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Abstract— This research was conducted to improve the efficiency of lubricating oil filling and packaging lines for 1L and 4L packages 

in a manufacturing company using the Arena Simulation. The existing system, which involves the handling of goods by operators is 

semi-automatic, leading to production activities shortage, employee overtime, and additional costs. The validity of the model was tested 

with Fuzzy Inference System (FIS) and t-test analysis, to achieve average significance values of 0.462 and 0.419 for 1L and 4L packages, 

with p>0.05 confirming no significant difference between simulation and actual data. This research proposed three improvement 

scenarios to optimize the production system. The first involved the addition of a robotic system for the packing process, which resulted 

in 5% time reduction and 6% productivity improvement for 1L packages, and 11% time reduction with 12% productivity increase for 

4L packages. The second complemented the first through the introduction of a robotic arm palletizer, achieved a 12% time reduction 

and 13% productivity improvement for 1L packages, and 14% time reduction with 17% productivity increase for 4L packages. The 

third scenario, which combined an automatic case packer and robotic arm palletizer, showed the most significant improvements with 

14% time reduction and 16% productivity increase for 1L packages, and 19% time reduction with 23% productivity improvement for 

4L packages. The optimal third scenario reduced working time from 9.3 to 7.9 hours/day for 1L packages and to 7.53 hours/day for 4L 

packages. 
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I. INTRODUCTION

The main objective of businesses is to maximize profits 
with the least capital [1]. However, various operational costs 
are unavoidable particularly when running a business. In 
order to ensure sustainability and prosperity, companies must 
be capable of identifying opportunities and confronting 
obstacles in the contemporary industrial era, which focuses on 
automation. The dynamic and evolving circumstances 
compelled the industrial sector to adjust in order to sustain 
global progress [2]. Moreover, industry 4.0 aimed to develop 
efficient and low-cost production by prioritizing the 
flexibility of related activities through intelligent 
manufacturing and system automation [3]–[5]. 

Several industries currently apply automation to systems 
and machines to improve effectiveness and efficiency 
difficult to achieve with human labor. Automation also helps 

cover shortage of less competent labor [6], [7]. A particular 
field that prioritized automation is manufacturing which deals 
with the use of the latest equipment, ranging from industrial 
machinery to production management controls [8]. Although 
not a requirement, this mechanization process was essential 
for the company to remain competitive [9], [10]. Automation 
enabled the entire process to operate automatically without 
intervention, handling repetitive tasks beyond human 
capabilities [11]. The more varied and complicated consumer 
needs get adaptable and rapid automation becoming 
comparable to traditional approaches. Automation allows the 
entire process to run automatically without human assistance, 
engaging in repetitive activities, or work that humans are 
unable to perform [8]. The objective was to enhance 
productivity, precision, and efficiency, to minimize human 
error [12], [13]. 

Automation systems consist of components composed by 
instruction programs and control schemes to form a structured 
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series of processes [14]. In the manufacturing sector, it is 
combined with a production system programmed with certain 
logic, resulting in a series of coordinated processes managed 
by humans. As a result, it becomes essential to schedule 
system components according to respective working speeds 
in order to prevent errors caused by process mismatches, 
including achieving optimal production outcomes [15]. 

Production systems are the core for manufacturing 
companies that focus on process optimization to get the best 
efficiency, in terms of speed, cost reduction, and operational 
time [16]. Common problems were caused by non-optimal 
application and allocation of resources, including production 
planning and scheduling. The production line, as a system, 
comprised various components that work according to 
instructions and controls to form series of processes. It 
includes various processes such as filling and others, starting 
from incoming materials to finished products [17]. In 
companies that had not fully adopted automation, some 
processes adding value to the product may be performed by 
the same machine or operator. This can create additional 
burden, reducing work efficiency and overall production time 
[18]. 

Several research stated that automation of production 
systems had been widely implemented globally, although 
some companies still use conventional methods [19], [20]. 
Industrial companies, especially those with high production 
volumes, continue to search for robotic solutions to automate 
the manufacturing processes. Various sectors consistently 
depend on labor-intensive manual processes despite 
widespread belief that these do not contribute economically 
to the company [21]. 

Robotic arms are the most widely used, compared to the 
various types of robots. Moreover, the use of robots is no 
longer limited to the industrial field, but has also penetrated 
into other sectors [22], [23]. A robot arm or manipulator is 
specifically designed to perform tasks that require the 
manipulation of objects or tools [24], [25]. The usual structure 
is comprised of a number of joints enabling it to move and 
bend in a variety of ways [26]. This included picking, moving, 
and positioning items with a level of precision and accuracy 
much beyond human possibility. Robotic arms are simple to 
design and control, and performs a wide range of functions 
[27]. In the manufacturing industry, these were used for 
various tasks such as transporting, painting, packaging, and 
polishing [28].  

The present research focused on two main functions of 
robot manipulator applications, namely case packer and arm 
palletizer for 1 Liter (1L) and 4 Liter (4L) capacity packaging. 
These two functions play a significant role in the production 
and distribution process of lubricant products. Based on 
preliminary review, it was inferred that the topic of industrial 
automation had been investigated severally. The focus of 
previous research covered various aspects, including 
optimization of manufacturing process design, manufacturing 
system configuration, system automation scheduling, 
simulation for decision making, as well as production system 
improvement scenarios. 

Several gaps had remained unaddressed, despite previous 
research exploring the benefits of automation in 
manufacturing. First, existing research mainly focused on 
fully automated systems, with limited attention to the 

transition from semi to fully automated processes in lubricant 
packaging. Second, while robotic solutions had been 
reviewed extensively, the specific application of case packers 
and arm palletizers in lubricant filling lines lacked 
comprehensive analysis. Third, most analyses evaluated 
either production efficiency or worker conditions separately, 
rather than considering the interdependence in semi-
automatic systems. 

This research aimed to achieve several important 
objectives by focusing on the following four main aspects 
1. Developing Comprehensive Models Creating a robust 

simulation model integrating manual and automated 
processes, validated through dual methods such as Fuzzy 
Inference System (FIS) and t-tests. 

2. Implementing Automation Innovations Introducing 
specific automation solutions for lubricant packaging, 
optimizing robotic systems for 1L and 4L packages, 
including designing integrated configurations for case 
packers and palletizers. 

3. Analyzing Performance Gains Quantifying productivity 
enhancements resulting from diverse automation 
scenarios while assessing the impacts on worker 
conditions, including reduced overtime, and conducting 
a detailed cost-benefit analysis. 

4. Facilitating Industry Transitions Providing a practical 
framework for gradually automating semi-automatic 
facilities, offering benchmark data applicable to similar 
industrial contexts. 

The efficiency, productivity, and profits of manufacturing 
companies had been proven to increase through the 
implementation of various simulation and optimization 
models [29], [30]. However, lack of specificity regarding the 
application of automation to the product filling and packing 
process in the production line of a lubricating oil 
manufacturing company with a semi-automatic system is an 
important drawback. This gap outlined the unexploited 
potential to enhance efficiency and productivity in the sector. 

In order to fill this gap, the proposed research aimed to 
analyze and develop an appropriate automation solution. The 
relevant steps included analyzing the existing conditions of 
the product filling and packing process in the production line 
of a lubricating oil manufacturing company with a semi-
automated system. This was realized using simulation 
methods to mimic the real system, including creating 
improvement scenarios through the implementation of 
automation. Therefore, the main purpose of this research is to 
ensure the company becomes more efficient, productive, and 
cost-effective. 

II. MATERIAL AND METHODS 

The present section described the suggested simulation-
based method for analyzing and optimizing filling and 
packaging processes in the manufacturing industry. The 
flowchart in Fig. 1, shows a systematic process from problem 
identification to the end, with a particular focus on simulation 
modeling and production process optimization analysis. 

Field research was conducted at a lubricant manufacturing 
company to understand the existing production system. The 
investigation included direct observation of the filling and 
packaging lines for both 1L and 4L packages. This stage 
comprised detailed examination of current manufacturing 
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processes, equipment specifications, production flow, 
operator activities, and existing automation levels. Moreover. 
observations were made during regular production hours to 
capture actual operating conditions, namely machine 
operations, manual processes, quality control procedures, and 
material handling activities. The field research also included 
discussions with production supervisors and operators to 
understand operational challenges and constraints in the 
current semi-automatic system. This comprehensive field 
observation provided foundation data for developing the 
simulation model and identifying potential areas for 
automation improvement. 
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Fig. 1  Research flowchart 

 
The filling and packing line process flow in Fig. 2, shows 

the detailed sequence of operations from input to output. The 
line is divided into two interconnected main work stations, 
namely the filling and packing work station. This process 
diagram shows how these two stations were integrated into a 
single unit, connected by a conveyor system. Data was 
collected through systematic observation and recording of the 
production system operation. The first dataset comprised 
production performance indicators collected over nine weeks, 
such as defect percentages, preparation hours, daily overtime, 

hourly production rates, and line uptime efficiency as shown 
in Table 1. The second dataset covered detailed process 
timing measurements for each production stage in Table 2, 
comprising preparation time, filling rates, assembly speeds, as 
well as operation durations for both 1L and 4L packaging 
lines. These measurements were taken during normal 
production operations using standard time research methods 
to ensure data accuracy and reliability. Data collection also 
included machine specifications, system constraints, and 
quality control parameters necessary for developing an 
accurate simulation model. 
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Fig. 2  Process Diagram for Line Filling and Packing 

 
Based on this, data processing focused on fitting 

distribution analysis of packaging and palletizing execution 
times in the filling line. The collected timing data from 
production operations were subjected to statistical 
distribution fitting. This was aimed to determine the most 
appropriate probability distribution for use in the simulation 
model [31], [32]. Additionally, the process included analyzing 
the variability in execution times for both 1L and 4L 
packaging operations. The distribution fitting helped capture 
the natural variation in process times, enabling more accurate 
representation in the simulation environment. In line with this, 
the processing steps comprised outlier detection, normality 
testing, and selection of best-fit probability distributions for 
each process timing dataset. These fitted distributions served 
as major inputs for the simulation model development. 

The research adopted Arena Simulation Software for 
modeling and analyzing the production system, selected for 
the robust capabilities in discrete event simulation, 
particularly in manufacturing systems. The software provided 
comprehensive features through an extensive modeling 
environment essential for research requirements. Furthermore, 
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specialized modules including Basic and Advanced Processes, 
as well as Packaging enabled detailed process flow modeling, 
supporting complex manufacturing simulations. Built-in 
statistical tools also facilitate distribution fitting for process 
timing data, ensuring precise representation of operational 
dynamics. The advanced analysis capabilities enabled 
comprehensive system performance evaluation, while 
integrated animation features support critical model 
verification processes. The model development adopted the 
graphical user interface of the software, systematically 
incorporating production stages from filling to palletizing 
operations. Meanwhile, process logic and timing data were 
implemented using precise modeling constructs, with built-in 
statistical tools employed for comprehensive output analysis 
and scenario comparison. 

The subsequent subject of investigation is the filling and 
packaging line, comprising numerous critical processes, as 
shown in Fig. 2. The process diagram was adopted from 
previous research in manufacturing automation [15], 
production monitoring systems [33], and production line 
scheduling [20], [32]. This method was selected due to the 
effectiveness in visualizing complex semi-automatic systems 
and supporting the identification of automation opportunities 
while clearly showing quality control points and decision 
flows. The process starts with assembling the packaging cap 
and the filling of the liquid through the nozzle. Sensors were 
used to verify the quality of the closure after the packaging lid 
had been installed. The packaging is then run through the 
sealer equipment, as well as weighed and labeled alongside 
the cartons. The packets were manually transferred into the 
cartons, designed using a box former. After filling, these were 
sealed, weighed, and lot-labeled , while the cartons were 
manually arranged on pallets. A combination of automated 
and manual steps, such as quality checks and operator 
intervention when necessary, were adopted throughout the 
entire process guaranteeing that the final product satisfied the 
established standards. 

The next step after the completion of the data collection 
stage included constructing the simulation model. It was 
designed using Arena Simulation software, which replicated 
the logical operations of the actual system to accurately 
represent real processes within the simulation environment. 
Preprocessed data was input into this model. In addition, the 
development process was divided into several subprocesses to 
ensure smooth operation of the model, reflecting the 
complexity of the actual system. 

The dataset used was collected from a lubricant 
manufacturing company over a nine-week observation period. 
Data was collected through two main methods, namely (1) 
direct observation of the production line to gather process 
timing data for each stage of the filling and packaging 
operations, (2) compilation of production performance 
records from the production department of the company. The 
process timing data comprised detailed measurements of 15 
major processes, from preparation to palletizing, with specific 

timing for both 1L and 4L package variants. Production 
performance data consisted of five main performance 
indicators, namely defect percentage, average preparation 
hours, and daily overtime, pieces produced per hour, as well 
as line uptime percentage. All measurements were conducted 
during normal production operations to ensure data validity 
and reliability. Meanwhile, the data collection process 
adhered to standard industrial engineering measurement 
practices, with multiple observations taken for each process 
to account for variations in operating conditions. 

The next step after constructing the model focused on 
testing the simulation model. During this process, the actual 
system was compared to the built model to verify the 
application chain, identifying possible mistakes [34], [35]. 
This verification was achieved using the capabilities provided 
by Arena Simulation software, which helped avoid modeling 
difficulties. 

In this research, Fig. 3 proposed working diagrams for 
three improvement scenarios, each with different features. 
Scenario 1 introduced a Robotic Packaging System that 
replaced manual type with an automated solution while 
maintaining palletizing at the end of the line. This approach 
aimed to reduce human intervention in the packaging process, 
targeting 5 to 11% reduction and a 6 to 12% increase in time 
and productivity, respectively. Based on this foundation, 
Scenario 2 incorporated a robotic arm palletizer, eliminating 
the need for performing the process manually, palletizing and 
automating the packaging operations. This scenario led to the 
realization of a more significant time reduction and 
productivity increase of 12 to 14% and 13 to 17%. Finally, 
Scenario 3 implemented a fully automated case packing 
system that integrated a robotic arm palletizer, offering 
complete automation for both processes. This scenario was 
designed to maximize efficiency, with projected time 
reductions and productivity improvements, ranging from 14 
to 19% and 16 to 23%. 

The outlined method offered a systematic framework for 
analyzing and improving the lubricant oil filling and 
packaging line through simulation-based automation. The 
entire process started with comprehensive data collection 
from field observations and production records, followed by 
detailed model development adopting Arena Simulation 
software. The validity of the model was rigorously tested 
using statistical methods and FIS analysis to ensure an 
accurate representation of the actual production system. 
Based on the validated model, three progressive automation 
scenarios were designed, each building upon the previous one 
to address the identified production challenges. Evaluation 
and discussion regarding the effectiveness of these scenarios 
in improving production efficiency while reducing manual 
intervention was analyzed in the following section. This also 
included the potential impact on working hours and 
productivity metrics for both 1L and 4L packaging lines. 
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Fig. 3  Working diagrams for the three improvement scenarios: (a) Robotic Packing System, (b) Robotic Packing with Palletizer, and (c) Automatic Case Packer 
with Palletizer. 

 
Model validation started with replication analysis, where 

the number of replications was calculated with a confidence 
level > 95% to enhance accuracy [36]. This ensured sufficient 
statistical power in the results of the simulation, providing a 
robust foundation for further analysis. Meanwhile, statistical 
validation, was conducted by adopting paired t-test analysis 
to compare simulation outputs with actual production data 
using 95% confidence level (α = 0.05). This quantitative 
method examined whether there were significant differences 
between simulated and actual results, providing rigorous 
statistical validation of the accuracy of the model. 

Further validation adopted fuzzy logic analysis using FIS 
to assess the discrepancies between simulated outputs and 
actual system performance. This system incorporated 
membership functions for the percentage difference and 
significance as input and output, respectively with fuzzy rules 
linking the two. The process included calculating the 
significance value for each replication of the simulation 
results, which yielded an average significance for 
comprehensive interpretation. 

The validation process used FIS to evaluate the accuracy of 
the simulation model. Input variables were defined by the 
percentage difference between simulated and actual data, 
characterized by three membership functions, namely Small 
(0 to 10%), Medium (5 to 25%), and Large differences (over 
15%). The output variable represented significance levels 
through membership functions Not Significant implied high 
model accuracy, Moderately Significant reflected acceptable 
deviation, and Highly Significant suggested the need for 
model adjustment. 

The system processed these variables through IF-THEN 
rules to establish relationships between input and output 
values. When the difference is Small, the system depicts Not 
Significant results, Medium and Large differences yielded 
Moderately, and Highly Significant results, respectively. The 
analysis process included calculating percentage differences 
between simulation and actual outputs, which were further 
processed through FIS membership functions and fuzzy rules 

to determine significance levels. These results were then 
defuzzified to obtain final significance values, with the 
average across replications determining the overall model 
validity. This method provided the basis for the analysis 
shown in Fig. 5 and Fig. 6, where lower significance values 
depicted better association between the simulation model and 
actual system performance. 

The main objective of this investigation is to develop 
various enhancement scenarios based on an analysis of output 
data from the existing system conditions. The improvements 
tend to focus on the final components to optimize processes 
and shorten working time. However, the final component is 
not always improved because each process has a different 
level of difficulty. This led to the need for research to 
carefully design multiple improvement scenarios including 
offering realistic and applicable solutions. 

III. RESULT AND DISCUSSION 

The preliminary outcome of this research focused on 
analyzing the performance of the production line over a nine-
week period. Table 1 shows a summary of the main 
performance indicators (KPIs) of the production line. The 
standard employee working time was set at eight hours per 
day with five working days per week. The collected data was 
further analyzed using the distribution fitting method. This 
was aimed to determine the most suitable distribution to be 
used in the simulation process. 

Performance indicators served as a common evaluation 
method in the manufacturing industry used to assess 
production systems. The indicators comprised various aspects 
of process performance, focusing on specific target values. 
This approach facilitated process control to achieve the 
expected cost and efficiency targets. In this research, 
performance indicators from the filling and packing line were 
used as a basis of comparison to identify problems. The 
standard working time of employees in the line became the 
benchmark for analyzing the issue of overtime encountered.  
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TABLE I 
KEY PERFORMANCE INDICATOR OF PRODUCTION LINE 

Measurable 
Measurable Report 

Line/Week (W) 
 

 W1 W2 W3 W4 W5 W6 W7 W8 W9 Average 

Defect % 2.42 1.48 2.78 1.73 1.59 1.31 1.66 1.43 2.27 2 

Average Preparation Hours 2.9 3.5 3.3 4.0 3.8 3.9 4.2 2.9 3.5 3.5 

Average Overtime/Day (hours) 1.1 1.5 1.7 1.0 1.2 1.1 0.8 2.1 1.5 1.3 

Piece Produce Average/Hours 1191 2751 2093 1413 1845 3352 2043 1864 786 1926 

Line Uptime % (Average/Production) 98.4 98.2 98.1 97.5 98.2 98.7 98.8 98.1 97.8 98 

 
In Fig. 2, the filling and packing line is divided into two 

interconnected main workstations. This included the filling and 
packaging workstations. The two stations were integrated into 
a single unit, connected by a conveyor system. The packaging 
workstation has numerous and complex components compared 
to the filling station, comprising tasks such as package closing, 
labeling, sealing, packing into cartons, and the arrangement into 
pallets for shipment to the finished product storage warehouse. 
This division was designed to facilitate more detailed analysis 
and ease data input into the simulation software. Table 2 shows 
the time information relating to each process in this filling and 
packing line, providing a comprehensive overview of the 
duration of each production stage. Based on this data, a 
simulation model was constructed to replicate the entire set of 
activities, from the entity entering the system to the one 
leaving. 

The subsequent step included the development of a 
simulation model using Arena software, as shown in Fig. 4. 
The process sequence is depicted in detail, starting with the 
movement of the packaging toward the conveyor and ending 
with the palletizing process. The filling and packing lines of 
the company were rendered in an integrated manner through 
the construction of the model, exhibiting the entire process 
flow. Furthermore, the complexity of the actual system was 
reflected in the synthesis of the Packaging, Basic, and 
Advanced Process modules in the model. The three modules 
were integrated based on a variety of factors, namely (1) The 
actual system is a blend of automated and manual processes, 
requiring the specific features of each module. (2) The current 
production system is characterized by distinct factors, 
including preparation time, errors, downtime, and other 
variables. Consequently, the modules were selected based on 
compatibility with the existing system. (3) Accurate 
estimation of processing time was realized by the adaptability 
of the packaging module. 

The integration of three modules (Packaging, Basic, and 
Advanced Processes) in the Arena simulation model was 
designed to handle the complexity of the actual production 
system. The Packaging module specifically managed 
packaging operations timing and flow, while the Basic 
Process module handled core production processes and 
resource allocation. The Advanced Process module was 
responsible for controlling complex decision logic and quality 
checks. These modules work together to address both manual 
and automated operations, with the Basic and Advanced 
Process modules managing manual, and automated operations, 

respectively. The Packaging module focused on specific 
packaging operations. The model also managed various 
production variables, with preparation time and downtime 
handled by the Basic Process module, while error handling 
and quality checks were controlled by the Advanced Process, 
and packaging rates managed by the Packaging module. For 
data integration, the Packaging module focused on processing 
time estimation, with resource usage, and system performance 
metrics regulated by the Basic and Advanced Process 
modules. This integration resulted in a flexible system where 
the Packaging, Basic and Advanced Process modules handled 
the package-specific parameters, core operation flows, and 
complex decision logic. However, through this 
comprehensive integration, the model accurately represented 
the actual system while maintaining the flexibility needed for 
scenario testing. 

 
TABLE II 

PRODUCT PROCESSING TIME ON EACH MACHINE 

No Process Time 

1 Preparation 90 – 120 min 

2 Filling 1L = 1600 bottle/hour 

4L = 625 bottle/hour 

3 Cap Assembler 120 unit/min 

4 Capping 1L = 240 bottle/min 

4L = 120 bottle/min 

5 Cap Sensor 60 unit/min 

6 Cap Induction Sealing 60 unit/min 

7 Lot Printing 60 unit/min 

8 Weight Sensor 60 unit/min 

9 Cap Sensor 60 unit/min 

10 Rework ± 30s/bottle 

11 Manual Packing 1L = ± 50 s/box 

4L = ± 60 s/box 

12 Carton Sealing 20 box/min 

13 Carton Weight Sensor 20 unit/min 

14 Lot Printing 20 unit/min 

15 Manual Palletizing 1L = ± 30s/box 

4L = ± 30s/box 
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Fig. 4  Existing Filling Model 

 
The working time parameterization of each machine in the 

simulation model was adapted to the actual system uptime and 
downtime rates. Based on operational data obtained from the 
production department, the machine uptime value was set 
within the range of 85% to 90%. This value reflected the real 
performance of the actual system. The integration of these 
parameters, enabled the developed simulation model to 
provide an accurate and comprehensive representation of the 
process flow occurring in the manufacturing filling and 
packing lines of the company.  

The comparative results in Table 3 were generated through 
multiple replications using Arena Simulation software. The 
model incorporated actual production parameters including 
standard working hours, machine capacities, and operating 
conditions documented during field observation. For 
validation purposes, 10 replications were performed for 1L 
packaging and four for 4L packaging, each representing a 
complete production run. The simulation outputs were 
systematically compared against actual production data 
collected over the nine-week observation period. These 
comparative data sets formed the basis for model validation 
using both FIS and statistical t-test analysis. 

 
TABLE III 

PERFORMANCE COMPARISON OF SIMULATION AND ACTUAL SYSTEM 

PRODUCTION OUTPUT RESULTS 

A replication process was used to test the approximate 
range of the obtained simulation model for validation. During 
software simulation, the replication process included using a 
variety of random numbers to observe the outcomes and 
errors that occurred in the system. This research compared 
several replication results in Table 3, using it to facilitate 
analysis of the best values.  

 

 
Fig. 5  Percentage difference analysis using Fuzzy 

 

 
Fig. 6  Output significance analysis using Fuzzy 

 
TABLE IV 

ANALYSIS OF THE SIGNIFICANCE OF SYSTEM PRODUCTION OUTPUT 

 
The significance analysis was conducted using two 

complementary methods FIS and statistical t-test analysis. 

1 L 

Replication  
Simulation 

Output 
Actual Production 

Output 
1 5206 4608 
2 5415 4984 
3 5251 6080 
4 6078 5772 
5 4995 6230 
6 4817 4758 
7 5246 4664 
8 5046 6288 
9 5690 4984 
10 5214 5772 

4 L 

Replication  
Simulation 

Output 
Actual Production 

Output 
1 3060 2900 
2 3084 3172 
3 3180 2920 
4 - 3000 

1 L 
Replication  Difference (%) Significance 

1 12.98 0.5 
2 8.65 0.3936 
3 13.63 0.5 
4 5.3 0.2609 
5 19.82 0.6215 
6 1.24 0.25 
7 12.48 0.5 
8 19.75 0.62 
9 14.17 0.5 
10 9.67 0.4689 

4 L 
Replication  Difference (%) Significance 

1 5.52 0.268 
2 2.77 0.250 
3 8.90 0.410 
4 10.0 0.750 
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In the FIS analysis, as shown in Fig. 5, the percentage 
difference between simulated output and real system was 
evaluated using three membership functions Small (0-10%), 
Medium (5-25%), and Large (>15%). The significance output 
used three levels (Not Significant, Moderately Significant, 
Highly Significant) as shown in Fig. 6. The results in Table 4 
show average significance values of 0.462 and 0.419 for 1L 
and 4L packaging, respectively. The t-test analysis provided 
additional statistical validation, for 1L packages (n=10), the 
comparison between average simulation output (5,296 units) 
and actual production (5,414 units) yielded p>0.05. Similarly, 
4L packages (n=4) showed no significant difference 
(simulation 3,108 units, actual 2,998 units, p>0.05). Both FIS 
and t-test results confirmed the validity of the model. 

The significance analysis in Table 4 showed the validation 
results realized by comparing simulation outputs with actual 
production data. For 1L packaging, ten replications 
represented significance values ranging from 0.25 to 0.6215, 
with percentage differences varying between 1.24% to 
19.82%. The most accurate replication occurred in simulation 
six, with a difference of only 1.24% and a low significance 
value of 0.25. Meanwhile, the largest deviation was observed 
in replication five with a difference and significance of 19.82% 
and 0.6215, respectively. For 4L packaging, four replications 
exhibited tighter significance ranging from 0.250 to 0.750, 
with percentage differences within 2.77% and 10.0%. The 4L 
simulation had better consistency, particularly in replication 
two with only 2.77% difference and 0.250 significance value. 
The overall average significance values of 0.462 and 0.419 
for 1L and 4L packages, respectively depicted good model 
validity, as values less than 0.5 suggested acceptable 
simulation accuracy. This analysis confirmed that the model 
effectively represented the actual production system, with 
slightly better accuracy for 4L packaging processes. 

In accordance with this validated model, three 
improvement scenarios were developed, as shown in Table 5. 
The first scenario integrated a robotic packing system into the 
existing production line. This was enhanced by the second 
scenario through the incorporation of a robotic arm palletizer 
for faster work completion. The third scenario combined both 
automatic case packer and robotic arm palletizer into a 
comprehensive automation solution. Each scenario was 
designed with specific targets to optimize productivity and 
reduce processing time, in respect to increasing levels of 
automation and integration across the production line. 

TABLE V 
SUMMARY OF IMPROVEMENT SCENARIO CALCULATION RESULTS 

Measurements Scenario 1 Scenario 2 Scenario 3 
1L 4L 1L 4L 1L 4L 

Time 
Reduction 5% 11% 12% 14% 14% 19% 

Production 
Increased 6% 12% 13% 17% 16% 23% 

 
Based on the results of the scenario improvement analysis, 

the third scenario that combined automatic case packer and 
robotic arm palletizer showed the most significant efficiency 
improvement. For 1L packaging, there was a reduction in 
working time per day from 9.3 hours to 7.9 hours. This 
calculation depended on the conversion of normal working 
time (eight hours) and average worker overtime (1.3 hours). 

The initial total working time is 9.3 hours (eight hours + 1.3 
hours), therefore, the reduction in working time was 
calculated using the formula 9.3 hours - (9.3 hours * 14%) = 
7.9 hours. The 4L packaging also showed a reduction in 
working time per day to 7.53 hours. The calculation used the 
same formula as 1L packaging, with the conversion of normal 
working time (eight hours) and average overtime (1.3 hours) 
amounting to a total of 9.3 hours. The reduction in working 
time was calculated by the formula 9.3 hours - (9.3 hours * 
19%) = 7.53 hours. These results showed that automation of 
the packing and palletizing process significantly improved 
production efficiency, including the potential to reduce 
employee workload by minimizing the need for overtime, 
making the scenario an optimal solution for production 
system improvement. 

A comprehensive benchmarking analysis was conducted to 
evaluate the improvement scenarios against industry 
standards and best practices in lubricant manufacturing. 
Current standards showed typical working times of eight to 
8.5 hours per day, while best-in-class facilities achieved seven 
to 7.5 hours per day. Leading manufacturers reported 
automation-driven productivity improvements and overtime 
reductions of 15-20% and 60-70% following automation 
implementation. As a result, the third scenario supported these 
benchmarks, achieving working times of 7.9 hours and 7.53 
hours for 1L and 4L packaging, respectively. The productivity 
improvements of 16% and 23% for the 1L and 24L lines, 
along with an approximate overtime reduction of 65%, 
showed that the proposed automation solutions met or 
exceeded industry standards, particularly in the performance 
of the 4L packaging line. The strategy if adopting automatic 
case packers and robotic arm palletizers reflected the current 
best practices in lubricant manufacturing automation. While 
these results are promising, there remains potential for further 
optimization to reach the industry benchmark of seven hours 
per day working time through additional refinement processes 
and the adoption of more advanced automation technologies. 

IV. CONCLUSION 

In conclusion, this research investigated the possibility of 
optimization in the filling and packing lines of 1L and 4L of 
lubricating oil at a manufacturing company. This led to the 
assessment of three enhancement scenarios using Arena 
simulation to improve the constraints of the current semi-
automated system. The scenarios were evaluated to overcome 
the limitations of the existing semi-automated system. 
Moreover, the third scenario, which combined an automatic 
case packer and robotic arm palletizer, proved to be the most 
efficient. The process reduced the working time per day from 
9.3 hours to 7.9 hours and 7.53 hours for 1L and 4L packs, 
respectively. This improvement reduced the need for overtime, 
thereby increasing productivity. The use of an FIS ensured the 
accuracy and reliability of the simulation model. Therefore, 
automation in the packing and palletizing processes, improved 
operational efficiency. This led to the need for further analysis 
of the investment return period before implementation. 
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