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Abstract— The challenge of significantly increasing rice production in Indonesia necessitates a granular focus on the farm level, with 

particular emphasis on the utilization of high-quality seeds. Unfortunately, the accurate assessment of seed quality is often only feasible 

post-planting. While traditional methods persist, they are notably time-consuming and prone to inaccuracies. This research introduces 

a novel solution: an Android-based machine learning model for rice seed quality identification based on morphological seed structure. 

By enabling early detection of low-quality seeds, the system aims to mitigate the associated risks and contribute to increased rice yield. 

Two cutting-edge machine learning models were trained using datasets sourced from the Roboflow platform and subsequently 

integrated into an Android application. A comparative analysis of these models was conducted to determine their efficacy in discerning 

rice seed quality. The evaluation results unequivocally demonstrated the superior performance of the Roboflow Train 3.0 Object 

Detection (Fast) model, achieving an impressive mean average precision (mAP) of 97.1%, precision of 96.2%, and recall of 93.4%. 

Given its exceptional accuracy and speed, the Roboflow Train 3.0 Object Detection (Fast) model has been proven to be the ideal option 

for integration into Android applications. Future research could concentrate on optimizing the model for edge inference, thereby 

enhancing identification efficiency and accuracy. This advancement holds the potential to revolutionize rice cultivation practices in 

Indonesia by empowering farmers to make informed decisions based on precise seed quality assessment, ultimately leading to 

substantial improvements in rice production and food security. 

Keywords— Rice seed quality; machine learning; Roboflow train 3.0; object detection; YOLO NAS; Android application. 

Manuscript received 7 Aug. 2024; revised 19 Oct. 2024; accepted 24 Nov. 2024. Date of publication 30 Apr. 2025. 

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License. 

I. INTRODUCTION

Rice serves as the primary food source for most Indonesian 

population [1], [2], [3]. It is a crucial commodity with 

significant implications for social, economic, political, and 

national security aspects, while also meeting food needs and 

achieving sustainable self-sufficiency goals [4], [5]. The total 

rice production for food consumption in 2023 reached 31.10 

million tons, marking a decrease of 439.24 thousand tons or 

1.39 percent compared to the 31.54 million tons produced in 
2022 [6], [7]. The enhancement of national rice production 

must be accompanied by an increase in the production of 

high-quality rice seeds, which play a vital role in boosting 

productivity [8], [9], [10], [11]. However, assessing the 

quality of rice seeds before planting is challenging due to 

limited human observation and potential seed damage [12]. 

Traditional human evaluation methods are slow, costly, 

inconsistent, and subjective [13]. Therefore, there is a need 

for more efficient and reliable methods for determining rice 
seed quality [14], [15]. 

Since the inception of the Making Indonesia 4.0 initiative, 

there has been a pressing need for advanced technologies 

within the agricultural sector to enhance productivity, quality, 

and sustainability [16]. The utilization of machine learning in 

the field of agriculture, with specific reference to rice 

production, has enabled considerable progress in the areas of 

seed selection, germination, and plant growth [17]. A variety 

of digital tools and online platforms have been developed to 

provide support for these endeavors. This has resulted in 

contributions to the field of artificial intelligence, with the 

creation of intelligent algorithms designed to assist farmers in 
assessing the quality of rice seeds [18], [19].  

A recent study conducted by Sidiq [12] developed a 

superior/non superior rice seed classification. This system 

uses Deep-CNN, facilitating a rapid, accurate, and cost-

efficient method for farmers to assess rice seeds, with 93% 

precision and 95% accuracy. However, this research has not 

been supported by a platform as a practical form of the system 
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created. Research by Zhao [20] developed an artificial neural 

network (YOLO-r) to detect the germination status of rice 

seeds and automatically evaluate the total number of 

germinations. However, this research did not seek to make 

comparison with other algorithms, nor did it establish a 

practical platform. A significant number of researchers have 

presented digital image processing techniques for non-

destructive manipulation of rice seeds [21]. Most of these 

studies have focused on two key features: color and 

morphology. This research addressed these features in turn.  
This research project aimed to develop a system for 

assessing the quality of rice seeds by employing the most 

recent algorithms. Roboflow platform was used for the 

development of the model, and an Android application was 

created to run the inference model developed on Roboflow. 

The Android application served as a practical system for 

evaluating the model's performance. The testing parameters 

included an assessment of the computational speed of the 

inference model, employing the profiling tool on the Android 

Studio integrated development environment (IDE). 

Furthermore, end-to-end testing was used to evaluate the 
model's accuracy in identifying rice seed quality.  

II. MATERIALS AND METHOD

This research used the following method and design system 

for the development of a rice seed quality identification 

system with an Android platform: 

Fig. 1  Method and Design System 

The methods involved in the development of the Android-

based rice seed quality identification system was dataset 

creation with balanced dataset health criteria, model creation, 

model deployment, model integration with Android 

applications, and running inference models. 

A. Deep Learning Model Development Method

The top level of Figure 1 shows a diagram of the deep

learning model development process, which consists of three 

main stages: dataset creation, model training, and model 
deployment. 

As shown in Figure 1, the first stage in the dataset creation 

was the collecting image stage, where seed image data was 

gathered to form the dataset, which was a pivotal step in 

dataset development. This stage, as highlighted in [22], [23], 

directly shaped the performance and outcomes of the machine 

learning algorithm, underlining the direct influence of the 

work on the overall results.  

The image data used in this study were rice seeds in the 

germination period with the following quality categories: 

TABLE I 

GERMINATION CRITERIA FOR EACH CLASSIFICATION

Classification Criteria Image 

Normal (N) 

a. Primary roots grow strongly with 

secondary roots. The secondary 

seminal roots grow strongly, 2-3

roots. Sometimes the primary

seminal root does not grow, but at

least 2 secondary seminal roots 

must grow strongly. 

b. The primary leaf grows along the 

coleoptile and has emerged from it. 

In this case, the leaf should look 

healthy. The plumula can also be

curved as long as it is not rotten.

c. Good hypocotyl development is

complete without any damage to the 

tissues. 

d. Have one cotyledon for 

monocotyledon sprouts and two for 

dicots. 

e. Plant seeds with epigeal 

germination type are considered 

normal if the root length is 4 × the 

length of the seed and have a normal 

structural development. 

f. Sprouts that are rotten due to 

infection by other sprouts are still

considered normal if the important 

parts of the sprouts are all present. 

Abnormal 

(AN) 

a. No primary or secondary roots 

grow. If they do, they are weak and

short. 

b. No first leaves and colorless

coleoptiles. Sometimes the plumula

grows white or is decayed. 

c. Damaged sprouts, without 

cotyledons, embryos, ruptures, and 

short primary roots. 

d. Sprouts with deformed shape, weak, 

or unbalanced development of 

important parts. 

Dead (BM) 
Seeds that spoil before germination or 

do not sprout after the prescribed 

testing period, but are not dormant. 

Fresh Not 
Growing 
(BSTT) 

Seeds that do not grow to the end of the 

test, but still have the ability to grow 

normal. This type of seed is capable of 

absorbing water during the testing 

process but is inhibited for further 

development. 
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This category was obtained from direct observation of rice 

seed in a previous study by Sidiq [12] and a recent research 

project by Li [24].  

The next stage was organizing image. Image data was 

organized based on seed quality. Out of the initial 7,500 image 

collected, only 637 images were used in the final model 

training. This was because of an imbalance in the dataset with 

some images not meeting the size and clarity requirements. 

Additionally, certain categories had significantly more 

samples than others, which resulted in a skewed distribution 
of training data. Unfortunately, an incorrect application of 

oversampling before cross-validation created significant bias, 

resulting in lower accuracy and recall for the minority classes. 

The bias was evident through misclassification in the 

confusion matrix [25], [26]. The uneven amount of data 

between quality groups ultimately affected the overall health 

of the dataset, leading to poor results from the model [27]. 

This issue was addressed in the processing image stage. 

After the organize stage, the next stage was the labeling 

image stage. The image was annotated according to the seed 

quality group (ground truth) by creating a bounding box 
around the seed in the image. The color of the bounding box 

was determined by the seed quality group it belonged to. For 

instance, a green bounding box might indicate a high-quality 

seed, while a red one might indicate a low-quality seed. 

TABLE II 

COLOR INDICATION FOR RICE SEED QUALITY GROUP

Color Class Name 

Abnormal 

Dead 

Fresh not growing 

Normal 

After all image data had been annotated according to the 

seed quality group, the data was then divided into 

train/valid/test with a ratio of 88%: 8%: 4%. This resulted in 

a data composition of 1338;128;63 images. 

The following stage was the processing image, which 

consisted of 2 steps: 

a. Pre-processing, which involved standardization of image

data (all images in train, valid, and test) [28].
b. Augmentation, which was applied only to the training set.

Data augmentation (rotation, inversion, scaling) increased

minority class samples to address imbalance [29].

Additionally, oversampling and under sampling

techniques were used during training to improve class

distribution.
TABLE III 

PRE-PROCESSING AND AUGMENTATION 

Pre-processing Augmentation 

 Auto-oriented : 

Applied 

 Resize : Stretch to

640*640 

 Grayscale : Applied

 Flip : Horizontal 

 900 Rotate : Clockwise, Counter-

Clockwise

 Rotation : Between -150 and +150 

 Grayscale: Apply to 15% of images

 Saturation: Between -25% and +25% 

 Brightness: Between -15% and

+15% 

 Blur: Up tp 2.5px

 Noise: Up to 0.1% of pixels

The following are the results of the dataset created after 

applying data augmentation techniques: 

Fig. 2  Dataset Health 

Additionally, both oversampling for minority classes and 

under sampling for majority classes were employed during 

training to further balance the distribution. These measures 

helped reduce bias and improve model performance, as 

reflected in a more evenly distributed error in the confusion 
matrix. However, it is important to note that while balancing 

the dataset improved results for common classes, it must be 

applied carefully, as it can sometimes reduce performance for 

rare ones [30]. 

The next step in the process involved train the model using 

the previously created dataset. The model-building phase 

began with training the dataset using Roboflow AutoML to 

generate a Roboflow 3.0 model optimized for speed. This 

model was selected for its ease of training and deployment on 

the Android application. The study also trained the YOLO 

NAS [31], [32] model for comparison in terms of modernity. 
The training process with Roboflow AutoML typically takes 

around 1.5 hours with 300 epochs. Following training, the 

model was evaluated using three key metrics: mean average 

precision (mAP), precision, and recall. F1 score was 

calculated using the formula [33]: 

F1 Score = 2x(Precision x Recall)/(Precision + Recall)  (1) 

The model was then deployed using Roboflow's hosting 

server for online inference. To run the inference model with 

Roboflow, a workflow scheme was first created on the 
Roboflow website to improve the accessibility and efficiency 

of image segmentation tasks, paving the way for future 

advancements in cloud-based machine learning applications 

[34]. The workflow for running the Roboflow Train 3.0 

Object Detection (Fast) and YOLO NAS inference models is 

as follows: 

Fig. 3  Workflow Model 

B. Mobile Application Development Methods

The workflow used the Roboflow API to create an Android

app in Kotlin functioning primarily as a camera for capturing 

rice seed images. Feature identification began with input pre-

processing, followed by activating the inference model and 

post-processing results. The app displayed a colored bounding 

box to assess seed quality. To ensure that the user interface 

(UI) was effective in agricultural settings, we prioritized 
simplicity and accessibility. The layout supported intuitive 
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navigation, allowing users to quickly capture images and view 

results without technical expertise. In addition, user feedback 

enhanced usability. Figure 4 shows the UI design of the 

system application. 

 

    
Fig. 4  Mobile application general design 

 
Figure 5 illustrates the inference process on the Android 

application using the trained model. The input image was 

encoded to Base64, which was then used to run the inference 

API. If encoding failed, a toast notification provided feedback 

on the error. Once successfully encoded, the API call was 

made. If it returned a 200 status, the application displayed a 

bounding box around the rice seed image along with the 

detection percentage. For any response other than 200, a toast 

notification alerted the user to the error and suggested actions 

such as re-capturing the image. 

 

 
Fig. 5  Flowchart of the Android App System 

Computational testing of the application was carried out 

using the App Inspector tool in the Android Studio IDE. 
Parameters taken included the Network Inspector, employed 

to read the application in the movement of transferred and 

received data [35]. 

III. RESULTS AND DISCUSSION 

A. The Model and Model Evaluations 

The Roboflow Train 3.0 Object Detection (Fast) model 

demonstrated robust performance in object detection, as 

evidenced by a stable mean average precision (mAP) value 

with mAP@50:95.  

 
Fig. 6  Training Graph Roboflow 3.0 Object Detection (Fast) 

Based on Figure 6, the decline in all loss functions suggests 

that the model developed the ability to accurately detect and 

classify objects. However, it should be noted that the model 

may be overfitting, as evidenced by the initial stabilization of 

its performance. It is possible that overfitting may cause some 

bugs, and indeed this model was tested and found to exhibit 

bugs. Bugs arising from this overfitting Roboflow model 

included: 

a. High Performance on Training Data: The model 
demonstrated excellent performance on the training 

data, reflecting its ability to effectively learn the 

nuances and complexities of the data, including both 

relevant details and irrelevant noise. 

b. Poor Performance on Test Data: The model struggled 

to generalize to unseen data. It performed well on 

training data but struggled with random images, often 

providing inaccurate feedback. 

c. Unstable Predictions: The model's predictions were 

unreliable when applied to new data, leading to 

inconsistent results even with identical images. 

To address this issue, solutions such as data augmentation 
and regularization should be explored further, along with 

techniques like dropout and early stopping to prevent 

overfitting.  

Both precision and recall demonstrated improvement, 

indicating enhanced positive predictions and object 

identification. The upward trajectory of the mAP 50% and 

mAP 50-95% curves indicate an aptitude for extrapolation to 

novel data sets. 

Meanwhile, as shown in the training graphics of the YOLO 

NAS model in Figure 7, the mean average precision (mAP) 

fluctuated but generally showed an upward trend, indicating 
improvement in the model's ability to detect objects. 

 

 
Fig. 7  Training Graph YOLO NAS 

The MAP for detections with Intersection over Union (IoU) 

scores of above 0.5 showed an increasing trend, indicating the 
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model's improving ability to find objects with higher precision. 

The training graph demonstrated that the YOLO NAS model 

learnt and evolved, but it also highlighted the significant room 

for further optimization. This challenge presents an 

opportunity to actively contribute to the model's improvement, 

enhancing its performance and achieving better object 

detection results. 

The evaluation of the Roboflow Train 3.0 Object Detection 

(Fast) and YOLO NAS models involved comparing key 

metrics, including mean average precision (mAP), precision, 
recall, F1 score, and computational speed. Figure 8 illustrates 

the differences in precision, recall, and F1 score between the 

two models. 
 

 
Fig. 8  Comparative Diagram of Results from Model Evaluation 

a. Precision: Roboflow achieved 96.2%, while YOLO NAS 

slightly outperformed with 97.1%. 

b. Recall: Roboflow had a higher recall of 93.4% compared 

to YOLO NAS’s 90.1%, indicating Roboflow's better 
ability to detect more objects. 

c. F1 Score: Roboflow’s F1 score was 0.947, slightly 

superior to YOLO NAS’s 0.933, making it more balanced 

in both precision and recall. 

 

This shows that the Roboflow Train 3.0 Object Detection 

(Fast) model can better detect objects present in the image and 

minimize missed objects. 

The results of the calculation of F1 score with formula (1)   

for both models are as follows: 

 Roboflow Train 3.0 Object Detection Fast 

F1 Score = 2 × (P×R) ÷ (P+R) 

= 2 × �0.962 × 0.934� ÷ (0.962+0.934) 

= 2 × �0.898� ÷ (1.896) 

= 0.947 

 YOLO NAS 

F1 Score = 2 × (P×R) ÷ (P+R) 

 = 2 × �0.971 × 0.901� ÷ (0.971+0.901) 

 = 2 × �0.874� ÷ (1.872) 

 = 0.933 

Roboflow Train 3.0 Object Detection (Fast) achieved a 

slightly superior F1 score of 0.947, closely rivaling the YOLO 

NAS’s score of 0.933. 

B. Integrating Inference Model to Android Application 

Furthermore, the inference of both models was tested when 
running on the Android application. This system application, 

called Seed-Snap, was developed as simple as possible and 

focused on a user-friendly concept. A camera feature was 

available to shoot seed objects, select photos from the gallery, 

and take photos of existing rice seeds. Furthermore, it was 

equipped with a spinner to select the model to be tested. In 

this study, only two models were tested. Table 4 shows the 

results of the android application that can run inference. 

 
TABLE IV 

SYSTEM APPLICATION FOR IDENTIFYING RICE SEED QUALITY 

Splash Screen Home 

  
Model Picker Image Picker 

  
UI Identification Result 

 

C. End to End Testing of the Android Application 

At this stage, the application underwent end-to-end tests to 

ensure its functionality operated as intended. We prepared 

several test scenarios for this Seed-Snap application. 

 
TABLE V 

END TO END TESTING OF THE SEED-SNAP ANDROID APPLICATIONS 

Test scenario Result Evidence 

Users can select a model. Success 

 
Users can select an image 
resource. 

Success 
 

Users can take pictures with 
the device's camera and the 
resulting images can be 
displayed for viewing. 

Success 
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Test scenario Result Evidence 

Users can take a picture 
through the device’s gallery, 
and the resulting images can 

be displayed for viewing. 

Success 

 
Users can run inference   

1. When a picture of a dead 
seed category is 
uploaded, a red bounding 
box will appear, an 
indication of the dead 
seed and its 
corresponding 
percentage. 

Success 

 

2. When an image of a 
normal seed category is 
uploaded, a green 
bounding box will 
appear, an indication of a 
normal seed and its 
corresponding 
percentage. 

Success 

 

3. When an image of an 

abnormal seed category 
is uploaded, a yellow 
Bounding Box will 
appear, an indication of 
an abnormal seed and its 
corresponding 
percentage. 

Success 

 

4. When a picture of a fresh 

non-sprouting seed 
category is uploaded, an 
orange Bounding Box 
will appear, an indication 
of a fresh non-sprouting 
seed and its 
corresponding 
percentage. 

Success 

 

The application can recognize 
rice seed objects 

Success 

 

The application can 
distinguish the rice seed 
objects from other objects 

Failed 

 

The application can read 
multiple rice seed objects in 
one image 

Success 

 
 

Based on the results of the end-to-end testing, all features 

worked as expected. However, in one scenario, the model 

incorrectly classified a non-seed object as a seed from a 

specific category. This highlights a limitation in the model's 

ability to differentiate between seed and non-seed objects. To 

address this issue, future improvements should focus on 

enhancing the model's object detection capabilities through 

additional training, data augmentation, and more advanced 

classification techniques to ensure more accurate predictions. 

D. Analysis of Computational Speed of The Android 

Application 

The parameter evaluated was the computational speed, 

which involved the application’s attempt to capture the image 

until the bounding box was accurately visualized. Figure 9 

shows the results of the computational speed of the model as 

seen from the Roboflow API invocation process for the 

Roboflow Train 3.0 Object Detection (Fast) model. 

 

 
Fig. 9  The Inference Model for Data Network Inspector API of Roboflow 

Train 3.0 Object Detection (Fast). 

 

Based on the results of the network inspector carried out by 

testing a single seed image, the data transfer speed recorded 

was 4s 916 ms with a size response of 230 B. Meanwhile, 

when multiple seeds were analyzed in one photo, it took 3s 

176 ms with a size response of 1.6KB. 

Figure 10 shows the results with the YOLO NAS model. 
 

 
Fig. 10  The Inference Model for Data Network Inspector API of YOLO NAS 

The network inspector results from YOLO NAS for single 
seed images indicated that the data transfer process took 5s 

431ms. For multiple seeds within a single photo, the transfer 

process took 2s 562ms. However, the YOLO NAS model 

could only form fewer bounding boxes than the Roboflow 

model.  

The differences in computational speed between the two 

models had significant implications for real-time applications. 

The YOLO NAS model was faster when handling multiple 

seeds, but its slower performance on single images and fewer 

bounding boxes limited its accuracy and effectiveness in field 

use. The Roboflow model was slightly slower with multiple 
objects but provided more bounding boxes, enhancing 

precision in real-world scenarios. The choice of model may 
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impact the user experience, especially in time-sensitive 

applications where speed and accuracy are both critical. 

IV. CONCLUSION

This study compared two object detection models, 

Roboflow Train 3.0 Object Detection (Fast) and YOLO NAS, 

using an Android application. Both models showed good 
results in terms of object detection quality. Roboflow Train 

3.0 Object Detection (Fast) had a slightly higher mAP 

percentage, recorded at 97.1%, compared to that of YOLO 

NAS with 96.6%. It also had a higher overall accuracy, with 

a precision of 96.2%, recall of 93.4%, and F1 score of 0.947. 

In terms of computational speed, Roboflow Train 3.0 Object 

Detection (Fast) performed better on the Android application, 

with a data transfer time of 4s 916ms for a single seed image 

and 3s 176ms for multiple seeds in a single photo, compared 

to YOLO NAS with 5s 431ms and 2s 562ms, respectively. 

However, YOLO NAS produced fewer bounding boxes. 
Overall, it is recommended to use Roboflow Train 3.0 Object 

Detection (Fast) for Android applications due to its better 

accuracy and speed. Future research could focus on 

optimizing these models for edge inference using Docker, 

such as model pruning, quantization, or utilizing lightweight 

architectures to improve efficiency and speed in mobile 

environments. Additionally, expanding the testing dataset to 

include diverse types of rice seeds would enhance model 

robustness and generalization, ensuring more reliable 

performance across various seed characteristics.  
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