
Vol.15 (2025) No. 2

ISSN: 2088-5334

Synchronization of Data Transmission between Edge and Cloud

Network in IoT-Based Hydroponic Systems

Eni Dwi Wardihani a, Helmy a,*, Ari Sriyanto Nugroho a, Yusnan Badruzzaman a, Arif Nursyahid a,

Thomas Agung Setyawan a, Media Fitri Isma Nugraha b, Clara Silvia Anggreini a, Fitri Maharani a
a Department of Electrical Engineering, Politeknik Negeri Semarang, Semarang, Indonesia

b National Research and Innovation Agency, Jakarta, Indonesia

Corresponding author: *helmy@polines.ac.id

Abstract—The use of Internet of Things (IoT) systems in hydroponic agriculture aims to enhance the efficiency and effectiveness of

controlling plant growth parameters in real-time and automatically. However, current IoT based hydroponic systems heavily depend

on internet networks for transmitting data. This reliance becomes problematic when the internet connection is unstable or interrupted,

causing monitoring data only to reach edge devices and not the cloud, leading to potential data desynchronization. This study focused

on developing a robust data synchronization system between edge devices and cloud computing platforms to address this challenge.

The primary goal was to collect the latest data at the edge. Where sensors and local control systems operate is consistently mirrored in

the cloud without any loss. The research findings demonstrate that the synchronization system effectively achieves this objective over

an 8-day testing period. However, practical constraints, such as the TTGO T-Call ESP32 SIM800L device's transmission limit of 861

data points per operation, were observed. Despite this limitation, the system-maintained reliability, with an average transmission delay

of 3 minutes considered acceptable within operational tolerances, ensuring uninterrupted system functionality. This synchronization

capability is crucial for hydroponic agriculture, enabling seamless monitoring and control of environmental parameters critical for

plant growth. By ensuring data integrity across both edge and cloud systems, growers can make informed decisions promptly, optimize

resource utilization, and ultimately improve crop yields in IoT enabled hydroponic setups.

Keywords—Hydroponics; IoT; synchronization; edge-cloud computing.

Manuscript received 7 Aug. 2024; revised 19 Oct. 2024; accepted 24 Nov. 2024. Date of publication 30 Apr. 2025.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Hydroponics is a technique of cultivating plants without

using soil as a growing medium (planting, cultivating) [1]. It

represents an effective method of plant cultivation aimed at

replacing soil media to mitigate land constraints and

unpredictable climate change [2]. The hydroponic method

enables agricultural systems to be controlled according to
desired parameters such as temperature, humidity, nutrients,

and pH levels required for plant water management [3]. The

management of hydroponic methods is often constrained by

time and the need for more accuracy of irregular monitoring,

which affects the yield that could be more optimal [4].

To maximize the effectiveness of the hydroponic method,

it is innovated with the use of the IoT (Internet of Things)

system [5]. Hydroponic management can be monitored in

real-time and controlled by how the IoT system can

automatically control plant growth parameters [6]. Currently,

hydroponics with the IoT system depends on the internet

network for data transmission [7]. As a result, if the internet

network is unstable or disconnected, the hydroponic

parameter monitoring data cannot be sent to the cloud; it is

only sent to the edge so that the data becomes

unsynchronized. To solve this problem, a data

synchronization system between the edge and cloud

computing is needed. Thus, the latest data at the edge and

cloud computing will always be similar so the monitoring and

control system can continue running smoothly.

Previous research proposed a two-level synchronization
process that enables the adaptive and accurate distribution of

computing tasks based on their latency requirements. The

CLEDGE system has the disadvantage that SDN controllers

on other hybrid computing models may become failures,

which may cause problems [8]. Another research addresses

the challenges of traditional cloud-based synchronization by

introducing fog computing as the middle layer [9]. The

601

drawback of the system proposed in the journal is the

increased workload on user devices and cloud servers due to

differential synchronization methods [10]. Another study

compared various scenarios to evaluate a container-based

edge computing system for data synchronization applications.

When data synchronization is required between edge nodes,

scalability, and latency are limited. This is a disadvantage

compared to cloud-only solutions beyond the same user

threshold and data volume threshold [11]. In addition, some

offer analytical performance models to evaluate edge-fog-
cloud communication architectures in IoT scenarios [12].

However, real-world performance results may differ from

these models, and further refinements may be needed to more

accurately model edge-fog-cloud architectures in an IoT

context [13].

Although various studies have been conducted to improve

synchronization and performance in edge and cloud systems,

there are still some areas for improvement, such as the

previously described issues of network stability, latency, and

resource usage efficiency. Therefore, this research

contribution is as follows:
 To implement data synchronization between edge and

cloud computing in an Internet of Things-based

hydroponic parameter monitoring and control system.

 This upgrade is expected to improve the reliability and

efficiency of the hydroponic monitoring system,

ensuring that data transmission remains effective

despite network instability.

II. MATERIALS AND METHOD

A. Computing

Computing is an algorithm used to find a way to solve

problems from input data. The input data in question is an

input that comes from outside the system environment [14].

The computing used in this research is Edge Computing and

Cloud Computing, both computing are described [15] in Fig.

1.

Fig. 1 Edge and Cloud Computing

TABLE I

MAIN DIFFERENCES BETWEEN CLOUD COMPUTING AND EDGE COMPUTING

Computing Network

Bandwidth

Pressure

Network

Mode

Real-

Time

Calculation

Mode

Cloud
Computing

Global More High Large-scale
centralized
processing

Edge
Computing

Local Less Low Analysis
small-scale
intelligent

Cloud computing and edge computing play an important

role in the future development of the intelligent Internet of

Things [16]. The main differences between cloud computing

and edge computing [17] are shown in Table 1.

B. Edge Computing

Edge Computing is an approach to data processing that

locates computing resources locally or close to the data-
generating device. By processing data near the source, edge

computing reduces latency [18], increases bandwidth

efficiency, and enhances data security and privacy.

Fig. 2 Illustration of Edge Computing

An illustration of edge computing by [19] is shown in Fig.

2. Edge computing has a two-way computing flow: one

direction from the device to the cloud (upstream), and the

other direction from the cloud to the device (downstream).

This illustrates the bidirectional nature of data flow in edge

computing. In this paradigm, end devices not only consume

data but also produce it. At the edge, devices can request
services and content from the cloud, as well as perform

computing tasks uploaded from the cloud. Edge computing

can handle tasks such as distributed computing, data storage,

caching, processing, request distribution, and delivery of

services from the cloud to users [20].

This paradigm supports applications that require rapid

response, such as IoT, autonomous vehicles, and health

systems, by enabling data processing to be performed largely

at the edge of the network, while still collaborating with cloud

computing for tasks that require greater computing power or

storage. Edge computing also provides flexibility and
scalability, and is relevant in various industries such as

manufacturing, healthcare, and transportation [21]. In this

research, edge computing is used for farmers who are near the

equipment so that the internet is not needed if they want to

access monitoring data or control hydroponic parameters.

C. Cloud Computing

Cloud computing is a computing model in which

computing resources, such as servers, storage, and software,

are delivered over the internet [22].

602

Fig. 3 Schematic Definition of Cloud Computing

The concept of cloud computing refers to a system in which

data center resources are shared using virtualization

technology which can also provide elastic, on-demand and

instant services to customers and allows customers to pay

using the pay per use method as shown in Fig. 3 by [23].
Cloud computing provides flexible and scalable IT services

without requiring direct maintenance of physical

infrastructure [24]. Key advantages include easy access to

resources, efficient scalability, and lower costs, with users

only paying according to their usage [25]. In this research,

cloud computing is used for farmers at home to be able to

access the web system it uses the internet network.

D. REST API

Web services are web servers that are built specifically to
support the needs of a website or other application [26]. Client

programs use Application Programming Interfaces (API) to

communicate with web services [27]. In general, an API

exposes a set of data and functions to facilitate interaction

between computer programs and enable the exchange of

information between them [28]. A Web API is the face of a

web service, directly listening and responding to client

requests [29]. REST APIs are frequently used in web and

mobile application development and facilitate system

integration by providing a simple, scalable, and easily

accessible interface [30]. In this research, REST API is used

as a protocol for sending data from tools to the cloud.

E. System Design

The overall system block diagram is shown in Fig. 4,

namely a system for monitoring and controlling hydroponic

plant cultivation parameters using edge-based machine

learning and cloud computing. Several parameters monitored

are the degree of acidity (pH), nutrient solution concentration

(EC), greenhouse temperature and humidity, nutrient solution

level, nutrient solution temperature and light intensity.

Meanwhile, the parameters controlled are the acidity of the

nutrient solution (pH) and the concentration of the nutrient

solution (EC).
With the system below in Fig. 4, farmers can monitor and

control hydroponic plant cultivation parameters both online

via the web and android with cloud computing technology and

offline via android with edge computing technology. From the

existing system, an automatic network source switching

system will be added which is used for monitoring and control

data transmission as well as a synchronization system

between data on the edge side and data on the cloud side.

Fig. 4 Block Diagram of Monitoring and Control System

603

The design of the synchronization system is shown in

Fig.4. Synchronization in this system is comparing and

synchronizing monitoring data on the SD card with data on

the cloud server. The data stored on the SD card is reference

data because the data from sensor readings by the Arduino

Mega 2560 is directly sent to the TTGO T-Call ESP32

SIM800L module. This module functions to select the best

internet network source, so that it can ensure that no data

entering the SD card is lost [31].

Fig. 5 Synchronization System Flowchart

Fig. 5 is a flowchart for the data synchronization process.

This process begins with the Arduino Mega sending sensor

readings to the TTGO T-Call ESP32 SIM800L module. Upon

receiving the data, the module stores it on a connected SD

card. Subsequently, the same data is sent to the cloud server

for remote storage. The method used to implement this

synchronization system involves the TTGO T-Call ESP32

SIM800L, which retrieves the most recent data entered into

the cloud server and compares it with the data stored on the

SD card. When the latest data is not synchronized or does not
match the last data on the SD card, the TTGO T-Call will send

the data that follows the last data on the SD card. If the data

entered into the cloud server matches the data stored on the

SD card, the synchronization process is complete. This

process repeats continuously to ensure that the sensor data

remains consistent and secure between local storage and cloud

storage.

F. Serial Communication and Data Storage on SD Card

Serial communication in this system occurs between the
Arduino Mega 2560 microcontroller and the TTGO T-Call

ESP32 SIM800L which is used to send monitoring sensor

reading data.

Fig. 6 Serial Communication Flowchart on Arduino Mega a2560

Fig. 6 is a flowchart of the program code on the Arduino
Mega 2560 for serial communication with TTGO T-Call

ESP32 SIM800L. Serial communication on these two

microcontrollers uses the Serial pin on the board.

Fig. 7 Edge Data Storage Flowchart on SD Card by TTGO T-Call ESP32

SIM800L

604

After the data has been successfully sent serially to TTGO

T-Call ESP32 SIM800L, then the data will be saved to the

connected SD Card. These data are entered in folder test esp32

control.txt. The data sent and stored on the SD Card is written

in a single line in the file. This line not only includes all the

values obtained from the sensors but also includes the date

and time information when the readings were taken. To

separate each sensor reading value in the line, a semicolon (;)

is used as a delimiter. In other words, each line in the text file

contains a complete set of sensor data, where each data
element is separated by a semicolon, making it easy to parse

or read back during the synchronization process. Fig. 7 is the

flowchart of the program code for serial communication and

data storage on an SD card by TTGO T-Call ESP32 SIM800L.

G. Edge and Cloud Data Synchronization

Data synchronization in this system goes through several

stages, namely retrieving the latest data on the server,

comparing the data with the latest data on the SD card, and
sending data that is not yet on the server.

H. Get Data

The first stage is to retrieve the last data on the server using

the HTTP Get method. When the data can be retrieved, the

data will be broken down into several variables. This process

also changes the server time data to Unix timestamp type. Fig.

8 is a flow diagram for the data get program code carried out

by the TTGO T-Call ESP32 SIM800L.

Fig. 8 Flowchart Get Data from Server

I. Compare Data

The next stage is to compare the last data taken by the

TTGO T-Call ESP32 SIM800L with the last data on the SD

card. The data on the SD card is processed with the buffer

command to retrieve date and time data. The date and time

data is compared with the Unix timestamp of the last data

taken from the server. Fig. 9 is the program code to compare

the latest data on the server and SD card.

Fig. 9 Compare Data

J. Upload Data

Monitoring data that is not on the server but is on the SD

card will be sent after going through the get data and compare

data stages. Uploading data on this system uses the

HTTPClient protocol and uses the postStr string to send data.

Fig. 10 is the program code on the TTGO T-Call ESP32

SIM800L for uploading data.

Fig. 10 Upload Data to Server

605

K. Synchronization Testing

Synchronization testing is carried out on the system to

obtain the level of accuracy of the running synchronization

system [32]. The data from this test consists of the amount of
data that was successfully sent from the SD Card to the cloud

server and the amount of data that was lost or not successfully

sent which is indicated as a system error. To find out the error

value, the following formula is used.

 ����� �%� �
Ʃ
��� � �����Ʃ
��� � ����

Ʃ
��� � ����
� 100 (1)

III. RESULTS AND DISCUSSION

A. Synchronization Process Results

After the sensor reading data is stored on the SD card, the

TTGO T-Call ESP32 SIM800L continues the process of

retrieving the latest one line of data from the database located

on the server omahiot.com. This data is specifically retrieved

from the table named hydroponic. An example of the latest

one line of data on the database is shown in Fig. 11 The table

in Fig. 11 contains 12 columns that store information such as

the ID of the greenhouse, sensor readings, time the data was

created and sent to the database, and information about the

network connected during data transmission to the database.
The latest data in the database is monitoring data on 05-06-

2024 at 08:46:59.

Fig. 11 Latest Data in Database

The process of retrieving data from the database uses the

HTTP Get protocol. The successfully retrieved data payload
can be seen in the serial monitor on the TTGO T-Call ESP32

SIM800L as shown in Fig. 12 and the latest existing

monitoring data retrieved by the microcontroller from the

database is data on 05-06-2024 at 08:46:59.

Fig. 12 Payload Get Data from Database

TTGO then compares the data just retrieved from the database

with the data already stored on the SD card in Fig. 13 The data

stored on the SD card is written one line per data, where the

contents of one line include the ID of the greenhouse, sensor

reading data, and the date and time the data was obtained,

separated by a delimiter (;). the data on the SD Card contains

sensor reading data on 05-06-2024 at 07:56:59 to 09:01:59.

Thus there are three data on the SD Card that are not yet in

the database, namely data at 08:51:59, 08:56:59, and at

09:01:59.

Fig. 13 Data on SD Card

The process of comparing edge and cloud data involves

checking the time and date on both data sets to determine

which data is more recent as shown in Fig. 14 and there are

three new data detected on the SD Card.

Fig. 14 Data Comparison Process

The time and date on the SD Card and database are
converted with the Unix time converter program, which

converts time and date into seconds. The Unix time converter

program can be seen in Fig. 15.

Fig. 15 Unix Time Converter Program

606

After the time and date data is converted in Unix time,

TTGO T-Call ESP32 will compare the values. If the data

timestamp value from the cloud is detected to be smaller than

the data timestamp value from the edge, the device will send

the newer data to the database. The new data sent to the

database can be seen in Fig. 16 that shows three new data

detected in the SD Card and sent simultaneously at 09:39:23

to the database.

Fig. 16 New Data in Database

B. Synchronization Testing Results

In this test, we want to know how much data is lost or data

that does not enter the server during the synchronization

process of edge data and cloud data. This test was carried out
for 8 days starting on 27/04/2024 to 04/05/2024 in the

Hydroponic Greenhouse. The results of synchronization

testing can be seen in Table II.

TABLE II

SYNCHRONIZATION TESTING RESULT

Date
Ʃ Data on

Edge

Ʃ Data on

Cloud

Data Difference on Edge

and Cloud

4/27/2024 225 225 0

4/28/2024 224 224 0

4/29/2024 224 224 0

4/30/2024 214 214 0

5/1/2024 224 224 0

Total 1769 1769 0

Error

(%)

0

Table II shows a comparison of the amount of data stored

on edge devices and cloud servers for each hour of each day

for 8 days. Edge devices are devices that collect data and send

it to the cloud server for storage and analysis. The cloud server

is a remote data storage. In this test, omahiot.com was used as
the cloud server.

The third column in the test results table shows the total

amount of data stored on the edge device every hour. The

fourth column shows the total amount of data stored on the

cloud server every hour. The fifth column shows the

difference in the amount of data stored on the edge device and

cloud server every hour. During the testing of this system

from 27/04/2024 at 00:00 to 04/05/2024 at 23:59 the total data

on the edge and cloud is the same, which is 1769 data. Thus,

according to equation (1), an error value of 0% is obtained.

 ����� �%� �
���������

����
� 100% � 0% (1)

This is because during testing, the tool is always connected

to the internet network properly. There are times when the

device is not connected.

C. Synchronization System Error Testing

Synchronization Error testing in the synchronization system

is done outside of the previous synchronization system testing

time. In this test, several data transmission conditions will be
made. Then in the fourth test, namely testing the limit of

sending data from the edge to the database. This test will see

how much data can be sent from the edge to the database. The

data transmission limits test result are shown on Fig. 17.

Fig. 17 Dummy data on SD Card

In this data transmission limit test, it is carried out to

measure the ability of the tool to compare data and send

synchronization data to the database. In this test, we will see

how much data can be sent simultaneously at one time. The

data used to test be dummy data of 1071 data shown in Fig.
17. The latest data in the database is shown in Fig. 18, which

is data on 25-04-2024 at 13:58:46. Then the tool will start the

synchronization process by retrieving the latest data in the

database. The data payload that was successfully retrieved

from the database is shown on Fig. 19.

Fig. 18 Dummy data on SD Card

Fig. 19 Data Delivery Limit Testing: Last Payload Get Data

Just like the previous test, the next process is to compare
the data retrieved from the database with the data on the SD

Card per line. The process of comparing and sending data is

shown in Fig. 20. When viewed on the serial monitor, it can

be seen that the last data compared is not fully read by TTGO,

and as a result, the process of comparing the latest data stops,

as shown in Fig. 21.

607

Fig. 20 Data Transmission Limit Testing: Data Synchronization Process

Fig. 21 shows that the synchronization process stopped on

30-04-2024 at 11:09:37. Then it can be seen that in the last

data, the monitoring data sent is incomplete, unlike the

previous data. Furthermore, when viewed in the database, the

last data sent is incomplete, in the "network", "RSSI", and

"HTTP_resp" columns contain 0 as shown in Fig. 22.

Fig 21 Data Transmission Limit Testing: Data Synchronization Process

Fig. 22 Data Transmission Limit Testing: Data Synchronization Process

Fig. 23 Data Transmission Limit Testing: Data Synchronization Process

Then calculating the limit of the amount of data that can be

successfully sent simultaneously is the id parameter in the

database. It can be seen in Fig. 23 that the first data

successfully sent is data with id 10417 and in Fig. 22 the last

data that can be sent is data with id 11277. This shows that

with the existing system, the maximum limit of data that can

be sent by TTGO T-Call ESP32 SIM800L is 861 data. In other

words, after reaching this amount, TTGO T-Call ESP32

SIM800L cannot send further data to the database.

D. Delay Testing

This test measures the delay in sending data from the

device to the database. Testing was carried out for 8 days in

the Hydroponic Greenhouse. The delay test results can be

seen in the table and chart below.

TABLE III

DELAY TESTING RESULT

Date Average Delay (minutes)

4/27/2024 3.83
4/28/2024 3.86
4/29/2024 4.00

4/30/2024 3.93
5/1/2024 3.89
5/2/2024 3.90
5/3/2024 3.90
5/4/2024 3.80

Fig. 24 Delay Testing Results Chart

Fig. 24 is the result of Table III, which shows that the overall

average delay test results reached 3 minutes. This is caused by

several processes that must be done before the device can send

data to the database. However, in operation, this delay does not

3.70

3.80

3.90

4.00

4.10

d
e

la
y
 (

m
in

u
te

s)

date

Average Delay (minutes)

608

interfere with the monitoring and control system. With this delay

the system still runs smoothly and does not become an obstacle.

In the CLEDGE system, SDN controller failures in the hybrid

computing model can compromise network performance and

reliability and increase the risk of data corruption. In addition, the

application of fog computing as the middle layer also increases

the workload on user devices and cloud servers. Therefore, the

implementation of the cloud-edge synchronization system

effectively ensures that the data at the edge remains synchronized

with the cloud without data loss and more efficiently.

IV. CONCLUSION

Based on the research that has been carried out, the

following conclusions can be drawn is that the

synchronization system effectively ensures that data on the

edge is synchronized with the cloud without data loss, as

demonstrated by an 8-day testing period, despite the TTGO

T-Call ESP32 SIM800L device having a maximum
transmission limit of 861 data points at a time. Additionally,

delay testing revealed an average delay of 3 minutes, which is

considered good and does not disrupt the system's operations.

ACKNOWLEDGMENT

The National Research and Innovation Agency (Badan

Riset dan Inovasi Nasional, BRIN) and the Indonesia

Endowment Fund for Education are acknowledged for their

generous support of this research under the Research and
Innovation for Advanced Indonesia (RIIM) scheme.

REFERENCES

[1] E. S. Kaseng, M. A. Syifani, and A. M. A. Mukhlis, "Development and

working test of microcontroller-based automatic seedling tools for

hydroponic systems," Int. J. Adv. Sci. Eng. Inf. Technol., vol. 14, no.

2, pp. 738-748, Apr. 2024, doi: 10.18517/ijaseit.14.2.19862.

[2] N. K. Bharti et al., "Hydroponics system for soilless farming integrated

with Android application by Internet of Things and MQTT broker,"

in Proc. IEEE Pune Sect. Int. Conf. (PuneCon), Dec. 2019, pp. 1-5,

doi: 10.1109/PuneCon46936.2019.9105847.

[3] R. S. Al-Gharibi, "IoT-based hydroponic system," in Proc. Int. Conf.

Syst., Comput., Autom. Netw. (ICSCAN), Jul. 2021, pp. 1-6,

doi:10.1109/icscan53069.2021.9526391.

[4] K. Kularbphettong, U. Ampant, and N. Kongrodj, "An automated

hydroponics system based on mobile application," Int. J. Inf. Educ.

Technol., vol. 9, no. 8, pp. 548-552, 2019,

doi:10.18178/ijiet.2019.9.8.1264.

[5] H. Harniati, W. Trisnasari, and T. R. Saridewi, "Smart greenhouse

technology for hydroponic farming: Is it viable and profitable

business?," Int. J. Adv. Sci. Eng. Inf. Technol., vol. 13, no. 4, pp. 1333-

1341, Aug. 2023, doi: 10.18517/ijaseit.13.4.17916.

[6] E. Simanungkalit, M. Husna, and J. S. Tarigan, "Smart farming on IoT-

based aeroponik systems," Sinkron, vol. 8, no. 1, pp. 505-511, Jan.

2023, doi: 10.33395/sinkron.v8i1.11988.

[7] M. C. A. Prabowo, A. A. Janitra, and N. M. Wibowo, "Sistem

monitoring hidroponik berbasis IoT dengan sensor suhu, pH, dan

ketinggian air menggunakan ESP8266," J. Tecnoscienza, vol. 7, no. 2,

pp. 312-323, Apr. 2023, doi: 10.51158/tecnoscienza.v7i2.894.

[8] M. W. Al Azad et al., "CLEDGE: A hybrid cloud-edge computing

framework over information centric networking," in Proc. IEEE 46th

Conf. Local Comput. Netw. (LCN), Oct. 2021, pp. 589-596,

doi:10.1109/LCN52139.2021.9525006.

[9] Q. Qi and F. Tao, "A smart manufacturing service system based on

edge computing, fog computing, and cloud computing," IEEE Access,

vol. 7, pp. 86769-86777, 2019, doi: 10.1109/ACCESS.2019.2923610.

[10] T. Wang et al., "Fog-based computing and storage offloading for data

synchronization in IoT," IEEE Internet Things J., vol. 6, no. 3, pp.

4272-4282, Jun. 2019, doi: 10.1109/JIOT.2018.2875915.

[11] F. Carpio, M. Michalke, and A. Jukan, "Engineering and

experimentally benchmarking a serverless edge computing system,"

in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2021, pp.

1-6, doi: 10.1109/globecom46510.2021.9685235.

[12] A. M. Shanshool and N. A. F. Abbas, "A fog computing framework in

IoT healthcare environment: Towards a new method based on tasks

significance," Int. J. Adv. Sci. Eng. Inf. Technol., vol. 12, no. 6, pp.

2274-2281, Nov. 2022, doi: 10.18517/ijaseit.12.6.16047.

[13] K. Geihs, H. Baraki, and A. de la Oliva, "Performance analysis of

edge-fog-cloud architectures in the Internet of Things," in Proc.

IEEE/ACM 13th Int. Conf. Util. Cloud Comput. (UCC), Dec. 2020, pp.

374-379, doi: 10.1109/UCC48980.2020.00059.

[14] T. Rahman and S. K. Paul, "A review of computational tools,

techniques, and methods for sustainable supply chains,"

in Computational Intelligence Techniques for Sustainable Supply

Chain Management. Elsevier, 2024, pp. 1-26, doi: 10.1016/B978-0-

443-18464-2.00008-X.

[15] S. Singh, "Optimize cloud computations using edge computing,"

in Proc. Int. Conf. Big Data, IoT Data Sci. (BID), Dec. 2017, pp. 49-

53, doi: 10.1109/BID.2017.8336572.

[16] Y. Jararweh et al., "The future of mobile cloud computing: Integrating

cloudlets and mobile edge computing," in Proc. 23rd Int. Conf.

Telecommun. (ICT), May 2016, pp. 1-5, doi:10.1109/ICT.2016.7500486.

[17] K. Cao, Y. Liu, G. Meng, and Q. Sun, "An overview on edge

computing research," IEEE Access, vol. 8, pp. 85714-85728, 2020,

doi: 10.1109/access.2020.2991734.

[18] J. Ren et al., "Collaborative cloud and edge computing for latency

minimization," IEEE Trans. Veh. Technol., vol. 68, no. 5, pp. 5031-

5044, May 2019, doi: 10.1109/tvt.2019.2904244.

[19] W. Shi, G. Pallis, and Z. Xu, "Edge computing [Scanning the

issue]," Proc. IEEE, vol. 107, no. 8, pp. 1474-1481, Aug. 2019,

doi:10.1109/jproc.2019.2928287.

[20] L. U. Khan et al., "Edge-computing-enabled smart cities: A

comprehensive survey," IEEE Internet Things J., vol. 7, no. 10, pp.

10200-10232, Oct. 2020, doi: 10.1109/jiot.2020.2987070.

[21] J. Zhang et al., "Development of an edge computing-based cyber-

physical machine tool," Robot. Comput.-Integr. Manuf., vol. 67, Feb.

2021, doi: 10.1016/j.rcim.2020.102042.

[22] M. Wang and Q. Zhang, "Optimized data storage algorithm of IoT

based on cloud computing in distributed system," Comput. Commun.,

vol. 157, pp. 124-131, May 2020, doi:10.1016/j.comcom.2020.04.023.

[23] T. Diaby and B. B. Rad, "Cloud computing: A review of the concepts

and deployment models," Int. J. Inf. Technol. Comput. Sci., vol. 9, no.

6, pp. 50-58, Jun. 2017, doi: 10.5815/ijitcs.2017.06.07.

[24] S. Koehler et al., "Real world applications of cloud computing:

Architecture, reasons for using and challenges," Asia Pac. J. Energy

Environ., vol. 7, no. 2, pp. 93-102, Dec. 2020,

doi:10.18034/apjee.v7i2.698.

[25] C. T. Kamanga, E. Bugingo, S. N. Badibanga, E. M. Mukendi, and O.

Habimana, "Cost-effective and low-complexity non-constrained

workflow scheduling for cloud computing environment," Int. J. Adv.

Sci. Eng. Inf. Technol., vol. 13, no. 1, pp. 371-379, Jan. 2023,

doi:10.18517/ijaseit.13.1.17752.

[26] A. Wittig and M. Wittig, Amazon Web Services in Action, 3rd ed.

Shelter Island, NY: Manning, 2023.

[27] D. V. Kornienko, S. V. Mishina, S. V. Shcherbatykh, and M. O.

Melnikov, "Principles of securing RESTful API web services

developed with python frameworks," J. Phys.: Conf. Ser., vol. 2094,

no. 3, Nov. 2021, doi: 10.1088/1742-6596/2094/3/032016.

[28] O. Zimmermann, M. Stocker, D. Lübke, U. Zdun, and C.

Pautasso, Patterns for API Design: Simplifying Integration with

Loosely Coupled Message Exchanges, 1st ed. Stuttgart, Germany:

Addison-Wesley, 2022.

[29] R. Koçi, X. Franch, P. Jovanovic, and A. Abelló, "Web API evolution

patterns: A usage-driven approach," J. Syst. Softw., vol. 198, Apr.

2023, doi: 10.1016/j.jss.2023.111609.

[30] G. Brito and M. T. Valente, "REST vs GraphQL: A controlled

experiment," in Proc. IEEE Int. Conf. Softw. Archit. (ICSA), Mar.

2020, doi: 10.1109/ICSA47634.2020.00016.

[31] A. A. Mustofa, Y. A. Dagnew, P. Gantela, and M. J. Idrisi, "SECHA:

A smart energy-efficient and cost-effective home automation system

for developing countries," J. Comput. Netw. Commun., vol. 2023, pp.

1-12, Mar. 2023, doi: 10.1155/2023/8571506.

[32] X. Xiong, C. Wu, B. Hu, D. Pan, and F. Blaabjerg, "Transient damping

method for improving the synchronization stability of virtual

synchronous generators," IEEE Trans. Power Electron., vol. 36, no. 7,

pp. 7820-7831, Jul. 2021, doi: 10.1109/TPEL.2020.3046462.

609

