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Abstract—Crowds are a common social phenomenon occurring in various settings such as large gatherings, public transportation, and 

popular tourist attractions. Crowding poses significant risks as it can lead to scenarios known as human stampedes. In incidents such 

as those at Kanjuruhan and Itaewon, the presence of large crowds caused individuals to lose their footing, resulting in falls, trampling, 

and respiratory complications. This issue is further exacerbated by current crowd detection techniques, which still rely on manual 

observation. To address this problem, a machine learning-based system was developed for human detection by counting the number of 

detected heads to evaluate crowd capacity. This study employs a combination of Convolutional Neural Network (CNN) architecture 

and the YOLOv8 algorithm, trained on a custom dataset and implemented on Jetson Nano for real-time monitoring via a website hosted 

on localhost. The dataset was created by collecting images of crowded locations, such as bus stops during peak commuting hours and 

shopping malls on weekends. Testing was conducted at Kantik Kolam Berkah in Politeknik Negeri Semarang during lunch hours on 

weekdays. Density estimation was performed by calculating the number of detected heads divided by the area being observed, yielding 

a density figure for the area. The findings reveal that the developed system can identify individuals and measure density with an average 

precision of 0.965 and an average recall of 0.765, with an average inference time of 283.73 milliseconds (ms). 

Keywords—Crowd; Jetson Nano; YOLOv8; real-time. 

Manuscript received 7 Aug. 2024; revised 17 Oct. 2024; accepted 11 Nov. 2024. Date of publication 28 Feb. 2025.  

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License. 

I. INTRODUCTION

A crowd can be defined as a group of pedestrians gathered 

in a particular place for similar or sometimes different 

purposes. Crowds are present in most places and have become 

an integral part of daily life [1]. Overcrowded situations can 

pose a serious danger as they may lead to incidents known as 

human stampedes, where people are pushed against each other 

while moving, potentially causing injuries or even fatalities. 

Traditional crowd detection methods have evolved from 

manually crafted techniques to approaches using machine 

learning and artificial intelligence. These traditional methods 

are unsuitable for modern surveillance due to their low 
accuracy and the dynamic nature of current crowd conditions. 

Consequently, machine learning techniques have been 

adopted for more effective crowd analysis. Previous studies 

[2] have employed Raspberry Pi 4 modules as

microcomputers. However, the application of machine

learning on Raspberry Pi 4 modules has been less effective, 

with very slow detection speeds due to reliance on the Central 

Processing Unit (CPU) for data processing. Moreover, the 

benchmark achieved by Raspberry Pi 4 is 8.1 frames per 
second (fps) [3].  

Object detection is a technique in the field of computer 

vision that focuses on recognizing and locating objects within 

an image or video recording. This technique utilizes machine 

learning or deep learning methods to achieve accurate 

detection. Its presence is crucial in various sectors such as 

security monitoring, autonomous vehicles, and visual media 

analysis, as it enables machines to identify and classify 

objects with high effectiveness. 

In neural networks, basic features that already exist are 

used repeatedly to create more complex features. This 

approach is known as transfer learning, which allows 
leveraging existing knowledge to enhance performance in 

different tasks. Transfer learning is a technique in deep 
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learning where a pre-trained model is used as a starting point 

or base to train a new model on a different task. By harnessing 

knowledge learned from a given task, a new model can learn 

faster or with a smaller dataset. This approach is particularly 

effective when the available dataset for training a new model 

is limited or when the task to be solved shares characteristics 

with the task the model was originally trained on. 

The research conducted explored several object detection 

models, each exhibiting distinct advantages and limitations. 

Notably, the Faster R-CNN model is widely recognized for its 
high precision, making it the preferred choice in contexts 

where accuracy is paramount. As highlighted in studies [4], 

[5], and [6], Faster R-CNN consistently demonstrates superior 

accuracy when compared to YOLO models. However, its 

slower inference speed renders it less ideal for real-time 

applications, which are critical in crowd detection systems 

designed to mitigate risks in high-density environments. 

Conversely, the YOLO family of models presents a 

favorable compromise between speed and accuracy, 

positioning them as more suitable for real-time detection 

tasks. Among these, comparative analyses of YOLOv3, 
YOLOv5, and MobileNet-SSD V2 indicate that YOLOv5 

offers the optimal balance of speed and accuracy [7]. 

Moreover, the recent introduction of YOLOv8 has further 

enhanced precision, showing a 2.82% improvement over 

YOLOv5 [8]. YOLOv8’s enhanced architecture, which 

facilitates faster inference, renders it particularly well-suited 

for real-time monitoring on resource-constrained devices such 

as the Jetson Nano. 

The selection of YOLOv8 for this study is informed by its 

capacity to maintain a high level of accuracy while achieving 

the necessary inference speed for real-time crowd detection. 
This balance between speed and accuracy is crucial for 

ensuring timely interventions in dynamic environments. 

Furthermore, YOLOv8’s streamlined architecture allows for 

more efficient utilization of Jetson Nano’s limited 

computational resources, ensuring stable performance even 

under varying environmental conditions. 

II. MATERIALS AND METHOD 

A. Crowd 

A crowd consists of individuals who spontaneously gather in 
a certain area at the same time. These individuals congregate 

temporarily and disperse when they separate [11]. A crowd 

does not have a single mutually agreed-upon purpose. 

According to the Green Guide, published by the British 

government, the maximum allowable density is 4.7 people per 

square meter (m²). The threshold for potentially dangerous 

dynamic crowd density is 5.55 people per m², and the critical 

density limit for static crowds is 7.1 people per m² [9]. 
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B. YOLOv8 

YOLO stands for "You Only Look Once", which is one of 

the popular approaches in object detection in the field of 

computer vision. This method is designed to identify and 

localize objects in images or videos quickly and accurately. 

YOLO works by dividing the image into a grid and generating 

a prediction for each grid cell, including the probability of 

object presence and the bounding box surrounding the object. 

This method is known for its ability to solve real-time object 

detection problems at high speed, making it suitable for 

applications such as security surveillance, autonomous 

vehicles, and object recognition in video. 

The YOLOv8 architecture is organized into three primary 

components: the Backbone, Neck, and Head. The Backbone, 

based on CSPDarknet53, is responsible for extracting features 

from the input image, serving as a robust foundation for 

subsequent processing stages. The Neck, utilizing the C2f 
module, fuses feature maps from various layers, enabling the 

capture of both high-level semantic information and low-level 

spatial details, which is particularly beneficial for detecting 

smaller objects. Lastly, the Head performs predictions by 

generating bounding boxes and object classifications for each 

detected object. 

 

 
Fig. 1  YOLOv8 Architecture 

C. Architecture 

The architecture of the human crowd detection system 

using Jetson Nano as an edge device consists of three main 

components: the camera, the edge device, and the website. 

The camera is used to capture images or videos of the 

surrounding environment. These images or videos are then 

sent to the edge device for processing. The edge device 

utilizes crowd detection algorithms to process the images or 
videos and determine if there is a crowd in the area. The crowd 

detection results are then sent to the website for display. 

The training process involves creating a new model 

suitable for detecting crowds based on the YOLOv8 model. 

Transfer learning is performed using Google Collaboratory 

with YOLOv8 and the Ultralytics library and then converted 

into TensorRT format. The dataset used includes a private 

dataset consisting of 11,169 training data, 2,394 validation 

data, and 2,394 test data. The initial step is labeling the dataset 

and creating a label map for the classes. The dataset is then 

converted into a format suitable for YOLO training. During 
the training process, it is necessary to select the model to be 

used, namely YOLOv8, and configure the parameters for 

epochs and batch size for training. The final step is converting 

the model into TensorRT format and evaluating the model. 

The parameters used for evaluation include the model's 
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precision and recall, as well as calculating the Mean Average 

Precision (mAP) and the confusion matrix. The final results 

are then sent to the web server using the Flask library for 

streaming display. 

D. System 

The input from the camera is processed to count the number 

of visible people. Once the count is determined, the system 
will assess the situation based on the number of people. If the 

number of detected people is less than 25% of the maximum 

allowable number, a green indicator will appear. If it is more 

than 25%, the number of detected people will be reassessed. 

If it is less than 50%, a yellow indicator will appear. If it is 

more than 50%, the number of detected people will be 

reassessed again. If it is less than 75%, an orange indicator 

will appear. If it is more than 75%, a red indicator will appear. 

After determining the appropriate indicator, the result will be 

displayed on the website. 

 

 
Fig. 2  System principles 

E. Dataset 

The dataset used is a private dataset. This dataset was 

created by collecting photos from various places in Semarang 

City, Indonesia. In particular, the photos taken are photos of 

places that have high density such as bus stops during peak 

hours such as going to and from work and malls on weekends. 

These images are then annotated with a label indicating the 

object, which in this case is a human head, a process known 

as labelling with Roboflow. The dataset used is ensured to be 

in the appropriate format for training the YOLO model. The 
dataset consists of 15,957 images, divided into 70% training 

data, 15% validation data, and 15% test data. 

 

 
Fig. 3  Roboflow 

F. Training 

The model training process is conducted using Google's 

facility known as Google Collaboratory, which requires a 

Google account to initiate the training process. The initial step 

of the model training process involves uploading the prepared 

dataset and selecting the base model to be utilized. 

Subsequently, training parameters are configured according 

to requirements, and the training process commences. This 

training phase may take several hours to several days to 

complete. Following the model training, an evaluation is 

performed to assess the performance and effectiveness of the 

trained model. The trained model's results are then converted 
into an engine format, which is subsequently deployed onto 

Jetson Nano for inference purposes. 

 
Fig. 4  Training Process 

G. Inference 

Inference is the process of using a trained model to make 

predictions based on previously unseen data. The process 

begins by inputting the model to be used. Subsequently, input 

from the camera is provided. OpenCV detects the presence of 

frames. If no frames are detected, the process terminates. If 

frames are detected, the process continues with YOLO for 

human counting. After humans are counted, head annotation 

is performed by Supervision. Then, the frames that are ready 

are recombined by OpenCV. 
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Fig. 5  Inferences Process 

H. Web 

A mock-up is an initial visual planning of the appearance 

and layout of a website. On the main page of the website, there 

is a connected Wi-Fi SSID, device IP, and internet connection 

conditions. On the main page, there are also inference 

parameters, the IoU set, the confidence used, and the 

maximum population in the zone. Then, on the "Edit" menu, 

it will be used as a page to change the parameters so that they 
can be adjusted according to the needs.  

 

 
Fig. 6  Web Mock-up 

I. Testing 

The test was conducted for 2 days during the lunch break 
at the Semarang State Polytechnic Pool Canteen with a floor 

area of 163.5 m². The confidence level used is 0.45. Testing 

was carried out during the cafeteria's peak hours, namely 

during lunchtime. Testing begins with the preparation of tools 

and systems to be tested. Next, the system is activated, and 

input is received from the camera. The inference process is 

performed every 5 frames and is immediately displayed on the 

website. The final result of this test is a video recording that 

will be used for precision and recall analysis. 

Precision is used to measure the accuracy of positive 

prediction results, while recall is used to measure the 
sensitivity of the developed model. 

 Precision = 
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III. RESULTS AND DISCUSSION 

A. Model Evaluation 

Based on the model evaluation results, the precision 

obtained is 0.95 and the recall is 0.87, with a Mean Average 

Precision (mAP) of 0.93.  

 
Fig. 7  Confusion Box of Evaluation Model Result 

B. Detection Result 

As an example of the detection results, it is observed that 

32 heads are detected with a green annotation. The green 

annotation indicator signifies that the detected density is less 
than 25% of the recommended maximum density limit of 4.7 

people/m². 
 

 
Fig. 8  Detection Result 
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C. Testing Result 

The testing was conducted at the Berkah Kolam Cafeteria 

of the State Polytechnic of Semarang with a floor area of 

163.5 m². A confidence level of 0.45 was utilized. Over the 
course of 2 days, a total of 800 images were obtained from the 

test. In total, over the course of 2 days of testing, there were 

19,877 True Positives, 744 False Positives, and 5,809 False 

Negatives obtained. 

 
Fig. 9  Confusion Box of Testing Result 

 

In the model evaluation using the test dataset, a precision 

of 0.95 and a recall of 0.87 were obtained. These high 

evaluation scores indicate that the model has been well-

trained and can detect head objects under conditions similar 

to those of the training data. However, different dataset 

conditions can yield varying results in testing.  
Based on the testing conducted at the Berkah Kolam 

Cafeteria over 2 days, a precision of 0.965 and a recall of 

0.765 were achieved. The difference in precision between 

field testing and evaluation is not significant, with a 0.015 

higher result observed in the field testing. However, there is a 

more notable difference in recall, which is 0.105 lower 

compared to the evaluation results. 
 

 
Fig. 10  Difference of Testing Result 

 

These results indicate that the model still has limitations in 

detecting human heads. This constraint is primarily caused by 
several factors during testing, notably the overlapping 

positions of human heads within the detection area. 

Consequently, the captured head area in the processed images 

is very small. In such cases, the features or characteristics 

received by the neural network model may inadequately 

represent the shape of heads, resulting in low confidence 

scores or undetected instances. Enhancing the input resolution 

of the image to be detected and reducing the IoU value aims 

to improve the accuracy of detecting densely populated 

human areas. However, this approach can only be 

implemented on edge devices with higher computational 

capacity and more complex models. 

It is important to emphasize that the confidence threshold 

used to capture data in Table 4.1 is set at 0.45. Therefore, if 

the confidence score falls below this threshold, bounding box 
detection results will not appear. 

TABLE I 

TESTING RESULT 

Day TP FP FN 
Avg. Inference 

Time 

1 7420 306 2571 289,26 (ms) 
2 12457 438 3238 278,20 (ms) 

 

The method used for inference involves splitting the image 

into 4 tiles to predict separately and detect small or distant 

objects and predicting every 5 frames to reduce device load. 

Both methods contribute to increased false positives and false 

negatives in detection. The technique of dividing the image 

into 4 tiles helps improve detection results for small and 

distant objects from the camera. However, this also leads to 

occurrences of false negatives and duplicate detections. This 

happens because objects may lie at the intersection of tiles, 

causing only partial detection of features or characteristics, 

which limits optimal detection. In specific cases, this may 
result in two bounding boxes appearing for one object because 

the head is divided exactly at the tile intersection. In other 

conditions, a bounding box may only appear on one tile due 

to differences in the proportion of the object segment, which 

tends to fall within one tile. Consequently, after merging tiles 

into a single image, the bounding box may only partially cover 

the head area. Lastly, insufficient feature extraction from 

object segments in each tile can result in confidence scores 

falling below the threshold, leading to detections being 

considered non-existent. 
 

 
Fig. 11  Tile Division 

 

The occurrence of false positives is also influenced by the 
prediction method or inference every 5 frames. This means 

that predictions are only run once on the initial image and 

applied to the next 4 frames. This process reduces the device 

load, as processing one image takes a long time, averaging 

283.73 ms. A drawback of this method is demonstrated by 

false positives when detecting moving objects. The resulting 

bounding boxes lag behind and do not follow the object, 

0
,9

6

0
,9

7

0
,7

4

0
,7

9

D A Y  1 D A Y  2

T E ST I N G R E SUL T

Precision Recall

64



necessitating a reduction in the detection distance between 

frames for using this method in situations involving moving 

objects. 

The average inference time obtained when processing a 

single image is 283.73 ms. This result is influenced by 

dividing the image into 4 tiles. Predicting at a resolution of 

640x640 takes varying times, typically ranging from 60 ms to 

80 ms. Therefore, the time required to process an image with 

4 tiles is between 240 ms and 320 ms. This factor is what 

causes the inference process to take longer. 
The deployment of the crowd detection system on the 

Jetson Nano encountered several challenges due to the 

device's hardware limitations. Although the Jetson Nano is 

equipped with a CUDA-capable GPU, its older architecture 

resulted in low fps performance when using the YOLOv8 

nano model, even after reducing the number of annotated 

frames. To enhance performance, the smallest variant of the 

model was selected, and TensorRT integration was employed, 

which improved inference speed but remained limited by the 

device’s processing capacity. 

While the system's average inference time is sufficient for 
real-time applications using a single video feed, the 

processing of high-resolution images or multiple camera 

feeds led to significantly slower inference times, rendering it 

impractical for scenarios requiring the simultaneous analysis 

of multiple video streams. 

IV. CONCLUSION 

The human detection system leveraging machine learning 

has been evaluated, demonstrating an average precision rate 
of 0.965, indicating that 96.5% of instances classified as 

crowds were accurate. It also achieved a recall rate of 0.765, 

successfully detecting 76.5% of actual crowd occurrences. 

With an inference time of approximately 283.73 milliseconds, 

the system maintains a response time that, while not ideal for 

real-time applications, is suitable for monitoring 

environments with moderate crowd densities. 

However, the system encounters challenges related to 

scalability and robustness. Jetson Nano's limited processing 

power restricts its ability to efficiently process multiple 

camera feeds or high-resolution images. Furthermore, the 
system's accuracy can fluctuate under conditions such as 

occlusions or suboptimal camera angles, suggesting the need 

for additional training with more diverse datasets. Moreover, 

real-world deployment of such systems must address ethical 

concerns, particularly regarding privacy, to ensure 

responsible use. 
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