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Abstract— Stuck pipe is a common issue encountered during geothermal well drilling which often disrupts operations and potentially 

leads to the suspension of drilling activities. This issue commonly occurs in lost circulation conditions within the reservoir zone, which 

reduce the capacity to lift cuttings and destabilize the drill hole due to inadequate drilling fluid performance. Therefore, this study 

aimed to propose an early warning system for detecting stuck pipe anomalies in geothermal drilling using machine learning as an 

Artificial Intelligence (AI) technique to expedite detection and response times. Time-based mud logging unit sensor data was used in 

the study collected from the drilling of five wells in the MGL field, all of which experienced stuck pipe incidents. The analysis further 

analyzed significant drilling parameters such as gas rate (considered for the first time), weight on bit (WOB), rotations per minute 

(RPM), standpipe pressure, mud flow rate, torque, hook load, rate of penetration (ROP), return, and condition readings. The dataset 

was evaluated using Support Vector Machine (SVM) and Artificial Neural Network (ANN) models to predict and classify conditions as 

normal, pre-stuck, or stuck. The results showed that SVM provided accuracy, precision, and recall of 0.99, 0.98, and 0.97, respectively 

outperforming ANN scoring 0.99, 0.98, and 0.89. This implied that SVM could provide better prediction results than ANN, offering a 

fast and effective method for early detection by improving response times and accuracy in preventing stuck pipe incidents.  
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I. INTRODUCTION

Geothermal energy is the heat naturally occurring within 

the Earth which combines two simple concepts namely "geo," 

meaning Earth, and "thermal," meaning heat. This Earth-

sourced heat can be tapped and harnessed for various purposes 

from generating electricity to heating buildings. In essence, 

geothermal energy harnesses the Earth’s internal heat to meet 

various human needs [1]. Indonesia, located within the Pacific 

Ring of Fire has significant geothermal energy capacity reaching 
approximately 23,765.5 Megawatts (MW) which represents 

around 40% of the world's total geothermal potential [2].  

Indonesia is rapidly developing geothermal energy to meet 

the growing demand and required supply of geothermal 

capacity [3], as drilling programs are a core activity for any 

renewable energy geothermal operator, despite various 

challenges. These include the exploration, delineation, 

development, and well closure phases of geothermal well 

lifecycle management [4]. In addition to the well-known 
issues such as difficult formations, total loss of circulation, 

and high-temperature environments, optimizing drilling time 

has become a key economic factor [5]. These problems which 

impact the efficiency and productivity during geothermal well 

drilling are referred to as Non-Productive Time (NPT). Purba 

et al [6] further identified stuck pipes as a primary cause of 

NPT in Indonesia geothermal drilling. 

A stuck pipe is a common drilling problem that causes 

significant NPT, occurring when the vertical or rotational 

movement of the drill string is suddenly impeded. Sticking 

can be classified into mechanical such as pack-off, bridging, 

wellbore geometry issues, or differential sticking [7]-[10]. 
Causes of stuck pipe incidents include uncontrolled mudflow, 

the accumulation of drill cuttings in the borehole, sand 

adhesion to the drill string and pipes, as well as rock collapses, 

such as sand and gravel near the drill bit formation. 

Schlumberger analysis showed that around 54% of stuck pipe 

incidents occur while pulling drill strings during activities 
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such as changing drill bits (tripping) and backreaming. 

Furthermore, solid-induced pack-offs contribute to 64% of 

these occurrences, followed by pressure fluctuations at 21% 

and mechanical challenges or wellbore shape at 14% [11]. 

Considering that the target is within lost circulation in the 

reservoir depth zone, the risk of encountering a stuck pipe 

during geothermal drilling operations is high. Factors such as 

improper hole cleaning, poor well trajectory, incorrect drilling 

mud usage, and pressure differences are responsible for stuck 

pipe incidents. An anomaly that caused the formation to 
change parameters is further detected before the pipe could 

get any further [12]. Poor hole-cleaning conditions can be 

detected early on by looking for erratic torque where the drill 

string repeatedly gets stuck in cuttings or an unexplained rise 

in bottom hole pressure. This pressure increase could be 

connected to a tight spot with packings which causes flow 

restrictions higher up in the annulus. Additionally, an 

unexpected hook load potentially caused by the drill string 

resting on a tight packing can also indicate a problem [13]. 

The importance of preventing stuck pipes cannot be 

understated as it is more cost-effective to prevent than to rely 
on freeing procedures [14]. Early detection and prediction of 

the symptoms are also essential in avoiding stuck pipe 

incidents by enabling prompt preventive actions. By using a 

predictive model or technique to anticipate stuck pipes and 

prevent the occurrence, considerable savings in costs and time 

can be further realized [15]. 

Various researchers are actively investigating the 

symptoms and associated consequences to anticipate and 

prevent occurrences of stuck pipes. Despite existing results, 

there is currently no mathematical equation or analytical 

modelling tool available to accurately predict stuck pipe 
incidents based on drilling parameters. This has led certain 

articles to explore the use of Artificial Intelligence (AI) for 

this purpose [15]. Over the past two decades, a variety of data 

analytics methods including Machine Learning and AI have 

been explored with varying degrees of success [16]. For 

instance, W. K. Wong et.al [17] explored the use of machine 

learning to predict sonic wave travel time in oil and gas 

exploration helping to understand the composition and 

structure of underground rocks. Although travel-time data is 

not consistently available during drilling, Wong tested two 

machine learning methods namely Multiple Linear 

Regression (MLR) and Artificial Neural Networks (ANN) 
using the Volve dataset. The results showed that ANN slightly 

outperformed MLR, suggesting the data had a non-linear 

nature. Therefore, this study aimed to bridge the gap between 

machine learning experts and oil & gas engineers, helping to 

make the technology more accessible and practical in the field. 

To continue the previous articles, W. K. Wong [18] focused 

on developing transparent mathematical models to predict 

compressional (P-wave) and shear (S-wave) wave travel 

times in oil and gas exploration, addressing the limitations of 

"black-box" machine learning models. The article further 

used a two-stage evolutionary modelling method and adopted 
tree-based genetic programming (GP) and adaptive 

differential evolution (ADE) to create these models. The 

results showed that the models provided reliable predictions 

with R² values of 0.90 for P-wave and 0.75 for S-wave, 

offering interpretability and analysis opportunities not 

available with traditional black-box models. The procedure 

marks the first attempt to apply a mathematical method to 

predict missing sonic readings in this context. 

Abbas et al [19] showed how to detect stuck pipes using 

historical data such as Daily Drilling Reports, daily mud 

reports, final good reports, and master logs. The article further 

adopts the classification concept with two algorithms namely 

SVM and ANN with SVM outperforming ANN in predictive 

accuracy. Similarly, Do et al. [20] compared SVM and ANN 

for detecting stuck pipe incidents in oil and gas drilling using 

stuck and non-stuck labels with SVM showing superior 
performance. Kizayev et al [21] also used the XGBoost 

algorithm to develop a machine-learning model outlining 

flow rate, inclination, and penetration rate as the three most 

important parameters for stuck pipes in oil well drilling. 

Sarwono et.al [15] further modelled machine learning stuck 

pipe with ANN algorithm using data from time-based mud log 

in geothermal drilling with seven parameters including 

Torque, Hookload, Standpipe pressure, rotation per minute 

(RPM), weight on bit (WOB), flow rate, and rate of 

penetration (ROP). The parameters use the concept of 

classification of two classes namely stuck and non-stuck. 
Furthermore, Aseel et al. [22] developed a predictive model 

using ANN to classify pipe sticking due to wellbore 

uncleanliness in oil and gas drilling into two classes non-pipe 

sticking and pipe sticking showing high generalization ability 

and an average accuracy of 90%. Pradana et.al [12] updated 

the modelling stuck pipe machine learning in geothermal 

drilling using the concept of classification of three classes 

namely Normal, pre-stuck, and stuck with ANN algorithm 

adopting nine parameters namely WOB, ROP, RPM, torque, 

mudflow in, mudflow out, standpipe pressure, hook load, and 

condition (Reaming or Drilling). 
This study aimed to focus on early detection of stuck pipe 

incidents in geothermal drilling. The accurate predictions of 

these incidents can help identify potential stuck pipes before 

occurring which allows operators to conduct appropriate 

preventive measures. This not only reduces time and costs lost 

due to stuck pipes but also increases the efficiency and 

sustainability of drilling operations. Consequently, this study 

contributes directly to the safety, productivity, and overall 

effectiveness of geothermal projects. A common issue in 

geothermal drilling is lost circulation where drilling fluid is 

lost into the formation, leading to stuck pipe incidents.  

A new parameter named the Gas Rate is introduced in this 
study which refers to the amount of gas injected during the 

aerated drilling process. Aerated drilling is a technique used 

to clean boreholes and is particularly effective for addressing 

total lost circulation. Furthermore, the amount of gas injected 

or the Gas Rate is a critical factor that significantly impacts 

the possibility of stuck pipes. The addition of the Gas Rate 

parameter provides a new perspective and potential solution 

for improving geothermal drilling operations. To further 

enhance predictive accuracy, this study uses advanced 

machine learning algorithms such as ANN and SVM, 

categorizing the data into three classes namely normal, pre-
stuck, and stuck.  

II. MATERIALS AND METHOD 

The data used in this study was the actual field records from 

the geothermal field in West Java with a water-dominated 

fluid type. Records from a case of drilling five geothermal 
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wells in the same field were also obtained. The wells selected 

as study objects were wells with the same problem 

characteristics in sections 12.25 "and 9.875" which included 

experiencing stuck pipe incidents and lost circulation 

conditions respectively. The data further comprised real-time 

drilling data from mud logging unit readings and Daily 

Drilling Reports. Furthermore, all the wells were drilled by 

the same operator prompting the assumption that the range of 

drilling parameters was equal in each well. 

 

 
Fig. 1  Proposed system design 

 

This study applied machine learning to predict drilling 

parameter conditions into normal, anomaly, and stuck 

conditions. Actual field data which totalled 2775 from four 

wells filtered data were used to construct a predictive model 

with 10 input variables such as WOB, ROP, RPM, Torque, 

MudFlowIn, MudFlowOut, StandPipe Pressure, Hookload, 

Condition (Reaming or Drilling), and gas rate. The output 

variable was classified into three classes namely 0 (normal), 

1 (prestuck), and 2 (stuck). The prediction models of the two 

methods were further developed using the Python 
programming language where the datasets labelled were 

processed for data balancing to prevent the models from 

favoring the most frequent data. Furthermore, datasets were 

split into 80% allocated for training and 20% for testing 

purposes. Training data was further used to develop model 

prediction with SVM and ANN methods classifying drilling 

parameters into three conditions. Both algorithms possessed 

personal architecture to identify relationships among the 

variables. After the models were developed, validation would 

be conducted using actual data from a well not included in the 

dataset used to develop the models. 

TABLE I 

DATASET  

Num Scfm WOB ROPi Trq RPM Hkld 

1 0 5 22 14 143 146 

2 0 5 10 14 143 146 

.. .. .. .. .. .. .. 

55725 1204 0 0 0 155 233 

 

Num MFO SPP MFI Condition Class 

1 33 935 706 1 0 

2 33 935 706 1 0 

.. .. .. .. .. .. 

55725 0 2175 847 0 0 

This study further aimed to create a predictive model for 

stuck pipe detection in geothermal drilling using AI with 10 

drilling parameters as input. From the available five well data 

A1, A2, B1, and B2 were used to train the model and A3 was 

used to validate how accurate the model was developed.  

TABLE II 

RAWS OF DATASET 

No 
Well 
Name 

Total of Rows Data Data Utilization 

1 A1 267840 Training 

2 A2 120960 Training 

3 B1 77760 Training 

4 B2 285120 Training 

5 A3 250560 Validating 

 

In Table 2, the data was collected during the drilling 

process in the reservoir Sections 12.25” and 9.785” in each 

well. Raw data processing was conducted by visualising the 

information using Python to identify the data to be used or 

deleted. Through the visualisation, the information in the 

Daily Drilling Report was validated for the process of 

screening unnecessary data to be done accurately. Removal of 
data not needed in this study included Non Productive time, 

Wait on Cement, Running Casing, Leak of Test, Sliding, and 

equipment repair.  

 

 
Fig. 2  Visualization of Raw data to screening Dataset 

 

In this study, the type of machine learning used was 

supervised learning classification which was necessary to 

label each row of data in determining the category of the 

machine. For this labelling, the data was grouped into three 
classes namely label 0 (normal condition), label 1 (pre-stuck 

condition), and label 2 (stuck condition). Labelling the data 

was assisted by the visualisation conducted previously as well 

as the information included in the Daily Drilling Report. 

Additionally, an understanding of drilling engineering such as 

drilling parameters and problems was required to provide 

proper labelling prompting the Datasets to be labeled as 

shown in Table 2. 

Tables 3 and 4 further showed the dataset before and after 

the balancing process where the data from the four wells 

exhibited an imbalance in the distribution of each class. 

Therefore, carrying out a data balancing process was 
necessary using the under-sampling method for the 925 rows 

of data with the selection through stratified random sampling 
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to ensure data from each well was proportionally collected. 

The dataset after the balancing process was further provided 

in Table 3 where the Total data from the four wells was 2775 

which was split into 2220 data trains and 555 data tests with 

the ratio 80:20. 

TABLE III 

DATASET AFTER SCREENING AND LABELING 

Label 
Well 
A1 

Well 
A2 

Well 
B1 

Well 
B2 

Well 
A3 

Total 

Normal 16328 24886 12118 19874 52743 125949 

Prestuck 605 123 886 44 99 1757 

Stuck 180 394 223 128 107 1032 

 

TABLE IV 

DATASET AFTER DATA BALANCING PROCESS 

Label Well A1 Well A2 Well B1 Well B2 Total 

Normal 207 314 153 251 925 

Prestuck 338 69 494 24 925 

Stuck 180 394 223 128 925 

A. Performance Evaluation 

The prediction models were constructed based on the data 

of the four Wells which led to three distinct prediction models. 

Subsequently, the models were compared and the method that 
produced a highly accurate prediction was selected based on 

the testing data and test validation. The accuracy of the 

prediction was evaluated using confusion matrix [23]-[28] 

through equations (1), (2), and (3). 

 

Accuracy �
�����

�����������
� 100 (1) 

 

Presicion = 
��

�����
� 100 (2) 

 

Recall = 
��

�����
� 100 (3) 

Accuracy was widely used in machine learning, 

describing the percentage of correctly classified instances 

[29]. Precision evaluated the relevance of retrieved instances 
and was calculated as the ratio of true positive predictions to 

the total number of positive predictions [30]. Recall on the 

other hand measured the proportion of true positives among 

actual positives, and was particularly important when 

minimizing false negatives against false positives. It was 

further calculated as the number of true positives divided by 

the total number of actual positives [24]. 

B. Support Vector Machine 

Support Vector Machine (SVM) was a supervised learning 

technique with a corresponding algorithm that examined data 

to identify patterns in the input/output outcomes [31]. To 

effectively separate observations, SVM models developed 

hyperplanes that maximized the distance between the upper 

and lower margins from the data. By applying an optimal 

separation rule and a nonlinear mapping technique to convert 

input prototypes into a high-dimensional feature space, the 

SVM classification model found the best-separating 

hyperplane and further maximized the distance between 

linearly separable classes [32]-[33]. Furthermore, SVM 

methods were used across various important fields which 

surpassed ANNs in certain scenarios [34].  

 
Fig. 3  SVM working principle 

 

In Figure 3, the SVM transformed the nonlinear inputs 

using the mappings such as polynomial or Radial Basis 

Functions into a high-dimensional space [35]. This 

transformation enabled the inputs to be linearly separated by 

a hyperplane. The primary objective of SVM was to classify 

data into two groups with the largest margin between the 
separating boundaries separating the information. 

Additionally, the points where the decision lines intervene 

were called support vectors [35]. 

C. Artificial Neural Network 

Figure 4 showed a type of ANN referred to as Multilayer 

perceptrons. An ANN served as an information processing 

system with performance characteristics, performing 

inherently the same as biological neural networks [36]-[37]. 

Neural networks with input layers possessed one or more 
hidden layers with an output which were trained by assigning 

a specific number of neurons [38]. Furthermore, the most 

popular type of ANN was the multilayer perceptron [34] 

 
Fig. 4  ANN working principle with three layers (manual) 

III. RESULTS AND DISCUSSION 

This study aimed to develop a predictive model for stuck 

pipe detection in geothermal drilling using AI with 10 drilling 

parameters as input. From the available five well data, four 

were used to train the model and one to validate how accurately 

the model was developed. Furthermore, the trend of data was 

gathered after observing the scatter plot in Figure 5. 
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Fig. 5  Trend of Data Description using Scatter Plot 

A. Prediction Model 

The study resulted in two different algorithms to develop 

the prediction models. Both models were developed using 

Python and hyperparameter tuning features to obtain a 

combination of algorithmic architectures that best suited the 

dataset. The SVM model was further created with a 

combination of parameters such as C = (20, 30, 40), gamma 

= (auto, scaled), and kernel trick = (rbf, linear, poly).  

TABLE V 

SVM HYPERPARAMETER TUNING RESULTS 

rank_test_s
core 

Param
_C 

param_ga
mma 

param_ke
rnel 

mean_test_s
core 

1 30 scale rbf 0.986486 

2 40 scale poly 0.986036 

3 40 scale rbf 0.985586 

4 30 scale poly 0.984234 

5 20 scale poly 0.983333 

6 40 scale linear 0.982883 

6 40 auto linear 0.982883 

8 20 scale rbf 0.981532 

9 20 scale linear 0.98018 

10 20 auto linear 0.98018 

11 30 scale linear 0.97973 

12 30 auto linear 0.97973 

13 40 auto rbf 0.97973 

14 30 auto rbf 0.978829 

15 20 auto rbf 0.972973 

16 40 auto poly 0.917117 

17 30 auto poly 0.908559 

18 20 auto poly 0.898649 

Based on result in Table 5, the combination of architecture 

to create the SVM model included C = 30, gamma = auto, and 

kernel = rbf. This combination of parameters produced the 

highest score when tested with a five-fold cross-validation. 

The ANN model was developed with a combination of 

parameters such as hidden layers (100, 100), (30,20,10), 

(8,8,8,8), activation (relu, tanh), and solver (lbfgs, adam). 

TABLE VI 

ANN HYPERPARAMETER TUNING RESULTS 

rank_test
_score 

param
_ param_hidden_l

ayer_sizes 
param_s

olver 
mean_test

_score activa
tion 

1 tanh (30, 20, 10) lbfgs 0.981522 

2 tanh (8, 8, 8, 8) lbfgs 0.981522 

3 tanh (100, 100) lbfgs 0.981026 

4 relu (30, 20, 10) lbfgs 0.981022 

5 relu (100, 100) lbfgs 0.980524 

6 relu (30, 20, 10) adam 0.971039 

7 relu (8, 8, 8, 8) lbfgs 0.969545 

8 relu (100, 100) adam 0.967545 

9 tanh (30, 20, 10) adam 0.96455 

10 tanh (100, 100) adam 0.964044 

11 tanh (8, 8, 8, 8) adam 0.963554 

 

The combination of architecture to develop ANN model 

was Hidden layer size (30,20,10), activation = tanh, and 
solver = lbfgs. This model achieved the highest score when 

tested using five-fold cross-validation. The results for every 

combination of parameters are presented in Table 6. 

Hyperparameter tuning which includes finding the best 

combination of settings for a machine learning model was 

conducted to achieve optimal performance. In this study, the 

neural network model was configured with three key 

hyperparameters namely hidden layers, activation functions, 

and solvers. The hidden layers had three different 

configurations such as (100, 100), (30, 20, 10), and (8, 8, 8, 

8), each representing a unique network architecture with 
varying numbers of neurons. The activation functions tested 

were relu and tanh while the solvers used were lbfgs and adam. 

All 12 possible combinations of these hyperparameters 

were explored to identify the optimal model setup using Grid 

Search, a systematic approach that evaluated every 

combination by training and testing the model. To ensure 

reliable results, Cross-Validation was used, splitting the data 

into multiple parts and evaluating the model across different 

subsets. The process identified the best combination of hidden 

layers, activation function, and solver that delivered the 

highest performance on the validation data. Once the optimal 

configuration was determined, the final model was trained on 
the complete training dataset. This ensured that the model was 

prepared to make accurate predictions on new data. The 

systematic method of hyperparameter tuning and model 

evaluation helped ensure that the resulting neural network 

was both effective and reliable. 
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B. Model selection 

The predictive models generated using SVM and ANN 

algorithms were compared. The comparison results were 

obtained from testing and validating the models with blind 
data. The performance of the two classification models was 

measured using a confusion matrix, evaluating metrics such 

as precision, accuracy, and recall. A value closer to 1 

indicated better model performance. 

The prediction results for the SVM and ANN models were 

summarized in Figure 6. In general, the SVM algorithm 

outperformed the ANN in terms of prediction accuracy. Both 

models successfully predicted all 185 incidents under normal 

conditions. For anomalies/pre-stuck states, the ANN model 

accurately identified 179 out of 186 cases while the SVM 

model correctly predicted 181 cases, making five errors. In 
stuck conditions, both models correctly predicted 182 out of 

184 instances with each making two mistakes. When tested 

with new data, the SVM algorithm showed superior overall 

prediction performance compared to the ANN. The results of 

the confusion matrix for both algorithms were presented in 

Tables 7 and 8. 

 

 
(a) 

 
(b) 

 

Fig. 6  Prediction results on data test (a) SVM and (b) ANN 

 

TABLE VII 

SVM CONFUSION MATRIX ON DATA TEST 

class 
Support Vector Machine 

precision recall accuracy 

Normal  0.99 1.00  

0.98 Prestuck  0.99 0.96  

Stuck  0.97 0.99  

TABLE VIII 

ANN CONFUSION MATRIX ON DATA TEST 

class 
Artificial Neural Network 

precision recall accuracy 

Normal  0.99 1.00  

0.98 Prestuck 0.99 0.96 

Stuck 0.97 0.99  

 

To further evaluate model performance, a validation test 

was conducted using blind data which referred to new data 

not introduced to the model at any stage of the training 
process. This test helped assess how well the model could 

predict previously unseen data accurately. 

 

 
(a) 

 
(b) 

 

Fig. 7  Prediction results on validation test (a) SVM and (b) ANN 

 

Figure 7 showed the prediction results of the two models 

when tested using data not seen or introduced previously in 

the training process. For normal condition predictions, the 

SVM model provided highly accurate results by correctly 

predicting 52,741 out of 52,742 instances with only one 

incorrect prediction but the ANN model predicted all 

instances correctly. For pre-stuck or anomaly conditions, the 
SVM model accurately predicted 91 out of 99 instances 

making eight errors while the ANN model correctly predicted 

67 out of 99 instances with 33 errors. For stuck/stall 

conditions, the SVM model achieved perfect accuracy by 
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correctly predicting all instances while the ANN model 

correctly predicted 106 out of 107 instances with one error. 

These results clearly showed that the SVM algorithm 

outperformed the ANN in predicting stuck pipe conditions. 

Furthermore, Tables 9 and 10 provided detailed performance 

metrics for the SVM and ANN models during the validation 

test. 

TABLE IX 

SVM CONFUSION MATRIX ON VALIDATION TEST 

class 
Support Vector Machine 

precision recall accuracy 

Normal  1.00 1.00  

0.99 Prestuck  0.99 0.92  

Stuck  0.96 1.00  

TABLE X 

ANN CONFUSION MATRIX ON VALIDATION TEST 

class 
Artificial Neural Network 

precision recall accuracy 

Normal  1.00 1.00  

0.99 Prestuck 0.99 0.68 

Stuck 0.97 0.99  

 

The method not only optimized model performance but 

also surpassed the results of previous articles. By 

implementing a more comprehensive and targeted 

hyperparameter search, this study delivered an accurate, 

reliable, and resilient model when compared to earlier efforts. 

IV. CONCLUSION 

In conclusion, this study showed the effectiveness of 

machine learning techniques, particularly SVM in developing 

predictive models for the early detection of stuck pipe 

conditions in geothermal drilling operations. By incorporating 

a comprehensive dataset that included a numerical parameter, 

the Gas Rate parameter, and traditional drilling metrics, the 

authors adopted a holistic method to addressing the critical 

challenge of stuck pipe incidents. 

The results of this study showed that the SVM model 

outperformed the ANN model with outstanding accuracy, 
precision, and recall scores of 0.99, 0.98, and 0.97, 

respectively. The superior performance of the SVM model 

was further validated using blind data where it accurately 

predicted 52,741 out of 52,742 instances for normal 

conditions, 91 out of 99 instances for pre-stuck conditions, 

and 107 out of 107 instances for stuck conditions. These 

results suggested that the SVM-based predictive model 

offered a fast and effective solution for the early detection of 

stuck pipe anomalies in geothermal drilling. By enabling early 

identification of potential stuck pipe situations, drilling teams 

could proactively implement preventive measures to enhance 
the efficiency, cost-effectiveness, and overall productivity of 

geothermal drilling operations. 

The incorporation of the Gas rate parameter which was a 

unique aspect of this study underscored the importance of 

considering all relevant drilling parameters to improve the 

accuracy and reliability of predictive models. This holistic 

method further served as a valuable reference for future 

articles and the development of advanced drilling 

optimization strategies in the geothermal industry. 

Overall, this study represented a significant contribution to 

the field of geothermal drilling by providing a strong and 

practical solution for the early detection and prevention of 

stuck pipe incidents. The successful implementation of the 

SVM-based predictive model held the potential to transform 

the method the geothermal industry addressed the critical 

challenge by enhancing the overall viability and sustainability 
of geothermal energy development. Future articles could use 

more advanced methods and develop an application to 

identify drilling parameter conditions in real-time during 

geothermal well drilling operations. 
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