
Vol.15 (2025) No. 1

ISSN: 2088-5334

Human Detection System Using Machine Learning

to Calculate Crowd Potential

Eni Dwi Wardihani a,*, Rindang Ayu Oktaviani a, Ricky Sambora a, Eko Supriyanto a, Amin Suharjono a,

Rizkha Ajeng Rochmatika a, Catur Budi Waluyo a, Muhlasah Novitasari Mara a, Ari Sriyanto Nugroho a,

Aminuddin Rizal b, Suko Tyas Pernanda b
a Department of Telecommunication Engineering, Politeknik Negeri Semarang, Tembalang, Semarang, Indonesia

b Department of Electronics engineering, Politeknik Negeri Semarang, Tembalang, Semarang, Indonesia

Corresponding author: *edwardihani@polines.ac.id

Abstract—Crowds are a common social phenomenon occurring in various settings such as large gatherings, public transportation, and

popular tourist attractions. Crowding poses significant risks as it can lead to scenarios known as human stampedes. In incidents such

as those at Kanjuruhan and Itaewon, the presence of large crowds caused individuals to lose their footing, resulting in falls, trampling,

and respiratory complications. This issue is further exacerbated by current crowd detection techniques, which still rely on manual

observation. To address this problem, a machine learning-based system was developed for human detection by counting the number of

detected heads to evaluate crowd capacity. This study employs a combination of Convolutional Neural Network (CNN) architecture

and the YOLOv8 algorithm, trained on a custom dataset and implemented on Jetson Nano for real-time monitoring via a website hosted

on localhost. The dataset was created by collecting images of crowded locations, such as bus stops during peak commuting hours and

shopping malls on weekends. Testing was conducted at Kantik Kolam Berkah in Politeknik Negeri Semarang during lunch hours on

weekdays. Density estimation was performed by calculating the number of detected heads divided by the area being observed, yielding

a density figure for the area. The findings reveal that the developed system can identify individuals and measure density with an average

precision of 0.965 and an average recall of 0.765, with an average inference time of 283.73 milliseconds (ms).

Keywords—Crowd; Jetson Nano; YOLOv8; real-time.

Manuscript received 7 Aug. 2024; revised 17 Oct. 2024; accepted 11 Nov. 2024. Date of publication 28 Feb. 2025.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

A crowd can be defined as a group of pedestrians gathered

in a particular place for similar or sometimes different

purposes. Crowds are present in most places and have become

an integral part of daily life [1]. Overcrowded situations can

pose a serious danger as they may lead to incidents known as

human stampedes, where people are pushed against each other

while moving, potentially causing injuries or even fatalities.

Traditional crowd detection methods have evolved from

manually crafted techniques to approaches using machine

learning and artificial intelligence. These traditional methods

are unsuitable for modern surveillance due to their low
accuracy and the dynamic nature of current crowd conditions.

Consequently, machine learning techniques have been

adopted for more effective crowd analysis. Previous studies

[2] have employed Raspberry Pi 4 modules as

microcomputers. However, the application of machine

learning on Raspberry Pi 4 modules has been less effective,

with very slow detection speeds due to reliance on the Central

Processing Unit (CPU) for data processing. Moreover, the

benchmark achieved by Raspberry Pi 4 is 8.1 frames per
second (fps) [3].

Object detection is a technique in the field of computer

vision that focuses on recognizing and locating objects within

an image or video recording. This technique utilizes machine

learning or deep learning methods to achieve accurate

detection. Its presence is crucial in various sectors such as

security monitoring, autonomous vehicles, and visual media

analysis, as it enables machines to identify and classify

objects with high effectiveness.

In neural networks, basic features that already exist are

used repeatedly to create more complex features. This

approach is known as transfer learning, which allows
leveraging existing knowledge to enhance performance in

different tasks. Transfer learning is a technique in deep

60

learning where a pre-trained model is used as a starting point

or base to train a new model on a different task. By harnessing

knowledge learned from a given task, a new model can learn

faster or with a smaller dataset. This approach is particularly

effective when the available dataset for training a new model

is limited or when the task to be solved shares characteristics

with the task the model was originally trained on.

The research conducted explored several object detection

models, each exhibiting distinct advantages and limitations.

Notably, the Faster R-CNN model is widely recognized for its
high precision, making it the preferred choice in contexts

where accuracy is paramount. As highlighted in studies [4],

[5], and [6], Faster R-CNN consistently demonstrates superior

accuracy when compared to YOLO models. However, its

slower inference speed renders it less ideal for real-time

applications, which are critical in crowd detection systems

designed to mitigate risks in high-density environments.

Conversely, the YOLO family of models presents a

favorable compromise between speed and accuracy,

positioning them as more suitable for real-time detection

tasks. Among these, comparative analyses of YOLOv3,
YOLOv5, and MobileNet-SSD V2 indicate that YOLOv5

offers the optimal balance of speed and accuracy [7].

Moreover, the recent introduction of YOLOv8 has further

enhanced precision, showing a 2.82% improvement over

YOLOv5 [8]. YOLOv8’s enhanced architecture, which

facilitates faster inference, renders it particularly well-suited

for real-time monitoring on resource-constrained devices such

as the Jetson Nano.

The selection of YOLOv8 for this study is informed by its

capacity to maintain a high level of accuracy while achieving

the necessary inference speed for real-time crowd detection.
This balance between speed and accuracy is crucial for

ensuring timely interventions in dynamic environments.

Furthermore, YOLOv8’s streamlined architecture allows for

more efficient utilization of Jetson Nano’s limited

computational resources, ensuring stable performance even

under varying environmental conditions.

II. MATERIALS AND METHOD

A. Crowd

A crowd consists of individuals who spontaneously gather in
a certain area at the same time. These individuals congregate

temporarily and disperse when they separate [11]. A crowd

does not have a single mutually agreed-upon purpose.

According to the Green Guide, published by the British

government, the maximum allowable density is 4.7 people per

square meter (m²). The threshold for potentially dangerous

dynamic crowd density is 5.55 people per m², and the critical

density limit for static crowds is 7.1 people per m² [9].

 Density =
��� �����	
� ��
�
�

�
��
 �	�� (��)
 (1)

B. YOLOv8

YOLO stands for "You Only Look Once", which is one of

the popular approaches in object detection in the field of

computer vision. This method is designed to identify and

localize objects in images or videos quickly and accurately.

YOLO works by dividing the image into a grid and generating

a prediction for each grid cell, including the probability of

object presence and the bounding box surrounding the object.

This method is known for its ability to solve real-time object

detection problems at high speed, making it suitable for

applications such as security surveillance, autonomous

vehicles, and object recognition in video.

The YOLOv8 architecture is organized into three primary

components: the Backbone, Neck, and Head. The Backbone,

based on CSPDarknet53, is responsible for extracting features

from the input image, serving as a robust foundation for

subsequent processing stages. The Neck, utilizing the C2f
module, fuses feature maps from various layers, enabling the

capture of both high-level semantic information and low-level

spatial details, which is particularly beneficial for detecting

smaller objects. Lastly, the Head performs predictions by

generating bounding boxes and object classifications for each

detected object.

Fig. 1 YOLOv8 Architecture

C. Architecture

The architecture of the human crowd detection system

using Jetson Nano as an edge device consists of three main

components: the camera, the edge device, and the website.

The camera is used to capture images or videos of the

surrounding environment. These images or videos are then

sent to the edge device for processing. The edge device

utilizes crowd detection algorithms to process the images or
videos and determine if there is a crowd in the area. The crowd

detection results are then sent to the website for display.

The training process involves creating a new model

suitable for detecting crowds based on the YOLOv8 model.

Transfer learning is performed using Google Collaboratory

with YOLOv8 and the Ultralytics library and then converted

into TensorRT format. The dataset used includes a private

dataset consisting of 11,169 training data, 2,394 validation

data, and 2,394 test data. The initial step is labeling the dataset

and creating a label map for the classes. The dataset is then

converted into a format suitable for YOLO training. During
the training process, it is necessary to select the model to be

used, namely YOLOv8, and configure the parameters for

epochs and batch size for training. The final step is converting

the model into TensorRT format and evaluating the model.

The parameters used for evaluation include the model's

61

precision and recall, as well as calculating the Mean Average

Precision (mAP) and the confusion matrix. The final results

are then sent to the web server using the Flask library for

streaming display.

D. System

The input from the camera is processed to count the number

of visible people. Once the count is determined, the system
will assess the situation based on the number of people. If the

number of detected people is less than 25% of the maximum

allowable number, a green indicator will appear. If it is more

than 25%, the number of detected people will be reassessed.

If it is less than 50%, a yellow indicator will appear. If it is

more than 50%, the number of detected people will be

reassessed again. If it is less than 75%, an orange indicator

will appear. If it is more than 75%, a red indicator will appear.

After determining the appropriate indicator, the result will be

displayed on the website.

Fig. 2 System principles

E. Dataset

The dataset used is a private dataset. This dataset was

created by collecting photos from various places in Semarang

City, Indonesia. In particular, the photos taken are photos of

places that have high density such as bus stops during peak

hours such as going to and from work and malls on weekends.

These images are then annotated with a label indicating the

object, which in this case is a human head, a process known

as labelling with Roboflow. The dataset used is ensured to be

in the appropriate format for training the YOLO model. The
dataset consists of 15,957 images, divided into 70% training

data, 15% validation data, and 15% test data.

Fig. 3 Roboflow

F. Training

The model training process is conducted using Google's

facility known as Google Collaboratory, which requires a

Google account to initiate the training process. The initial step

of the model training process involves uploading the prepared

dataset and selecting the base model to be utilized.

Subsequently, training parameters are configured according

to requirements, and the training process commences. This

training phase may take several hours to several days to

complete. Following the model training, an evaluation is

performed to assess the performance and effectiveness of the

trained model. The trained model's results are then converted
into an engine format, which is subsequently deployed onto

Jetson Nano for inference purposes.

Fig. 4 Training Process

G. Inference

Inference is the process of using a trained model to make

predictions based on previously unseen data. The process

begins by inputting the model to be used. Subsequently, input

from the camera is provided. OpenCV detects the presence of

frames. If no frames are detected, the process terminates. If

frames are detected, the process continues with YOLO for

human counting. After humans are counted, head annotation

is performed by Supervision. Then, the frames that are ready

are recombined by OpenCV.

62

Fig. 5 Inferences Process

H. Web

A mock-up is an initial visual planning of the appearance

and layout of a website. On the main page of the website, there

is a connected Wi-Fi SSID, device IP, and internet connection

conditions. On the main page, there are also inference

parameters, the IoU set, the confidence used, and the

maximum population in the zone. Then, on the "Edit" menu,

it will be used as a page to change the parameters so that they
can be adjusted according to the needs.

Fig. 6 Web Mock-up

I. Testing

The test was conducted for 2 days during the lunch break
at the Semarang State Polytechnic Pool Canteen with a floor

area of 163.5 m². The confidence level used is 0.45. Testing

was carried out during the cafeteria's peak hours, namely

during lunchtime. Testing begins with the preparation of tools

and systems to be tested. Next, the system is activated, and

input is received from the camera. The inference process is

performed every 5 frames and is immediately displayed on the

website. The final result of this test is a video recording that

will be used for precision and recall analysis.

Precision is used to measure the accuracy of positive

prediction results, while recall is used to measure the
sensitivity of the developed model.

 Precision =
��

�����

 Recall =
��

�����

III. RESULTS AND DISCUSSION

A. Model Evaluation

Based on the model evaluation results, the precision

obtained is 0.95 and the recall is 0.87, with a Mean Average

Precision (mAP) of 0.93.

Fig. 7 Confusion Box of Evaluation Model Result

B. Detection Result

As an example of the detection results, it is observed that

32 heads are detected with a green annotation. The green

annotation indicator signifies that the detected density is less
than 25% of the recommended maximum density limit of 4.7

people/m².

Fig. 8 Detection Result

63

C. Testing Result

The testing was conducted at the Berkah Kolam Cafeteria

of the State Polytechnic of Semarang with a floor area of

163.5 m². A confidence level of 0.45 was utilized. Over the
course of 2 days, a total of 800 images were obtained from the

test. In total, over the course of 2 days of testing, there were

19,877 True Positives, 744 False Positives, and 5,809 False

Negatives obtained.

Fig. 9 Confusion Box of Testing Result

In the model evaluation using the test dataset, a precision

of 0.95 and a recall of 0.87 were obtained. These high

evaluation scores indicate that the model has been well-

trained and can detect head objects under conditions similar

to those of the training data. However, different dataset

conditions can yield varying results in testing.
Based on the testing conducted at the Berkah Kolam

Cafeteria over 2 days, a precision of 0.965 and a recall of

0.765 were achieved. The difference in precision between

field testing and evaluation is not significant, with a 0.015

higher result observed in the field testing. However, there is a

more notable difference in recall, which is 0.105 lower

compared to the evaluation results.

Fig. 10 Difference of Testing Result

These results indicate that the model still has limitations in

detecting human heads. This constraint is primarily caused by
several factors during testing, notably the overlapping

positions of human heads within the detection area.

Consequently, the captured head area in the processed images

is very small. In such cases, the features or characteristics

received by the neural network model may inadequately

represent the shape of heads, resulting in low confidence

scores or undetected instances. Enhancing the input resolution

of the image to be detected and reducing the IoU value aims

to improve the accuracy of detecting densely populated

human areas. However, this approach can only be

implemented on edge devices with higher computational

capacity and more complex models.

It is important to emphasize that the confidence threshold

used to capture data in Table 4.1 is set at 0.45. Therefore, if

the confidence score falls below this threshold, bounding box
detection results will not appear.

TABLE I

TESTING RESULT

Day TP FP FN
Avg. Inference

Time

1 7420 306 2571 289,26 (ms)
2 12457 438 3238 278,20 (ms)

The method used for inference involves splitting the image

into 4 tiles to predict separately and detect small or distant

objects and predicting every 5 frames to reduce device load.

Both methods contribute to increased false positives and false

negatives in detection. The technique of dividing the image

into 4 tiles helps improve detection results for small and

distant objects from the camera. However, this also leads to

occurrences of false negatives and duplicate detections. This

happens because objects may lie at the intersection of tiles,

causing only partial detection of features or characteristics,

which limits optimal detection. In specific cases, this may
result in two bounding boxes appearing for one object because

the head is divided exactly at the tile intersection. In other

conditions, a bounding box may only appear on one tile due

to differences in the proportion of the object segment, which

tends to fall within one tile. Consequently, after merging tiles

into a single image, the bounding box may only partially cover

the head area. Lastly, insufficient feature extraction from

object segments in each tile can result in confidence scores

falling below the threshold, leading to detections being

considered non-existent.

Fig. 11 Tile Division

The occurrence of false positives is also influenced by the
prediction method or inference every 5 frames. This means

that predictions are only run once on the initial image and

applied to the next 4 frames. This process reduces the device

load, as processing one image takes a long time, averaging

283.73 ms. A drawback of this method is demonstrated by

false positives when detecting moving objects. The resulting

bounding boxes lag behind and do not follow the object,

0
,9

6

0
,9

7

0
,7

4

0
,7

9

D A Y 1 D A Y 2

T E ST I N G R E SUL T

Precision Recall

64

necessitating a reduction in the detection distance between

frames for using this method in situations involving moving

objects.

The average inference time obtained when processing a

single image is 283.73 ms. This result is influenced by

dividing the image into 4 tiles. Predicting at a resolution of

640x640 takes varying times, typically ranging from 60 ms to

80 ms. Therefore, the time required to process an image with

4 tiles is between 240 ms and 320 ms. This factor is what

causes the inference process to take longer.
The deployment of the crowd detection system on the

Jetson Nano encountered several challenges due to the

device's hardware limitations. Although the Jetson Nano is

equipped with a CUDA-capable GPU, its older architecture

resulted in low fps performance when using the YOLOv8

nano model, even after reducing the number of annotated

frames. To enhance performance, the smallest variant of the

model was selected, and TensorRT integration was employed,

which improved inference speed but remained limited by the

device’s processing capacity.

While the system's average inference time is sufficient for
real-time applications using a single video feed, the

processing of high-resolution images or multiple camera

feeds led to significantly slower inference times, rendering it

impractical for scenarios requiring the simultaneous analysis

of multiple video streams.

IV. CONCLUSION

The human detection system leveraging machine learning

has been evaluated, demonstrating an average precision rate
of 0.965, indicating that 96.5% of instances classified as

crowds were accurate. It also achieved a recall rate of 0.765,

successfully detecting 76.5% of actual crowd occurrences.

With an inference time of approximately 283.73 milliseconds,

the system maintains a response time that, while not ideal for

real-time applications, is suitable for monitoring

environments with moderate crowd densities.

However, the system encounters challenges related to

scalability and robustness. Jetson Nano's limited processing

power restricts its ability to efficiently process multiple

camera feeds or high-resolution images. Furthermore, the
system's accuracy can fluctuate under conditions such as

occlusions or suboptimal camera angles, suggesting the need

for additional training with more diverse datasets. Moreover,

real-world deployment of such systems must address ethical

concerns, particularly regarding privacy, to ensure

responsible use.

REFERENCES

[1] S. A. H. Al-Gadhi, “A Review Study of Crowd Behavior and

Movement,” J. King Saud Univ. - Eng. Sci., vol. 8, no. 1, pp. 77–107,

1996, doi: 10.1016/S1018-3639(18)30641-X.

[2] A. Fadlil and D. Prayogi, “Face Recognition Using Machine Learning

Algorithm Based on Raspberry Pi 4b,” Int. J. Artif. Intell. Res., vol.

ISSN, no. 1, pp. 2579–7298, 2022, doi: 10.29099/ijair.v7i1.321.

[3] M. Luqman Bukhori and E. E. Prasetiyo. (2023). “Sistem Deteksi

Masker Berbasis Jetson Nano dengan Deep Learning Framework

TensorFlow”. Jurnal Nasional Teknik Elektro Dan Teknologi

Informasi, 12(1), 15-21. doi: 10.22146/jnteti.v12i1.5472

[4] L. Ezzeddini et al., “Analysis of the performance of Faster R-CNN and

YOLOv8 in detecting fishing vessels and fishes in real time,” PeerJ

Comput. Sci., vol. 10, p. e2033, 2024, doi: 10.7717/peerj-cs.2033.

[5] I. Karamouzas, N. Sohre, R. Hu, and S. J. Guy, “Crowd space: A

predictive crowd analysis technique,” SIGGRAPH Asia 2018 Tech.

Pap. SIGGRAPH Asia 2018, vol. 37, no. 6, 2018,

doi:10.1145/3272127.3275079.

[6] R. Bai, F. Shen, M. Wang, J. Lu, and Z. Zhang, “Improving Detection

Capabilities of YOLOv8-n for Small Objects in Remote Sensing

Imagery: Towards Better Precision with Simpliied Model Complexity

Improving Detection Capabilities of YOLOv8-n for Small Objects in

Remote Sensing Imagery: Towards Better Pre,” Res. Sq., pp. 0–9,

2023. doi: 10.21203/rs.3.rs-3085871/v1

[7] R. Iyer, P. Shashikant Ringe, R. Varadharajan Iyer, and K. Prabhulal

Bhensdadiya, “Comparison of YOLOv3, YOLOv5s and MobileNet-

SSD V2 for Real-Time Mask Detection,” Artic. Int. J. Res. Eng.

Technol., vol. 8, no. 7, pp. 1156–1160, 2021.

[8] I. P. Sary, S. Andromeda, and E. U. Armin, “Performance Comparison

of YOLOv5 and YOLOv8 Architectures in Human Detection using

Aerial Images,” Ultim. Comput. J. Sist. Komput., vol. 15, no. 1, pp. 8–

13, 2023, doi: 10.31937/sk.v15i1.3204.

[9] M. Wirz, T. Franke, D. Roggen, E. Mitleton-Kelly, P. Lukowicz, and

G. Tröster, “Probing crowd density through smartphones in city-scale

mass gatherings,” EPJ Data Sci., vol. 2, no. 1, pp. 1–24, 2013,

doi:10.1140/epjds17.

[10] N. N. Amir Sjarif, S. M. Shamsuddin, S. Z. Mohd Hashim, and S. S.

Yuhaniz, “Crowd analysis and its applications,” Commun. Comput.

Inf. Sci., vol. 179 CCIS, no. PART 1, pp. 687–697, 2011,

doi:10.1007/978-3-642-22170-5_59.

[11] J. C. S. Jacques, S. R. Mussef, and C. R. Jung, “Crowd analysis using

computer vision techniques,” IEEE Signal Process. Mag., vol. 27, no.

5, pp. 66–77, 2010, doi: 10.1109/MSP.2010.937394.

[12] H. Yan, “Deadly crowd surges have happened for decades. Safety

standards exist, but they’re not required nationwide,” CNN, Nov. 12,

2021. https://edition.cnn.com/2021/11/11/us/safety-standards-

requirements-crowd-surges/index.html

[13] Abdulkadir Gozuoglu, Okan Ozgonenel, and Cenk Gezegin, “CNN-

LSTM Based Deep Learning Application on Jetson Nano: Estimating

Electrical Energy Consumption for Future Smart Homes,” Internet of

things, vol. 26, pp. 101148–101148, Jul. 2024,

doi:10.1016/j.iot.2024.101148.

[14] V. Gonzalez-Huitron, J. A. León-Borges, A. E. Rodriguez-Mata, L. E.

Amabilis-Sosa, B. Ramírez-Pereda, and H. Rodriguez, “Disease

detection in tomato leaves via CNN with lightweight architectures

implemented in Raspberry Pi 4,” Computers and Electronics in

Agriculture, vol. 181, p. 105951, Feb. 2021,

doi:10.1016/j.compag.2020.105951.

[15] Y. Chen, Y.-F. Li, C. Cheng, and H. Ying, “Neural network based

cognitive approaches from face perception with human performance

benchmark,” Pattern recognition letters, Jun. 2024,

doi:10.1016/j.patrec.2024.06.024.

[16] J. Yan et al., “Enhanced object detection in pediatric bronchoscopy

images using YOLO-based algorithms with CBAM attention

mechanism,” Heliyon, vol. 10, no. 12, pp. e32678–e32678, Jun. 2024,

doi: 10.1016/j.heliyon.2024.e32678.

[17] Sushila Palwe, A. Gunjal, S. Jindal, A. Shrivastava, A. Deshmukh, and

Mehul Navalakha, “An Intelligent and Deep Learning Approach for

Pothole Surveillance Smart Application,” Procedia computer science,

vol. 235, pp. 3271–3282, Jan. 2024, doi: 10.1016/j.procs.2024.04.309.

[18] E. Casas, L. Ramos, C. Romero, and Francklin Rivas-Echeverría, “A

comparative study of YOLOv5 and YOLOv8 for corrosion

segmentation tasks in metal surfaces,” Array, vol. 22, pp. 100351–

100351, Jul. 2024, doi: 10.1016/j.array.2024.100351.

[19] F. Hou, W. Lei, S. Li, J. Xi, M. Xu, and J. Luo, “Improved Mask R-

CNN with distance guided intersection over union for GPR signature

detection and segmentation,” Automation in Construction, vol. 121, p.

103414, Jan. 2021, doi: 10.1016/j.autcon.2020.103414.

[20] X. Zhang et al., “Area in circle: A novel evaluation metric for object

detection,” Knowledge-based systems, vol. 293, pp. 111684–111684,

Jun. 2024, doi: 10.1016/j.knosys.2024.111684.

[21] Mohd Nazuan Wagimin et al., “Classification model for chlorophyll

content using CNN and aerial images,” Computers and electronics in

agriculture, vol. 221, pp. 109006–109006, Jun. 2024,

doi:10.1016/j.compag.2024.109006.

[22] X. Yang, Y. Liu, A. Majumdar, E. Grass, and W. Ochieng,

“Characteristics of crowd disaster: database construction and pattern

identification,” International journal of disaster risk reduction, pp.

104653–104653, Jul. 2024, doi: 10.1016/j.ijdrr.2024.104653.

[23] Z. Zhu and Y. Cheng, “Application of attitude tracking algorithm for

face recognition based on OpenCV in the intelligent door

65

lock,” Computer Communications, vol. 154, pp. 390–397, Mar. 2020,

doi: 10.1016/j.comcom.2020.02.003.

[24] D. Syrlybayev, N. Nauryz, A. Seisekulova, K. Yerzhanov, and Md. H.

Ali, “Smart Door for COVID Restricted Areas,” Procedia Computer

Science, vol. 201, pp. 478–486, Jan. 2022,

doi:10.1016/j.procs.2022.03.062.

[25] T. Peng-o and P. Chaikan, “High performance and energy efficient

sobel edge detection,” Microprocessors and Microsystems, vol. 87, p.

104368, Nov. 2021, doi: 10.1016/j.micpro.2021.104368.

[26] J. Lee, M. Yu, Y. Kwon, and T. Kim, “Quantune: Post-training

quantization of convolutional neural networks using extreme gradient

boosting for fast deployment,” Future Generation Computer Systems,

vol. 132, pp. 124–135, Jul. 2022, doi: 10.1016/j.future.2022.02.005.

[27] Islomjon Shukhratov, Andrey Pimenov, A. Stepanov, Nadezhda

Mikhailova, A. Baldycheva, and Andrey Somov, “Optical Detection

of Plastic Waste Through Computer Vision,” Intelligent systems with

applications, pp. 200341–200341, Feb. 2024,

doi:10.1016/j.iswa.2024.200341.

[28] J. Amin, Irum Shazadi, M. Sharif, M. Yasmin, Nouf Abdullah

Almujally, and Y. Nam, “Localization and Grading of NPDR Lesions

Using ResNet-18-YOLOv8 Model and Informative Features Selection

for DR Classification based on Transfer Learning,” Heliyon, pp.

e30954–e30954, May 2024, doi: 10.1016/j.heliyon.2024.e30954.

[29] B. Ganga, Lata B.T, and Venugopal K.R, “Object detection and crowd

analysis using deep learning techniques: Comprehensive review and

future directions,” Neurocomputing, pp. 127932–127932, May 2024,

doi: 10.1016/j.neucom.2024.127932.

[30] Y. C. Putra and A. W. Wijayanto, “Automatic detection and counting

of oil palm trees using remote sensing and object-based deep learning,”

Remote Sensing Applications: Society and Environment, vol. 29, p.

100914, Jan. 2023, doi: 10.1016/j.rsase.2022.100914.

[31] A. Deshpande and K. Warhade, “SADY: Student Activity Detection

Using YOLO-based Deep Learning Approach,” International Journal

on Advanced Science, Engineering and Information

Technology/International journal of advanced science, engineering

and information technology, vol. 13, no. 4, pp. 1501–1501, Jul. 2023,

doi: 10.18517/ijaseit.13.4.18393.

66

