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Abstract—Indonesia's vast waters make its aquatic resources abundant, with one of the most valuable resources being Vannamei 

shrimp. Technology-based shrimp farming is an essential method for utilizing this resource. Maintaining optimal water quality 

parameters is necessary for successful shrimp farming, as it affects shrimp breeding. Ideal conditions for shrimp breeding include a 

temperature range of 26-32°C, salinity of 30-35 ppt, pH of 7.6-8.3, turbidity of 11-24 NTU, and oxygen levels of more than 4 mg/L. This 

research integrates sensors for real-time shrimp pond water quality monitoring using Internet of Things (IoT) technology, with sensors 

calibrated for error rate and accuracy.  The error rates of the sensor testing process are TDS sensor 5.39%, temperature sensor 0.14%, 

pH sensor 2.85%, turbidity sensor 5.14%, and DO sensor 8.84%. This research successfully monitored the water quality of shrimp 

ponds in real-time through the Node-Red dashboard with the MQTT IoT protocol and an average latency of 593.3 ms. Over ten days, 

the average water quality parameters were as follows: in the morning salinity 31.86 ppt, temperature 27.13°C, pH 7.66, turbidity 17.24 

NTU, and dissolved oxygen 5.22 mg/L; in the afternoon salinity 31.69 ppt, temperature 27.41°C, pH 7.84, turbidity 17.24 NTU, and 

dissolved oxygen 5.54 mg/L; and at night salinity 31.90 ppt, temperature 27.35°C, pH 7.78, turbidity 17.21 NTU, and dissolved oxygen 

5.36 mg/L. Further research is needed to implement the Fuzzy Logic method to determine the optimal status of shrimp pond water and 

evaluate the effectiveness of the process on the control system. 
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I. INTRODUCTION

The Unitary State of the Republic of Indonesia, or NKRI, is 

the largest archipelago in the world [1], [2]. This archipelagic 

state means a country has many islands united by territorial 

waters. The 1982 UNCLOS Convention on the Law of the Sea 

supports this statement by discussing several points related to 

the sea law for archipelagic states [2]. The law of the sea states 

that the state has the right to establish its territorial sea zone up 

to 12 nautical miles from the coastal baseline. The state also has 

the right to establish an exclusive economic zone up to 200 

nautical miles from the coastline and exploit and conserve 

natural resources, such as underwater fish, oil, and the 

continental shelf. This makes Indonesia an archipelago that can 
utilize the living resources in its waters [3].  

Indonesia's aquatic resources are very abundant because of 

its vast waters. One type of resource in the Indonesian Sea 

with a high selling value is shrimp (Vannamai) [4]. Shrimp is 

a prime product in fisheries because it has economic value and 

promising export prospects [5]. Cultivating in ponds is one 

way to utilize shrimp in Indonesia [6]. The cultivation will 
play an essential role in producing data on monitoring the 

water quality of shrimp ponds [7]. The data is one of the most 

critical aspects of the decision-making process [8].   

Shrimp pond farming must pay attention to the value of 

water quality parameters. This will affect the breeding of 

shrimp. The pond water quality parameters include the 

temperature, salinity, pH, oxygen levels, and turbidity in the 

shrimp pond water [9],[10]. The optimal parameters used in 

supporting shrimp breeding are temperature values of 26-32 ° 

C, salinity 30-35 ppt, pH 7.6-8.3, turbidity values of 11-24 

NTU, and oxygen levels > 4 Mg / L [11]. These parameters 

can be measured using sensors validated for their readings 
[12]. The process of testing sensors that do this validation will 

be compared with calibrated conventional measuring 

instruments. Sensors are standardized to ensure shrimp 

breeding goes well. 

The sensors will be integrated with Internet of Things 

(IoT)-based digitalization technology to support shrimp pond 

water quality monitoring [12]. IoT is a device that can receive 
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and send data in a network without human-to-human or 

human-to-computer interaction [13]. IoT can monitor the 

measured values on sensors. IoT technology will provide 

effective and efficient solutions to support the success of 

shrimp farming [14]. 

The communication protocol used to implement IoT in 

monitoring systems is Message Queuing Telemetry Transport 

(MQTT). MQTT is a machine-to-machine (M2M) and 

lightweight message [15]. This protocol uses the 

publish/subscribe communication method [16]. MQTT 
messages are sent to the broker and contain topics sent by the 

Publisher. The use of MQTT in IoT devices was chosen 

because this protocol requires much less energy consumption 

than other protocols. MQTT can also function well in a small 

bandwidth and high latency environment [17]. The latency 

indicates the time required for the data transmission process 

from the sender to the receiver [18]. 

Therefore, this research aims to integrate sensor 

monitoring of shrimp pond water quality into a system that 

can retrieve measurement data in real time and acquire sensor 

measurement data into a simple dashboard using the Message 
Queuing Telemetry Transport (MQTT) protocol based on the 

Internet of Things. 

This research only makes a prototype of a shrimp pond 

water quality monitoring tool that can read the parameters of 

temperature, salinity, turbidity, oxygen levels, and pH. Then, 

data collection is carried out in an aquarium using water 

samples that have been conditioned, such as pond water. Then, 

the water sample will be treated by adding salt, detergent, and 

rainwater to see the response of the automatic treatment 

designed on the shrimp pond water quality monitoring system. 

Furthermore, this research only discusses sending sensor data 
to the Internet of Things system. 

II. MATERIALS AND METHODS 

Mappi32 is an Internet of Things (IoT) development board 

designed and produced by KMTek (Karya Merapi Teknologi) 

company in Indonesia. The Mappi32 can be a microcontroller 

with functions similar to the Arduino development board. As 

a microcontroller, Mappi32 can work as an input controller in 

the form of sensors, collecting data from various sensor inputs 
and processing them. Mappi32 is a microcontroller with a 

CPU base, namely ESP32-WROOM-32E. In addition, 

mappi32 can work with a voltage output of 3-5V with LoRa, 

Wi-Fi, and Bluetooth support systems [18]. 

Total dissolved solids (TDS) refer to inorganic salts and 

small quantities of organic matter in water. The main 

components typically include cations such as calcium, 

magnesium, sodium, and potassium, and anions like 

carbonate, bicarbonate, chloride, sulfate, and nitrate [19]The 

salinity sensor's measurement results are in Parts per Million 

(PPM) or Parts per Trillion (PPT), or part per one million of 
the number of dissolved particles. 

The DS18B20 sensor measures temperature by converting 

thermal energy into voltage and current. Uniquely, this sensor 

can be made parallel to one input [20]. Users can use more 

than one DS18B20 Sensor, but the sensor output is only 

connected to one Microcontroller pin. In addition, this sensor 

has waterproof properties [21]. So, this sensor can be used as 

a measuring instrument and for water heater control. 

The degree of acidity or pH expresses the acidity or basicity 

a substance, solution, or object possesses. Normal pH has a 

value of 7, while a pH value > 7 indicates that the substance 

has base properties, and a pH value < 7 indicates acidity. pH 

0 indicates a high degree of acidity, and pH 14 indicates the 

highest degree of basicity [22]. One way to find out the value 

of the degree of acidity is to use a pH sensor. An analog 

passive pH electrode connected to an embedded pH 

monitoring circuit supports UART and I2C communication 

protocols. It operates at a voltage range of 3.3-5.0 V and is 
compatible with any microprocessor that supports UART 

communication. This study was calibrated at 4.01, 7.01, and 

10.01 to ensure accurate measurements [23]. 

One of the tools that can read the level of turbidity is a 

sensor that detects water turbidity by reading the optical 

properties of water due to light, and comparing the reflected 

light with the incident light [23]. Turbidity is a condition of 

water that is not clear and is caused by individual particles 

(suspended solids), which are generally invisible to the eye 

[24]. The more particles in the water, the higher the turbidity 

level of the water. A higher water turbidity level will be 
followed by a change in the sensor output voltage in turbidity 

sensors. The sensor utilizes an infrared LED as a light source 

and an infrared phototransistor to measure the amount of light 

that passes through the water. The resulting change in voltage 

is then converted into turbidity units, specifically NTU 

(Nephelometric Turbidity Units) [25]. 

The dissolved oxygen sensor in waterworks is used 

electrochemically to measure the amount of oxygen dissolved 

in water [26]. It uses the chemical reaction principle between 

oxygen and the electrolyte solution inside. When oxygen from 

water enters the sensor, it reacts with the electrolyte and 
produces an electrical signal [27]. This sensor works by being 

connected to a voltage source of 3.3 V to 5.0 V [23]. 

A relay is a switch that operates electrically and has two 

main parts: electromagnetic (coil) and mechanical (contact 

switch). Relay works by closing and opening the circuit with 

electric power through the coil. This relay is connected to the 

water pump and waterwheel for automatic handling [28]. The 

water pump is a component that moves water from one place 

to another using a drive [29]. The function of this waterwheel 

is to improve water quality as a source of dissolved oxygen 

levels in ponds [30]. To display information on this prototype, 

we need to use OLED. OLED (Organic Light-Emitting Diode) 
is an electronic component used as a display or monitor 

displaying data in characters, letters, numbers, and graphics. 

OLED technology was developed to obtain a comprehensive, 

flexible, inexpensive display that can be used efficiently for 

various display screen purposes [31]. It will be connected to a 

power supply as an energy source to activate this prototype. 

Power supply is equipment that supplies electricity to other 

equipment. The power supply in an electronic circuit requires 

direct current (DC) type power [32]. Commonly used power 

supplies include adapters and batteries as energy storage [33] 

MQTT is a protocol designed by IBM with a 
publish/subscribe system that is suitable for Machine-to-

Machine (M2M) based systems [16], [35]. Publishers use the 

publishing method to send messages on a specific topic. All 

clients who have subscribed to the same topic will receive the 

Publisher’s published topic. Then, it will be sent through an 

intermediary called a broker, where the Publisher will send 
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data to the broker. Then, the data will be sent to the Subscriber, 

who has connected and adjusted the available topics [34]. 

MQTT provides significant flexibility to the framework and 

simplifies secure integration with cloud platforms, such as 

AWS, by utilizing certificates securely stored on the device 

via a crypto chip. Additionally, MQTT is employed to receive 

status updates from the intelligent object [35]. This study 

proposes an architecture that uses lightweight messaging 

protocols like MQTT to transmit sensor data and employs 

Node-Red as a data flow-based tool. Node-Red is a platform 
that provides several tools for creating an Internet of Things 

(IoT)- based system. The system built on the Node-Red 

platform uses several node components that form a flow [36]. 

The main component used in this research is the Mappi32 as 

a microcontroller. There is also power in the form of a 12 VDC 

adapter as a power supply for the microcontroller and water 

pump circuit. In addition, there are inputs from 5 sensors, 

namely the DFROBOOT Total Dissolved Solids Sensor, 

DS18B20, pH 4502C, DFROBOOT turbidity, and 

DFROBOOT Dissolved Oxygen. These sensors will be 

controlled and processed through Mappi32. Then, the sensor 
readings will be displayed on OLED. In addition, the results of 

sensor readings will also be displayed on the dashboard through 

a broker with the help of the internet that has been connected 

via Mappi32. If the reading results have a non-optimal category 

that exceeds the shrimp pond water quality standardization, 

activating the relay will send a signal. This is a water wheel to 

handle the results of non-optimal dissolved oxygen levels and 

a water pump to handle the results of salinity, temperature, pH, 

and turbidity. The design block diagram of the shrimp pond 

water quality monitoring system can be seen in Fig. 1. 

 

 
Fig. 1  Block Diagram of the Tool Design 

 
Calibrate the sensors used in the designed tool system to 

validate the measured value against the value of conventional 

tools with standardization. One of the methods used in this 

calibration is the linear regression method. Linear regression 

is an analysis that studies the dependency relationship 

between one variable, called the dependent variable, and 

another variable, called the independent variable. Regression 

analysis can calculate the effect of changes in one variable on 

another. Linear regression can also form a relationship 

between independent and dependent variables. 

Variable in a linear manner. This linear regression can be 

written through mathematical equations, such as equation 1 
[37], [38]. 
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From these two variables, the relationship can be seen 

based on the Coefficient of determination. The Coefficient of 

determination shows the extent to which the contribution of 

the independent variables in the regression model can explain 

the variation in the dependent variable. As for calculating The 

Coefficient of determination, it can be calculated using the 

correlation coefficient relationship. The correlation 

coefficient is a statistical measure that shows the extent to 

which two variables change together and how strong the linear 

relationship is between the two variables. The mathematical 
equation can be seen in equation 2. 

 R2 = r2  (2) 

with: 
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Description: 
R = Coefficient of Determination 

r = Correlation Coefficient 

y = dependent variable (dependent variable)  

x = independent variable (free variable)  

a = constant  

b = regression coefficient 

Before calibrating, the error value of each experiment must 

be considered. A number, measurement, or calculation error 

is the numerical difference between the actual value and the 

value obtained from the given approach or calculation or 

measurement results. The error can be written mathematically 
in Equation 3 [39]. 

 E= |a – a*|  

 e= 
�

�
 = 

|�
�∗|

�
  

 �� = �. 100% (3) 

Description: 

E = Absolute Error (Error)  

a = Exact Value 

a* = Approximate Value  

e = Relative Error 

�� = Percentage Error (%) 

III. RESULTS AND DISCUSSION 

TDS sensors are used to measure the amount of dissolved 

solids in water. One of these solids is salt. TDS Sensor Testing 

carried out in this study compares the value of the results 

measured on the conventional temperature measuring 

instruments and sensors, namely a Refractometer with a TDS 

Sensor DFROBOT. This sensor has three pins, namely VCC, 

Data, and GND. The TDS sensor has an output in the form of 

analog data, so it needs to be connected to the Mappi32 pin, 

which has an analog-to-digital (ADC) feature. The analog 
value read on Mappi32 is 12 bits (4095). The tools used in 

testing the TDS sensor can be seen in Fig 2. 

Refractometers work by bending light. When light passes 

between two materials of different densities, such as water 

and air, it bends. The angle of this deflection depends on the 

difference in density between the two materials. A 

refractometer has a prism or lens that bends light. A liquid 

sample is placed on the surface of the prism or lens, and light 

passing through the sample will bend. The refractometer 
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measures this deflection angle and displays the result as a 

number indicating the refractive index of the liquid. 

 

 
Fig. 2  TDS Sensor Testing Device 

 

 
Fig. 3  TDS Sensor Linear Regression Visualization 

 

Based on Fig. 3, the equation obtained in the linear 

regression equation y = 0.1572 x - 399.92 from 13 tested data 

points. Then, the equation will be entered into the Mappi32 

programming to get a value that matches the actual salinity 

value. The Coefficient of determination in this TDS sensor 

test is 0.9772, which means that the closer to 1, the stronger 

the influence of the two variables will be. In addition, the 

Coefficient of variable x in the linear regression equation is 

positive, meaning that the higher the value of salt content read 
on the ADC of the TDS sensor, the higher the reading of the 

actual salt content value on the refractometer in units of ppt 

(parts per thousand). After entering the TDS Sensor 

calibration equation, data will be collected again with ten 

samples with different salt content levels. This measurement 

data will be analyzed based on the error and accuracy of each 

sample. This comparison can be seen in Table 1. 

TABLE I 

TDS SENSOR TESTING RESULTS AFTER CALIBRATION 

No 
TDS Sensor 

(ppt) 

Refractometer 

(ppt) 

Error 

(%) 

Accuracy 

(%) 

1 39.29 42 6.45 93.55 
2 40.29 44 8.43 91.57 
3 36.3 37 1.89 98.11 
4 38.3 40 4.25 95.75 
5 33.32 33 0.97 99.03 
6 34.31 35 1.97 98.03 
7 30.33 30 1.10 98.90 
8 28.34 27 4.96 95.04 
9 27.34 25 9.36 90.64 

10 26.34 23 14.52 85.48 
Average 5.39 94.61 

Table 1 shows the latest test results after calibrating the 

TDS Sensor. These results obtained the average error and 

accuracy values of these 10 test samples of 5.39% and 94.61%, 

respectively. 

The DS18B20 sensor can be used to measure the 

temperature of water. Testing the temperature sensor carried 

out in this study is to compare the value of the results 

measured on the sensor and conventional measuring 

instruments, namely mercury thermometers. This sensor has 

three pins, namely VCC, Data, and GND. The DS18B20 

sensor has an output in the form of digital data. In this sensor 

circuit, a resistor is connected between the VCC Pin and the 

Data Pin, which prevents floating values in high conditions. 

The resistor is called a pull-up resistor with a value of 
4.7Kohm. The tool used in testing the temperature sensor can 

be seen in Fig. 4. 

 
Fig. 4  Temperature Sensor Testing Device 

 

Mercury thermometers operate on the principle of thermal 

expansion. As the temperature increases, the mercury in the 

glass tube expands and rises to a calibrated scale, indicating 
the temperature. Mercury was chosen because it has a stable 

thermal expansion and can accurately measure temperature 

over a wide range. As the temperature decreases, the mercury 

constricts and drops back down, giving consistent reading. 

Mercury also has a high boiling point and remains liquid 

across various temperatures, making it ideal for various 

applications. In addition, its uniform expansion properties 

ensure accurate reading. The visibility of mercury's silver 

color against the scale further aids accurate temperature 

measurement. However, mercury thermometers have 

declined due to their toxicity and have been replaced by safer 

alternatives. 

 
Fig. 5  Temperature Sensor Linear Regression Visualization 

 

Based on Fig. 5, the linear regression equation y = 0.9982 

x - 0.1164 was obtained from 10 tested data points. Then, the 
equation will be entered into the Mappi32 programming to get 

a value that matches the actual temperature value. The 

Coefficient of determination in this temperature sensor test is 

1, which means that the closer to 1, the stronger the influence 

of the two variables will be. In addition, the Coefficient of 
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variable x in the linear regression equation is positive, 

meaning that the higher the temperature value read on the 

temperature sensor, the higher the actual temperature reading 

measured on the thermometer. After entering the temperature 

sensor calibration equation, data will be collected again with 

ten samples at different temperature levels. This measurement 

data will be analyzed based on the error and accuracy of each 

sample. This comparison can be seen in Table 2. 

TABLE II 

TEMPERATURE SENSOR TESTING RESULTS AFTER CALIBRATION 

No 
Thermometer 

(°C) 

Temp 

Sensor (°C) 

Error 

(%) 

Accuracy 

 (%) 

1 35 35.01 0.03 99.97 
2 36 36.13 0.36 99.64 
3 37 37.07 0.19 99.81 

4 47 47.05 0.11 99.89 
5 49 49.04 0.08 99.92 
6 50 50.04 0.08 99.92 
7 53 53.1 0.19 99.81 
8 57 57.06 0.11 99.89 
9 60 60.09 0.15 99.85 
10 69 68.95 0.07 99.93 
Average 0.14 99.86 

 
Table 2 shows the latest test results after calibrating the 

temperature sensor. These results obtained the average values 

of error and accuracy of these 10 test samples of 0.14% and 

99.86%, respectively. 

The pH 4502C sensor can be used to measure the acidity of 

water. The pH sensor testing in this study compares the value 

of the results measured on the sensor and conventional 

measuring instruments, namely the pH Meter. This sensor has 

three pins, namely VCC, Data, and GND. The pH sensor has 

an output in analog data, so it needs to be connected to the 

Mappi32 pin, which has an Analog Digital (ADC) feature. 

The analog value read on Mappi32 is 12 bits (4095). The tool 
used in testing the pH sensor can be seen in Fig. 6. 

 

 
Fig. 6  pH Sensor Testing Device 

 

pH meters measure the activity of hydrogen ions (H+) in a 

solution to determine its acidity or basicity. This tool has a 

glass electrode that is sensitive to H + ions. When the 

electrode is dipped into a solution, the H+ ions in the solution 

interact with the surface of the electrode, producing an 

electrical voltage. The pH meter measures this voltage and 
converts it to a pH value displayed on the screen. The pH 

value indicates how acidic or alkaline a solution is, with a 

scale from 0 (very acidic) to 14 (very basic), and 7 (neutral). 

Based on Fig. 7, the equation obtained in the linear 

regression equation y = -0.0046x + 19.931 from 14 tested data 

points. Then, the equation will be entered into the Mappi32 

programming to get a value that matches the actual pH value. 

The Coefficient of determination in this pH sensor test is 

0.9968, which means that the closer to 1, the stronger the 

influence of the two variables will be. In addition, the 

Coefficient of variable x in the linear regression equation is 

negative, meaning that the lower the ADC value of the pH 

sensor, the higher the pH value in a solution measured by the 

pH meter.  
 

 
Fig. 7  pH Sensor Linear Regression Visualization 

 

After entering the pH sensor calibration equation, data will 

be collected again with twelve samples with different acidity 

levels. This measurement data will be analyzed based on the 

results of each sample’s error and accuracy. This comparison 

can be seen in Table 3. 

TABLE III 

PH SENSOR TESTING RESULTS AFTER CALIBRATION 

No 
pH 

Meter 
pH Sensor 

Error 

(%) 

Accuracy 

(%) 

1 3.98 4.09 2.76 97.24 
2 6.69 6.95 3.89 96.11 
3 6.8 7.03 3.38 96.62 
4 6.99 7.26 386 96.14 

5 7.12 7.36 3.37 96.63 
6 7.14 7.5 5.04 94.96 
7 7.16 7.4 3.35 96.65 
8 7.19 7.24 0.70 99.30 
9 7.25 7.62 5.10 94.90 
10 8.02 7.85 2.12 97.88 
11 9.97 9.93 0.40 99.60 
12 9.99 9.97 0.20 99.80 

Average 2.85 97.15 

 

Table 3 shows the latest test results obtained after 
calibrating the pH sensor. These results obtained the average 

error and accuracy values of these 12 test samples of 2.85% 

and 97.15%, respectively. 

The DFRobot Turbidity Sensor can be used to measure 

turbidity in water. Turbidity sensor testing carried out in this 

study is to compare the value of the results measured on the 

sensor and conventional measuring instruments, namely, 

turbidity meters. The turbidity sensor has an output in the 

form of analog data, so it needs to be connected to the 

Mappi32 pin, which has an analog-to-digital (ADC) feature. 

The analog pin read on the Mappi32 is 12 bits (4095). The 

turbidity sensor test produces fluctuating ADC data. This 
happens because the working principle of this sensor is light 

refraction, which means that this sensor is susceptible to the 

presence of light shining on the water sample. Therefore, a 

solution was made to make a cover from a pipe that covers 
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this sensor. The tool used in testing the turbidity sensor can be 

seen in Fig. 8. 
 

 
Fig. 8  Turbidity Sensor Testing Device 

 

Turbidity meters measure the amount of light scattered by 

suspended particles in a liquid. It emits a light beam into the 

water sample through a light source, usually a lamp or laser. 

The particles in the water will scatter the light. The sensor in 

the turbidity meter then detects the intensity of the scattered 

light. The more particles in the water, the higher the intensity 

of the scattered light, which means the turbidity or cloudiness 

of the water is higher. The results of this measurement are 

usually displayed in NTU (Nephelometric Turbidity Units). 
 

 
Fig. 9  Turbidity Sensor Linear Regression Visualization 

 

Based on Fig. 9, the linear regression equation y = -0.1423x 

+ 536.83 from 13 tested data points will be entered into 

Mappi32 programming to get a value that matches the actual 

turbidity value. The Coefficient of determination in this 
turbidity sensor test is 0.991, which means that the closer to 1, 

the stronger the influence of the two variables will be. 

TABLE IV 

NIGHTTIME TURBIDITY SENSOR TEST RESULTS AFTER CALIBRATION 

No 
Turbidity 

Meter (NTU) 

Turbidity 

Sensor (NTU) 

Error 

(%) 

Accurac

y (%) 

1 5.5 5.75 4.55 95.45 
2 5.9 5.61 4,92 95.08 
3 6.5 6.79 4,46 95.54 
4 7.6 7.83 3,03 96.97 
5 12.4 12.61 1,69 98.31 

6 13.5 12.3 8,89 91.11 
7 14.2 13.56 4,51 95.49 
8 15.5 14.73 4,97 95.03 
9 16 15.39 3,81 96.19 
10 18.9 18.07 4,39 95.61 
11 19.7 18.94 3,86 96.14 
12 22.93 23.5 2,49 97.51 
13 23.45 24.5 4,48 95.52 

Average 4,31 95.69 

In addition, the Coefficient of variable x in the linear 

regression equation is negative, meaning that the lower the 

ADC value of the turbidity sensor that is read on, the higher 

the actual turbidity reading of a solution measured by the 

turbidity meter. After entering the turbidity sensor calibration 

equation, data will be collected again with 13 samples with 

different turbidity levels and taken during day and night 

conditions. This measurement data will be analyzed based on 

the results of each sample’s error and accuracy. This 

comparison can be seen in Table 4. Table 4 shows the latest 

test results after calibrating the turbidity sensor, which was 

carried out at night. These results obtained the average error 
and accuracy of these thirteen test samples of 4.31% and 

95.69%, respectively. 

Based on Table 5, the latest test results were obtained after 

calibrating the turbidity sensor during the day. These results 

obtained the average error and accuracy of these 13 test 

samples of 5,97% and 94.03%. Therefore, the error and 

accuracy obtained through the turbidity sensor testing process 

are 5.14% and 94.86%. 

TABLE V 

DAYTIME TURBIDITY SENSOR TEST RESULTS AFTER CALIBRATION 

No 
Turbidity Meter 

(NTU) 

Turbidity Sensor 

(NTU) 

Error 

(%) 

Accuracy 

(%) 

1 12 10.86 9.50 90.50 
2 12.5 13.12 4.96 95.04 

No 
Turbidity Meter 

(NTU) 

Turbidity Sensor 

(NTU) 

Error 

(%) 

Accuracy 

(%) 

3 13 13.6 4.62 95.38 
4 13.5 14.95 10.74 89.26 
5 13.8 13.56 1.74 98.26 
6 14 15.24 8.86 91.14 
7 14.5 15.82 9.10 90.90 
8 15 15.47 3.13 96.87 

9 15.3 16.68 9.02 90.98 
10 15.8 16.51 4.49 95.51 
11 16 16.34 2.13 97.88 
12 17.5 16.86 3.66 96.34 
13 18.6 17.55 5.65 94.35 
Average 5.97 94.03 

 

The DFRobot dissolved oxygen sensor can measure 

dissolved oxygen levels in water. The dissolved oxygen 

sensor testing in this study compares the value of the results 

measured on the sensor with those of conventional measuring 

instruments, namely dissolved oxygen meters. This sensor has 

three pins, namely VCC, Data, and GND. The DO sensor has 

an output in analog data, so it needs to be connected to the 

Mappi32 pin, which has an analog-to-digital (ADC) feature. 

The analog pin read on the Mappi32 is 12 bits (4095). The 
tool used in testing the turbidity sensor can be seen in Fig. 10. 

 

 
Fig. 10  Turbidity Sensor Testing Device 
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Dissolved oxygen meters (DO meters) measure the amount of 

oxygen dissolved in water. This tool generally uses an oxygen 

electrode consisting of a cathode and an anode submerged in an 

electrolyte and separated from the water sample by an oxygen-

permeable membrane. When an electric current is applied, 

oxygen penetrating the membrane reacts at the cathode, 

producing an electric current proportional to the dissolved 

oxygen concentration. The DO meter then measures this electric 

current and converts it to an oxygen concentration value 

displayed on the screen, usually in mg/L (milligrams per liter). 
 

 
Fig. 11  DO Sensor Linear Regression Visualization 

 

Based on Fig 11, the equation obtained in the linear 

regression equation y = 0.0089x - 1.349 from 12 tested data. 

Then, the equation will be entered into Mappi32 

programming to get a value that matches the actual turbidity 
value. The Coefficient of determination in this pH sensor test 

is 0.9236, which means that the closer to 1, the stronger the 

influence of the two variables will be. In addition, the 

Coefficient of variable x in the linear regression equation is 

positive, meaning that the higher the oxygen levels read on 

the DO sensor, the higher the reading of the actual oxygen 

levels measured on the DO Meter. After entering the 

dissolved oxygen sensor calibration equation, data will be 

collected again with 14 samples with different oxygen levels. 

This measurement data will be analyzed based on the error 

and accuracy of each sample. This comparison can be seen in 

Table 6. 

TABLE VI 

DO SENSOR TESTING RESULTS AFTER CALIBRATION 

No 
DO Meter 

(Mg/L) 

DO Sensor 

(Mg/L) 

Error 

(%) 

Accuracy 

(%) 

1 6.1 5.82 4.59 95.41 
2 6.1 4.94 19.02 80.98 
3 6.1 5.96 2.30 97.70 
4 6.1 6.27 2.79 97.21 

5 6 5.82 3.00 97.00 
6 6 6.78 13.00 87.00 
7 6 5.25 12.50 87.50 
8 6 5.44 9.33 90.67 
9 6 5.02 16.33 83.67 
10 6 6.63 10.50 89.50 
11 4.5 4.86 8.00 92.00 
12 4.5 5.07 12.67 87.33 

13 4.5 4.68 4.00 96.00 
14 4.5 4.76 5.78 94.22 
Average 8.84 91.16 

 

Table 6. shows the latest test results after calibrating the 

dissolved oxygen sensor. These results show that the average 

error and accuracy of the 14 test data are 9.67% and 90.33%, 

respectively. 

The monitoring device consists of sensor components that 

send parameter readings of salinity, temperature, pH, turbidity, 

and oxygen levels to the Node-Red dashboard. When the 

readings from these sensors exceed the standardization of 

shrimp pond water quality parameters, the wheel or water 

pump will automatically activate to handle and restore the 

parameter value to the optimal value. The packaged tool can 

be seen in Fig. 12. 
 

 
Fig. 12  Results of Shrimp Pond Water Quality Monitoring Device 

 

Shrimp pond water conditions have > 4 Mg / L 
standardized oxygen levels. Therefore, the value read on the 

DO sensor is said to be not optimal when it is < 4 Mg / L. 

Therefore, the value read on the DO sensor is said to be not 

optimal when it is <4 Mg/L. To overcome the non-optimality 

of the DO value read, automatic handling is made when the 

DO value is less than the standardization set. This automatic 

handling increases dissolved oxygen levels in the shrimp pond 

water. The modeling circuit of this mill can be seen in Fig. 13. 

This pinwheel model is composed of several key components: 

a 5V 10A power supply, a 12V 3A DC motor, a dimmer 

module to control the motor's rotation speed to prevent water 

from splashing out of the research medium, and a relay that 
acts as an automatic switch. 

 

 
Fig. 13  Waterwheel Modeling Circuit 

 

As shown in Fig. 13, the waterwheel can return oxygen 

levels to the optimal value of > 4 Mg / L. The data displayed 

in Fig. 14 is a sample of dissolved oxygen levels at a critical 

point, namely <4 Mg/L. The data is quoted from the 

measurement data in the morning, a crisis time condition with 

the lowest oxygen content and the highest carbon dioxide 

value. Therefore, morning is a condition that needs to be 

considered when monitoring the water quality of shrimp 

ponds. 
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Fig. 14  Change in DO value due to waterwheel automation 

 

Shrimp pond water conditions have standardized values of 

temperature 26-32 °C, salinity 30-35 ppt, pH 7.6-8.3, and 

turbidity value 11 - 24 NTU. Therefore, the value read on the 

sensors is more than the standardized optimal point, so it is 
said that the water quality parameters of shrimp ponds are 

unsuitable for shrimp breeding. To overcome this non-

optimality, automatic handling is made when the parameters 

of temperature, salinity, pH, and turbidity exceed the 

predetermined standardization. This automatic handling aims 

to restore or reduce the reading of the four parameters by 

adding water automatically with a water pump.  

Based on Fig. 15, the pH parameter sample has a value that 

is not optimal because of the treatment, namely the addition 

of detergent solution, to see the response of the automatic 

handling that has been made. The sample in Fig. 29 states that 
adding water automatically reduces the pH parameter to 

below 8.3, the optimal pH threshold for shrimp pond water 

quality. The water pump will activate when the pH sensor 

measurement value is more significant than 8.3. 

 

 
Fig. 15  pH value changes due to water pump automation 

 

Based on Fig. 16, the salinity parameter sample has a value 

that is not optimal because of the treatment, namely, the 

addition of salt solution to see the response of automatic 

handling that has been made, namely, water pump automation. 
The sample in Fig. 30 states that adding water can 

automatically reduce the salinity parameter to below 35 ppt, 

the optimal salinity threshold for shrimp pond water quality. 

This research has been integrated with the Internet of Things, 

so the system can run with the help of the Internet and be 

monitored in real-time through the dashboard of the Node-

Red platform. As a distributor of information in this system, 

an MQTT broker connected between the mappi32 

microcontroller and Node-Red makes this dashboard.  

 

 
Fig. 16  Salinity value changes due to water pump automation 

 

Based on Fig. 17, the first node used is MQTT IN, which 

can subscribe to the data that the sensors send to the selected 

MQTT server. The MQTT server used in this research is 

HIVEMQ with the server https://broker.mqtt-dashboard.com/. 
Previously, data from each sensor used would be sent to the 

server. The second node, the gauge node, will provide needle-

like instructions about the value read on the sensor.  The third 

node, the chart node, is a node that is used to function as an 

accumulator of sensors that have been read. Then, this node 

will display the data sent and store it temporarily. Thus, the 

trend of value changes can be seen clearly. 

 

 
Fig. 17  Red node workflow used 

 

On MQTT in Node, Mappi32 will take data, separate the 

data, and adjust the data from the sensors on the Gauge Node, 

then send it to the MQTT Server used, namely HIVEMQ 

(https://broker.mqtt-dashboard.com/). In Figure 17, the data 

collected from the Gauge Node are salinity, temperature, 

oxygen level, turbidity, and pH data. When the data has been 

taken, separated, and adjusted to the MQTT In Node, it then 
goes to the Chart Node, which will display and temporarily 

store the data sent to the server. 

Based on the workflow in Fig. 17, a simple dashboard can 

display data from sensor readings. The data the sensors have 

read will be sent through the MQTT broker, which is 

represented through this dashboard. The dashboard can be 

seen in Fig. 18. 
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Fig. 18  Red node workflow used 

 

The transmission latency data will be tested after the 

dashboard is successfully connected to the monitoring system. 

Latency testing on the Internet of Things (IoT) system is 

carried out to determine the delay in sending data from 

sensors’ readings to the MQTT server. This test compares the 

time of sending data from the sensor sent on the Arduino IDE 

serial monitor with the time received by the MQTT broker, 
mqtt-dashboard.com. This latency test uses a website used in 

the testing process, client-cloud.mqtt.cool. 

It is based on Fig. 19. The latency testing on the MQTT 

server broker.mqtt-dashboard.com shows an average latency 

value of 593.3 ms from 20 test data. Of the 20-test data, the 

worst test result value was obtained with a latency value of 

671 ms, and the best test result value with a latency value of 

522 ms. This latency value indicates that there is a delay in 

the process of sending sensor reading data to the Internet of 

Things support server. The internet speed during the testing 

process is one factor that affects the latency value.  
 

 
Fig. 19  MQTT protocol latency testing 

 

Figure 20 is a recapitulation of the average values at 05.00-

07.00 a.m., afternoon at 12.00-02.00 p.m., and evening at 
07.00-09.00 p.m. for 10 days of monitoring. The monitoring 

results concluded that when the temperature is coldest or in 

the morning (27,13 oC), pH (7,66) and Dissolved Oxygen 

(5,22 Mg/L) obtained will be the lowest. Meanwhile, for the 

highest temperatures during the day (27,41 oC), pH (7,84) of 

the water and Dissolved Oxygen (5,54 Mg/L) obtained will be 

the highest. Meanwhile, salinity is inversely proportional to 

temperature. This means that the higher the temperature 

measured, the lower the salinity obtained. The Turbidity value 

does not affect temperature but depends on the presence of 

sunlight. Therefore, the results of the turnover value 
experience are different only at night, the values in the 

morning and during the day are the same. 

 

 
Fig. 20  Recapitulation of Shrimp Pond Quality Monitoring 

IV. CONCLUSION 

The shrimp pond water quality monitoring tool with 

Mappi32 has been realized, and the error value read on the 

sensors from the testing process is 5.39% TDS sensor, 0.14% 

temperature sensor, 2.85% pH sensor, 5.14% turbidity sensor, 

and 9.67% DO sensor. Real-time monitoring of shrimp pond 

water quality has been realized, and it can be monitored 
through the Node-Red dashboard using the IoT Message 

Queuing Telemetry Transport (MQTT) protocol with an 

average latency value of 593.3 ms. Based on the monitoring 

data obtained, the average value of parameters for ten days in 

the morning salinity 31.86 ppt; temperature 27.13 C; pH 7.66; 

turbidity 17.24 NTU; and dissolved oxygen 5.22 Mg/L; in the 

afternoon salinity 31.69 ppt; temperature 27.41 C; pH 7.84; 

turbidity 17.24 NTU; and dissolved oxygen 5.54 Mg/L; and 

at night salinity 31.90 ppt; temperature 27.35 C; pH 7.78; 

turbidity 17.21 NTU; and dissolved oxygen 5.36 Mg/L. 

The ability to communicate data is the potential scalability 
factor when implementing this IoT-based monitoring system 

in larger-scale shrimp farming operations. Because, based on 

the data obtained, the value of data latitude or delay is up to 

671 ms. The data latency or delay will increase if this is done 

on a large scale with inaccurate pond area calculations and 

microcontroller placement calculations. Because of this, the 

author suggests that a method, such as the Fuzzy Logic 

method, is needed to determine the optimal status of shrimp 

pond water with five parameters simultaneously and discuss 

the optimality and effectiveness of the method's influence on 

the control system. In addition, a mini-PC such as a Raspberry 

Pi is needed to make it easier to store data and observe so that 
the Internet of Things system can be stored online. 
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