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Abstract— The environment indoor quality (EIQ) is linked to human health, comfort, performance, and well-being. Thermal comfort 

quality (TCQ) is one of the most critical issues in the quality of the EIQ. Thermal comfort pollutants (TCP), consisting of temperature 

and humidity, significantly impact the quality of human life because indoor pollutants are ten times worse than outdoor air pollutants. 

This research presents TCP monitoring and controlling using a fuzzy inference system (FIS) based on IoT technology to detect, control, 

identify, and classify the thermal comfort index (TCI) in four levels: most comfort, not comfort, and least comfort. This research used 

the IoT concept to monitor temperature and humidity toxicity levels. The results from the calibration tests for the temperature and 

humidity sensors show that the maximum error remains below 5% and that the sensors demonstrated high accuracy, with any 

deviations from the expected values being minimal and within the acceptable range. Prototype experiment results show that the system 

performs exceptionally well, with a maximum error between the prototype and the simulation of only 0.4%. The system can produce 

TCI ranges for most comfort (2.25-3), comfort (1.5-2.25), not comfort (0.75-1.5), and least comfort (0.75), with varying output responses 

for each cluster. Mechanical ventilation, alert, and notification output are presented to get efficient and accurate action to mitigate the 

TCP and notify the user about the TCP condition. 
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I. INTRODUCTION

Nowadays, environmental indoor quality (EIQ) is a serious 

concern to humans worldwide. EIQ refers to the quality of a 

building’s environment concerning the human health, 
comfort, productivity, and well-being of those who occupy 

space within it [1]. EIQ is the most important aspect to ensure 

the health and comfort level of human beings because 80 - 

90% of people spend their activities in indoor environments 

such as houses, offices, and schools, which further makes 

poor indoor environment quality a serious health concern [2], 

[3]. EIQ consists of various kinds of pollutants such as air 

pollutants, thermal comfort pollutants, water pollutants, toxic 

pollutants, solid waste pollutants, lighting, and acoustic 

comforts [4], [5].  

Ensuring thermal comfort is essential for human health, as 

it significantly improves indoor environment quality, directly 

impacting human life and daily activities. Thermal comfort 

has wide connotations, including physical and psychological 

aspects and ambient characteristics [6]. Two parameters can 

influence thermal comfort quality (TCQ): internal and 

external parameters. Internal parameters are human personal 

parameters, including human metabolic rate and clothing. 

External parameters are environmental parameters inside the 

room, including air temperature, relative humidity, and air 
movement/velocity, as shown in Figure 1 [7], [8]. The most 

important environmental variables regarding the TCQ are air 

temperature (Ta), and relative humidity (RH) [9]. Sweating, 

eye strain, dizziness, increased breathing rate, dry and 

irritated eyes, feelings of warmth, and changes in heart rate 

are common symptoms reported in response to sudden 

changes in temperature and humidity. [10], [11], warm and 

cold discomfort can affect human performance and 

motivation [12]. 
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Fig. 1  TCQ Parameters 

 

Several companies have created IoT-based TCQ 

monitoring technology to offer features such as sensor data 

readings, device-centric services, real-time data collection, 

data storage, interactive graphical interfaces, statistical 

analysis capabilities, and status notifications. Temperature 

and humidity real-time monitoring using FBG, SHT25, 
DHT11, and DHT22 provide good performance with minimal 

power consumption, high reliability, and long-term stability 

[13]–[15]. The Internet of Things (IoT) serves as the platform 

that interconnects sensors, software, and processors, enabling 

them to communicate with one another and with the user via 

an Android application [16]–[18]. The thermal comfort index 

(TCI) is a value that expresses satisfaction with the thermal 

comfort environment, and it is assessed by subjective 

evaluation of real-time temperature and humidity data 

collection. TCI can be defined as the temperature and 

humidity toxicity assessment guidance of the human health 
[19]–[21]. A FIS is employed to examine, arrange, and 

evaluate Indoor air pollutants based on logical operations 

(rules). This approach enhances the effectiveness of quality 

assessment and aligns precise concentration values within a 

fuzzy index [22]–[24]. Natural ventilation and mechanical 

ventilation are used to mitigate indoor air pollutants to get 

acceptable air quality using open-close windows, air purifiers, 

and humidifiers [25]–[27]. This work provides a good 

solution for monitoring, assessing, and controlling thermal 

comfort pollutants. Moreover, the main gap is that previous 

research used only the system separately, producing a less 

efficient and sensitive system. 
In this research, the authors build a monitoring and 

controlling system to detect, assess, and mitigate the thermal 

comfort pollutants (TCP) consisting of temperature and 

humidity using a FIS on IoT technology. TCI is the main 

reference index containing temperature and humidity. A FIS 

employing logical reasoning will identify, categorize, 

evaluate, and offer guidance on the toxicity levels of 

temperature and humidity. Mechanical ventilation (fan DC) 

automatically increases the thermal comfort inside the room 

based on TCI conditions. Also, this system will send 

notifications and alerts to the Android application of the TCI 
conditions. The author’s contribution lies in creating an 

effective and precise TCQ monitoring and control system by 

implementing a FIS system that integrates with control 

outputs, alert notifications, and display functions. 

II. MATERIALS AND METHOD 

The proposed system architecture scheme consists of four 

stages, shown in Figure 2. TCQ monitoring and controlling 

using a FIS based on IoT technology is taught to gather real-
time temperature and humidity data and assess and identify 

the TCI status. The FIS determines TCQ by considering 

various temperature and humidity levels. This system 

operates through three processes: fuzzification, inference, and 

defuzzification. Fuzzification is the process of transforming 

precise inputs, such as temperature and humidity, into fuzzy 

values. These fuzzy values are then interpreted into 

membership degrees within a fuzzy set based on predefined 

membership functions. The outcome of fuzzification is fuzzy 

values that may belong to one or more fuzzy sets, with 

membership degrees indicated by values ranging from 0 to 1.  
The inference system applies predefined fuzzy rules to 

manage the fuzzy input values. These fuzzy rules follow an 

IF-THEN structure, linking input conditions to possible 

outputs. This process combines the rule outcomes using fuzzy 

operators like AND (min) and OR (max). The implication 

function dictates how the fuzzy output is affected by the 

membership degrees of the fuzzy inputs. Defuzzification 

converts the fuzzy output produced by the inference system 

back into crisp values that can be used as outputs for control 

systems. The defuzzification process results in a distinct 

numerical value that reflects the system’s action or response 
based on the original input conditions [28]–[30]. 

 
Fig. 2  Architecture of Thermal Comfort Quality (TCQ) System 

A. Thermal comfort quality (TCQ) design 

The TCQ monitoring and controlling using various 

hardware connected to one system is shown in Figure 3. The 

DHT22 sensor detects and gathers temperature and humidity 

data in this system. It features a thermistor for measuring dry 

bulb temperature and a humidity sensor that gauges moisture 
levels by detecting changes in the conductivity of a moisture-

sensitive substrate material [31]. ESP8266 is used to interface 

the microcontroller, and it uploads the TCQ data to the IoT 

platforms through Wi-Fi using the API key (Application 

program interface)[32]. IoT platforms make the TCQ visible 

to the users. The LCD shows the temperature, humidity, and 

TCI of the human inside the room. The control system 

consists of mechanical ventilation (inlet-outlet exhaust) and 

alert output (LED and buzzer), which notify humans and 

mitigate TCP inside the room. Arduino UNO connects the 

sensor, output, and notify system into one system. It includes 
14 digital input/output pins (six of which can be used as PWM 

outputs), 6 analog input pins, 32 KB of Flash memory, and 1 

KB of EEPROM [33]. Arduino UNO is also used to calculate 

and assess the FIS process of temperature and humidity 

variables in the TCI variable. The hardware is placed inside a 

box within a room to monitor the temperature, humidity, and 
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TCI) within the room. This device is a prototype scaled at 1:4 

for a room size of 8m x 4m x 4m. 

 

Fig. 3  Block diagram of thermal comfort quality monitoring and controlling 

system 

 

The TCI and temperature and humidity data sensor 

information are also calculated for an indoor place. The TCI 

describes the TCQ of the air at a given location. Computing 

the TCI requires a TCP toxicity level from a monitor or mode. 

TCI values are categorized into various ranges, each assigned 

a specific descriptor and color code. This signifies that each 

range corresponds to different effects on human health. [34]. 

Dionova breaks the TCI into four levels of health concerns 

[22] as described in Table 1. The purpose of TCI is to help 

users understand the toxicity level of temperature and 

humidity on human health.  
 

TABLE I 

THERMAL COMFORT POLLUTANTS THRESHOLD POINT 

Temp 
(0c) 

Humidity 
(%) 

TCI 
TCI 
status 

Remarks 

18-25 40-70 
2.25-
3 

Most 
Comfort 

Poses minimal or 
no risk 

22-29 60-80 
1.5-

2.25 
Comfort 

Within acceptable 
range, but could 
pose a moderate 

health concern for 
sensitive 
individuals 

26-39 70-90 
0.75-

1.5 

Not 

Comfort 

Sensitive groups 
might experience 
health effects 

32-45 80-100 
0-
0.75 

Least 
Comfort 

Everyone might 
face significant 

health impacts 
 

Figure 4 shows the TCQ workflow using a FIS. The 

microcontroller collects the temperature and humidity data 

from the DHT22 sensor. After obtaining the temperature and 

humidity concentration, the TCI FIS box is divided into three 

steps: fuzzifying each input variable, selecting the rule base, 

and defuzzification. Fuzzification converts clear, numerical 

data (crisp values) from thermal comfort quality parameters 
(temperature and humidity) into fuzzy values. This process 

helps categorize the data into fuzzy sets such as “most 

comfort,” “comfort,” “not comfort,” or "least comfort” based 

on membership degrees. In other words, fuzzification allows 

continuous thermal comfort data to be linguistically 

understood and analysed, facilitating the evaluation and 

decision-making regarding TCQ in indoor environments. This 

process is the initial step in a fuzzy logic system, aiding in 

determining the quality category and providing a more 

intuitive understanding of indoor environmental conditions. 

 

Fig. 4  Flow work of thermal comfort quality monitoring and controlling using FIS. 

 

Rule base defines the logical rules that connect various 

parameters of TCP) with the overall TCQ assessment. The 

rule base serves as a framework to determine how different 

combinations of parameter values (temperature and humidity) 
lead to decisions about the overall TCI. It involves 

establishing IF-THEN rules that define the relationship 

between temperature and humidity values and the cluster 

index value and considering parameter combinations to 

provide a more accurate and comprehensive value. 

Defuzzification converts the fuzzy output produced by the 
fuzzy logic inference system into a clear numerical value 

(TCI) that can be used for further decision-making or actions. 
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Defuzzification results in a precise numerical value, such as a 

TCQ index (e.g., 0-3), where higher numbers indicate better 

TCI. This TCI FIS will convert the temperature and humidity 

into the TCI in four stages: most comfort, comfort, not 

comfort, and least comfort. Four conditions based on the TCI 

value conditions have different notifiers to the user and output 

control response. 

B. Thermal comfort index (TCI) of fuzzy Inference System 

(FIS) 

A FIS incorporates the expertise and knowledge of a 

specialist in designing systems to manage processes where 

fuzzy control rules govern input-output relationships. The 

Sugeno-type method (also known as Takagi-Sugeno-Kang) 

features fuzzy inputs and produces a crisp output through a 

linear combination of the inputs. This method is 

computationally efficient and well-suited for optimization and 

adaptive techniques, making it highly effective for control 

problems [35]. Three main parts convert temperature and 
humidity into TCI: fuzzification, inference system, and 

defuzzification.  

 The first of the FIS steps is fuzzification, which classifies 

crisp input into linguistic variables. Concentration levels of 

temperature and humidity act as precise inputs and are 

transformed into linguistic values using corresponding 

membership functions (MFs). Each membership function is 

defined by the X-axis, representing the range of possible 

values, and the Y-axis, indicating the degree of membership 

from 0 to 1.[36]. The approach used in this research for the 

input fuzzification was the triangular and trapezoidal 

methods. The triangle membership function was used to 
compare three transformation states of temperature and 

humidity values, which show sharp variations. Its main 

benefit is its ability to detect minor temperature-humidity 

changes and facilitate accurate and fast decision-making for 

the control process. On the other hand, trapezoidal 

membership functions effectively manage uncertainty and 

imprecision by offering a broader range of values with full 

membership. This is especially beneficial in cases where exact 

precision temperature and humidity are not essential, and a 

range of acceptable values can be used. 

Four linguistic variables of temperature, most comfort, 
comfort, not comfort, and least comfort, are used, as shown in 

Figure 5. The X-axis represents the change rate value of 

temperature from 20 to 450C, and the y-axis represents the 

degree of membership from 0 to 1. Most comfort linguistic 

variables range from 18 to 250C; comfort ranges from 22 to 

290C; not comfort ranges from 26 to 390C; and the least 

comfort ranges from 32 to 450C. 

 
Fig. 5  Input temperature FIS membership function 

 

Four linguistic variables of humidity, most comfort, not 

comfort, and least comfort, are used, as shown in Figure 6. 

The X-axis represents the change rate value of humidity from 

40 to 100%, and the y-axis represents the degree of 

membership from 0 to 1. Most comfort linguistic variables 

range from 40 to 70%; comfort ranges from 60 to 80%; not 

comfort ranges from 70 to 90%; and the least comfort ranges 

from 80 to 100%. 

 
Fig. 6  Input humidity FIS membership function 

 

The second step involves the inference system, which 

establishes the input-output relationship by translating 

linguistic variables into fuzzy output values. Inference rules 

are created based on combinations of thermal comfort quality 
parameters. These rules are designed to assess the potential 

harm of concentration and determine the appropriate thermal 

comfort condition. The interface engine receives the linguistic 

variables of each input and compares the input data with the 

IF-THEN statements [37]. Table 2 presents the sixteen rules 

for two inputs, each categorized into four levels. The rules 

indicate that the provided input determines the corresponding 

TCI level. 

TABLE II 

TCI RULE BASE INFERENCE SYSTEM 

 

The inference system produces a fuzzy output based on the 

input from the fuzzy rule base. This output must be converted 

into a clear value to be interpretable. The third step, 

defuzzification, transforms the fuzzy output into a non-fuzzy 

(crisp) value. In the Sugeno-type FIS, the non-fuzzy output 
value is calculated using a weighted average. The membership 

functions used are constant. According to Table 2, four 

categories—Most Comfort, Comfort, Not Comfort, and Least 

Comfort—are used to define the membership functions for the 

output variable TCI, as illustrated in Figure 7.  
 

 
Fig. 7  FIS membership function of TCI as the output variable    

III. RESULTS AND DISCUSSION 

The main purpose of the system is to detect and keep the 

TCI at a safe level of temperature and humidity standard [22]. 

The inlet-outlet exhaust, LED, and buzzer operate according 

to the TCI condition. A simulation was conducted to evaluate 

  Humidity Index 
Tempera

ture 

Index 

Thermal Level 

Index 

Most 

Comfort 

Comfort Not 

Comfort 

Least 

Comfort 

Most Comfort Most 

Comfort 

Comfort Comfort Comfort 

Comfort Comfort Comfort Not 

Comfort 

Not 

Comfort 

Not Comfort Comfort Not 

Comfort 

Not 

Comfort 

Not 

Comfort 

Least Comfort Comfort Not 

Comfort 

Not 

Comfort 

Least 

Comfort 
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the performance of the TCQ system. This test aimed to assess 

how effectively the system monitors and evaluates 

temperature and humidity across various toxicity levels. The 

test was carried out with four scenarios: The first scenario 

when the TCI condition at the most comfort status; The 

second condition when the TCI condition at the comfort 

status; The third condition when the TCI condition at the not 

comfort status; The fourth condition when the TCI condition 

at the least comfort status. So, the simulation and practical 

results can be compared to determine the system’s 
performance based on the simulation’s design. 

The simulation result of the TCI rule viewer is shown in 

Figure 8. The first column in the rule viewer shows the rate of 

change in temperature concentration, while the second 

column displays the rate of change in humidity concentration; 

together, these columns represent the input values. The third 

column provides the output, which indicates the TCI the level 

of thermal comfort pollutants). With a temperature 

concentration of 23.6°C and a humidity concentration of 74%, 

the TCI output is 1.77, indicating a "Comfort" level.  

 

Fig. 8  TCI FIS output 

 

Figure 9 illustrates these TCI results graphically using a 

surface viewer. The X-axis displays the temperature input 

values, the Y-axis represents the humidity input values, and 

the Z-axis indicates the output value of cluster index 4 (which 

ranges from 0 to 3).The graph features four color dimensions: 

yellow for "Most Comfort," green for "Comfort," light blue 

for "Not Comfort," and dark blue for "Least Comfort." This 

indicates that the TCI is affected by both temperature and 

humidity concentrations. The plot reveals that as the level of 

each thermal comfort pollutant increases, the TCI value drops 

sharply, regardless of the other pollutant’s value. 
 

 

Fig. 9  TCI MATLAB surface viewer 

 

Data collection is manually done every minute from 08:41 

to 16:41 for the temperature and humidity sensor (DHT22). 

This DHT22 sensor can detect temperature concentrations 

from -40 to 80 0C and humidity concentrations from 0 to 100 

%. Data is collected in a room that has an air conditioner (AC) 

as an input source that can reduce the value of temperature 
concentration and increase the value of humidity 

concentration and hot water as an input source that can 

increase the value of temperature concentration and reduce 

the value of humidity concentration. The sensor calibration 

results show good performance, with the sensor readings 

having an error percentage below 5%. However, the sensor 

readings still do not categorize status levels effectively, as 

some values fall within two distinct levels. 

TABLE III 

 TEMPERATURE AND HUMIDITY (DHT22) DATA RETRIEVAL 

 

DHT22 was used to obtain concentration of temperature 

and humidity values. DHT22 uses a digital input port to recite 

the temperature and humidity from a sensor. To get the 

temperature value in units (0C) and humidity in unis (%), the 

program used is ����������� = 	ℎ�. ���	�����������() 

and ℎ���	��� = 	ℎ�. ���	����	���(). The DHT22 sensor 

employs a capacitor and thermistor to measure the 
surrounding air and transmit signals through the data pin. 

DHT22 is noted for its high reading quality, characterized by 

its rapid data acquisition response and compact size. The LCD 

will provide temperature, humidity, TCI score, and TCI status 

shown in Figure 10 (A) most comfort status (LED off), (B) 

comfort status (LED green), (C), not comfort (LED blue), and 

(D) least comfort (LED red).  
 

 
Fig. 10  Implementation of thermal comfort quality (TCQ) system (A) Most 

comfort status, (B) Comfort status, (C) Not comfort status, and (D) Least 

comfort status 

The microcontroller works to read two thermal comfort 

pollutants concentrations, the index value calculation using 

the FIS, and will be stored in a Thing Speak database, also 

Time 
Temperature 

sensor (0C) 

Temperature 

Thermometer (0C) 

Temperature 

% error 

Temperature 

status 

Humidity 

sensor%  

Humidity 

thermometer 

Humidity 

error 
Humidity status 

08:41 25.2 24.4 3.28 Most comfort/ 

comfort 

68 65 4.62 Most comfort/ 

comfort 

10:52 21.7 22.8 4.82 Most comfort/ 

comfort 

60 58 3.45 Most comfort 

11:25 25.1 24.3 3.29 Comfort 74.4 72 3.33 Comfort 

13:17 26.6 25.8 3.10 Comfort/ not 

comfort 

83.9 82 2.32 Not comfort/ 

least comfort 

16:40 32.1 31.3 3.07 Not comfort 92.1 90 2.33 Least comfort 

100



displayed via the mobile application display. Data recorded 

and saved by the microcontroller and Wi-Fi module is 

connected to the internet network. The data displayed in the 

mobile application is the sensor reading data, calculating the 

index value every five seconds because the sensors need time 

to stabilize the reading process. The notification will be 

running automatically based on the system reading process. 

Figure 11 shows that the system can classify the temperature 

and humidity into four specific levels (A) most comfort, (B) 

comfort, (C) not comfort, and (D) least comfort. Output from 
ThingSpeak cloud: Figure. 12 illustrates the line chart output 

from ThingSpeak cloud. Figure. 13 illustrates the notification 

output from the ThingSpeak cloud. 

 
Fig. 11  Android application of thermal comfort quality (TCQ) system (A) 

Most comfort status, (B) Comfort statuts, (C) Not comfort status, and (D) 

Least comfort status 

 
 

 

Fig. 12  Android application of thermal comfort quality (TCQ) system charts 

 

 
Fig. 13  Android application of thermal comfort quality (TCQ) system 

notifications 
 

Ten different temperature and humidity values were tested 

to assess the accuracy of input-output outcomes and the 
effectiveness of the fuzzy model in detecting the TCI and its 

corresponding category, as shown in Table 4. The actual 

output is derived from MATLAB simulations, while the 

expected output is obtained by manually comparing the TCI 

categories of temperature and humidity. The comparison 

between the practical and theory values is very small, with a 

percentage error value below 0.4%. It can be interpreted that 

the prototype made had the same performance as the proposed 

simulation. Fuzzy logic with the Sugeno method provides 

excellent precision in calculating the output index values 

based on two pollutant inputs with several different status 
levels. 

TABLE IV 

TCI MONITORING RESULTS 

 

IV. CONCLUSION 

A new generation of IoT is presented, aiming to monitor 

and control the physical air quantities affecting thermal 

comfort quality. Monitoring accumulated data in cloud 
storage helps analyze various patterns in environmental 

parameters and accordingly notifies the public. Several 

experimental results confirm that the performance of the 

chosen sensor nodes is quite good for the intended 

application. The results also illustrate the ability of fuzzy sets 

to integrate diverse knowledge and translate it into clearer 

indices for environmental management. The Takagi-Sugeno-

type inference method was employed due to its effectiveness 

in data processing and suitability for optimization issues. This 

FIS accurately finds the TCI and is thus capable of monitoring 

real-time pollution. Its dynamic nature allows it to adapt to 

varying conditions and TCI levels across different 
geographical locations. 

No Temperature (0C) Humidity (%) TCI Value (Practical) TCI Value (Simulation) TCI % error TCI status 

1 21.4 59.9 3 3 0 Most comfort 
2 22.3 68 2.1207 2.12 0.03302 Comfort 
3 22.6 83.4 1.7447 1.74 0.27011 Comfort 
4 22.9 94.3 1.7313 1.73 0.07514 Comfort 

5 23.9 69 2.0639 2.06 0.18932 Comfort 
6 24.3 81 1.3057 1.31 0.32824 Not comfort 
7 25.2 93.3 1 1 0 Not comfort 
8 33.2 86.5 0.9032 0.903 0.02215 Not comfort 
9 33.6 92 0.8385 0.839 0.05959 Not comfort 
10 39.4 91.4 0 0 0 Least comfort 
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