics that allow them to constantly transition among 
states, including sleep, wake-up, connection, and separation. 
Furthermore, they can adapt to diverse conditions such as 
temperature, speed, place, and user interactions.  

Sensors are critical in the IoT since they can detect and 
measure changes in the surrounding environment [72]. They 
provide rich data that offers real-time insights into various 
systems and how those systems interact with themselves and 
their environment. Integrating IoT sensors with machine 
learning algorithms has revolutionized health informatics 
systems. This combination has enabled the identification of 
problems such as heart failure, lung infections, and brain 
activity [73]. 

D. Applications in a Wide Range of Domains  

Sensors have applications in a wide range of domains, 
including actions that people do daily. Multiple sensors, for 
example, perform essential tasks in an Automatic Aircraft 
Control System. These tasks include controlling the aircraft's 
speed, monitoring its height, tracking its location, checking 
the state of its doors, avoiding obstacles, monitoring its fuel 
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level, and managing navigation. Computers analyze these 
sensors' data to arrive at judgments based on set values. 

E. Considerations Regarding Security  

It is of the utmost importance to guarantee the safety of 
endpoints, networks, and data moving across the Internet of 
Things network, which calls for a strong security architecture. 
IoT intelligence is accomplished by combining smart 
computing methodologies, software, and hardware. IoT 
intelligence primarily emphasizes device interactions instead 
of conventional input methods and visual user interfaces that 
cater to human-system interactions. 

A few qualities have been characterized from some angles 
concerning big data in the IoT [74]. These characteristics 
include volume, velocity, and diversity. Specifically, the 6V 
characteristics may be characterized when applied to the 
context of big data in the IoT [75]. The data flood is caused 
by the IoT, which creates a vast quantity of data, with billions 
of devices contributing to it. 

1) Velocity: To keep up with the rapid development of 
Internet of Things data, it is vital to have access to both 
efficient and real-time data. The IoT data comprises a wide 
range of forms, such as text, video, audio, and sensor data, 
which may be composed of organized or unstructured 
information. To get exact analytics and trustworthy insights, 
the data collected by the IoT must be accurate, consistent, and 
reliable. Data flow rates in the IoT fluctuate depending on the 
applications being used, resulting in the generation of data 
components that may alter with time, location, and user 
interactions. 

2) Value: Transforming IoT big data into usable 
information provides organizations with several benefits, 
including the ability to make informed choices and increase 
operational efficiency. 

F. Utilising Internet of Things Devices for Deep Learning 

An explosion in the number of IoT datasets has occurred 
due to the growing availability of powerful IoT frameworks 
and open-source libraries [76]. These datasets include various 
data kinds, including text, tabular data, audio, and video. 
These datasets are produced by various hardware devices that 
function in multiple locations, such as sensors in smart cities, 
organizational fields, and augmented reality and virtual reality 
practice centers. A distributed training system that can 
quickly expand across millions of IoT devices while 
optimizing hardware resources is required to effectively train 
high-quality, extensive datasets of the IoT that have been 
gathered over time [77]. Effectively training these datasets 
presents considerable obstacles. 

A unique strategy that involves distributed training on 
various Internet of Things devices has been suggested by 
researchers as an alternative to established approaches that 
entail the centralization of big datasets where a GPU cluster 
or data center is located [78]. A significant amount of 
medium-sized Network of Things gadgets spread throughout 
the infrastructure is used in this technique to train a deep 
neural network (DL) model based on the electronic 
components of the devices. Through this technique, essential 
problems such as model convergence and system scalability 

are addressed, guaranteeing that the training process makes 
efficient use of the global Internet of Things infrastructure. 

On the other hand, training deep learning models on a 
dispersed Internet of Things infrastructure presents some 
significant issues that call for further attention. The fact that 
every Internet of Things device is involved in the training 
process raises privacy issues and makes it necessary to have 
secure measures to safeguard data. Additionally, loading 
datasets from various devices may be time-consuming, 
resulting in a decrease in the training pace. The sluggish 
exchange of model gradients during training and heavy 
computing activities makes the intricate process even more 
complicated. These problems call for in-depth research to 
develop a reliable and effective system for training and 
constructing deep learning models using the global IoT 
infrastructure. The potential of distributed training on IoT 
devices will be unlocked if these obstacles are effectively 
addressed. This will enable solving problems in real-time 
using efficient methods and deep learning models that can 
handle and analyze the enormous amounts of data created by 
the growing Internet of Things ecosystem. Achieving the full 
advantages of distributed IoT-based DL training and its 
transformational effect across various fields will need the 
discovery of creative solutions to these difficulties, which will 
become more critical as Internet of Things technologies 
continue to improve. 

G. IoT Applications, Section C 

Key qualities and characteristics are considered when 
categorizing Internet of Things apps. There are a few 
obstacles that need to be taken into consideration to guarantee 
efficient Internet of Things data analysis. It is possible to 
divide applications for the Internet of Things into several 
different categories: 

1) "Smart Home": The pioneering application of IoT is 
the smart home, which has garnered substantial customer 
interest and investments from big corporations. Internet 
connectivity enables smart home equipment like washing 
machines, refrigerators, lamps, fans, TVs, and smart doors to 
connect to the Internet, enabling improved monitoring, 
administration, and optimization of energy use. 

2) "Smart City": The goal of smart cities is to optimize 
several elements, including traffic management, water and 
waste management, security, water and waste management, 
climate monitoring, and traffic management. IoT applications 
improve quality of life by addressing concerns such as the 
availability of clean drinking water, the quality of the air, and 
the density of metropolitan areas. 

3) The IoT is revolutionizing medical research by 
providing real-time field data and test findings [79]. Devices 
connected to the Internet of Things, such as sensors, can 
monitor vital indicators of patients, such as their heart rate, 
blood pressure, and body temperature, without the continual 
presence of medical practitioners. This results in improved 
patient care and health outcomes [80]. 

4) Security: IoT-powered smart cameras improve 
worldwide security by recognizing images in real time, 
identifying perpetrators of illegal acts, and averting 
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potentially hazardous situations. However, there is still a 
massive problem with security in the IoT industry [81]. 

5) "Smart Retail": IoT applications in the retail sector 
concentrate on monitoring items, sharing information about 
inventories, and using technology such as GPS and RFID to 
enhance inventory management, expedite logistics, and cut 
costs [82]. 

6) The IoT revolutionizes agricultural operations by 
enabling remote monitoring of soil quality, weather 
conditions, crop management, and resource optimization [25], 
[83]. Intelligent agrarian systems have the potential to boost 
output and decrease waste [84]. 

7) Wearable technology is a prominent IoT application 
that influences human health and well-being. Wearable 
technology analyzes various factors, including heart rate, 
blood pressure, sleep habits, and more. 

8) Industrial Automation: The Industrial Internet of 
Things (IIoT) enables remote access, control, and data 
extraction from various sources, ultimately resulting in 
considerable gains in workforce efficiency. IIoT solutions 
provide automation that is both cost-effective and efficient, 
hence improving customer service and optimizing supply 
chain operations. 

The many Internet of Things applications show that IoT 
technology can be used in various fields. By leveraging the 
IoT's potential, groundbreaking breakthroughs and efficiency 
in various industries can be accomplished, eventually altering 
how we live, work, and interact with the world. 

H. Obstacles in the Internet of Things and Deep Learning 

The success of DL approaches is closely tied to the data 
sources used. The absence of big datasets, which are essential 
for improving DL accuracy, is a barrier to applying deep 
learning to the IoT. In addition, IoT applications have 
challenges in generating raw data that can be efficiently fed 
into deep learning models [85].  

 

 
Fig. 3  Challenges in Implementing Deep Learning in IoT 

As a result of the IoT, preprocessing data becomes more 
complicated since it requires managing heterogeneous data 
from various sources, each with a distinct format, distribution, 
and instances of missing data. Research on data-collecting 
methods is essential to guarantee the quality of the data, 
particularly when considering the quantity and placement of 
sensors that directly influence the model's effectiveness. 

Given the large amount of data gathered from various 
sources, cyber security stands out as the most serious concern 
in the world of the IoT. Maintaining data safety and 
confidentiality is essential, mainly when Internet of Things 
data is transmitted and viewed worldwide. Approaches to 
anonymization may be used in several applications to solve 
the issue of data privacy; nevertheless, these approaches may 
be vulnerable to exploitation, which might result in the re-
identification of data that has been anonymized. Specific 
strategies must be used to identify and manage irregular or 
incorrect data streams, hence enhancing the dependability of 
data and the efficiency of models in IoT applications. This is 
necessary to guarantee the integrity of deep learning models. 
To successfully integrate deep learning in the ever-expanding 
environment of the IoT, it is still essential to establish 
confidence in the data gathering and security procedures. 

System designers have substantial hurdles when designing 
deep learning for IoT systems, particularly when managing 
devices with limited resources. It is becoming more 
challenging to fulfill system requirements as datasets grow 
and new deep-learning algorithms are included in IoT 
solutions [86]. Despite its promise, deep learning has certain 
drawbacks, such as an excessive dependence on pictures 
recognizable to humans and an overemphasis on 
categorization, which neglects regression analysis, an 
essential component of other IoT applications. Many 
academics have tried to overcome this issue by including 
regression skills in deep neural networks (DNNs). One such 
attempt is the ensemble of DBN and Support Vector 
Regression (SVR) that was suggested in [87]. IoT sensor 
technologies are complex and expensive, making it difficult 
to monitor off-road vehicles using these technologies. Edge 
devices, such as smartphones, offer a viable solution for 
restricted network connections, cloud and fog computing, and 
a dependence on the professional expertise of specialists. 
Regarding monitoring and diagnosing the health of off-road 
vehicles (HM&D systems), researchers have devised an 
artificial intelligence system enabled by edge devices [88]. 
This system uses low-cost microphones as sensors 

IV. CONCLUSION 

The purpose of this article was to provide a comprehensive 
analysis of the potential uses of deep learning (DL) and IoT 
methods across various areas, including intelligent homes, 
smart cities, public transportation, energy, translation, 
healthcare, safety, and agriculture. This study highlights the 
transformative impact of deep learning and IoT integration in 
addressing key challenges such as data heterogeneity, real-
time analytics, and scalability in IoT systems. The proposed 
framework leverages distributed training approaches to 
optimize IoT applications in critical domains like healthcare, 
smart cities, and agriculture. Additionally, practical 
guidelines for deploying scalable IoT systems were provided, 
aligning with the primary objective of integrating deep 
learning to achieve actionable insights and optimized 
performance. 

However, several challenges remain, including data 
privacy concerns, computational complexity, and the time-
consuming nature of specific processes. The study also 
reviewed the latest advancements in deep learning models for 
IoT applications, covering supervised models like Recurrent 
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Neural Networks (RNNs), Long Short-Term Memory 
(LSTM), Convolutional Neural Networks (CNNs), and 
Transformer-based architectures, as well as unsupervised 
models such as Autoencoders (AE), Restricted Boltzmann 
Machines (RBM), and Deep Belief Networks (DBN). 

The combination of IoT and deep learning has driven 
significant advancements across diverse sectors by 
minimizing the reliance on manual feature engineering and 
enabling scalable, data-driven solutions. This study 
contributes to the IoT and DL intersection by presenting a 
structured review of state-of-the-art techniques, identifying 
critical challenges, and proposing a framework that addresses 
these issues effectively. The findings aim to serve as a 
foundational resource for researchers and practitioners 
looking to enhance IoT applications through profound 
learning innovations. 

Looking ahead, developing highly accurate and resource-
efficient systems will remain a critical focus. Further research 
and innovation are essential to overcome the inherent 
difficulties associated with distributed training, data privacy, 
and resource management. Continued advancements in deep 
learning and IoT frameworks are expected to unlock 
transformative possibilities across various industries, paving 
the way for exciting and impactful innovations. 

In conclusion, this study highlights the potential of deep 
learning techniques in addressing critical IoT challenges, such 
as data heterogeneity, real-time processing, and scalability. 
Proposing a structured framework offers actionable solutions 
for enhancing IoT applications in domains such as healthcare, 
smart cities, and agriculture. This study is a resource for 
researchers and practitioners aiming to leverage deep learning 
to unlock IoT's full potential. 
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