
Vol.15 (2025) No. 2 

ISSN: 2088-5334 

Text Data Security through Double Encryption: Implementation 

of Unimodular Hill Cipher and Advanced Encryption Standard 

Samsul Arifin a,*, Dwi Wijonarko b, Muhammad Faisal a, Muhammad Nabil Pratama a, 

Puguh Wahyu Prasetyo c 
a Department of Data Science, Faculty of Engineering and Design, Institut Teknologi Sains Bandung; Bekasi, West Java, Indonesia 

b Department of Information Technology, Faculty of Computer Science, University of Jember, Jember, East Java, Indonesia 
c Mathematics Education Department, Faculty of Teacher Training and Education, Universitas Ahmad Dahlan, Yogyakarta, Indonesia 

Corresponding author: *samsul.arifin@itsb.ac.id  

Abstract— Data security is a critical concern in the digital era, requiring robust encryption methods to protect sensitive information. 

This study presents a hybrid encryption system combining Unimodular Hill Cipher (UHC) and Advanced Encryption Standard (AES), 

implemented in Python, to enhance security. The encryption process involves two layers: the plaintext is first encrypted using UHC 

with an unimodular key matrix and then re-encrypted using AES in the Electronic Codebook (ECB) mode. The system’s performance 

was evaluated through time analysis, entropy measurement, and correlation analysis. Results showed an average encryption time of 

10–300 ms, with a corresponding decryption time of 12–301 ms for text files up to 16 KB. The entropy values of ciphertexts reached an 

average of 7.98, indicating a high level of randomness, while the correlation between plaintext and ciphertext was as low as 0.18, 

confirming effective data obfuscation. Despite its strengths, the ECB mode’s vulnerability to repetitive data patterns and the challenges 

in generating truly random UHC keys highlight areas for further improvement. Future research should explore more secure AES 

modes, such as Cipher Block Chaining (CBC), and enhance key generation methods for UHC. This study demonstrates the potential of 

hybrid encryption systems to achieve high security and efficiency, making them suitable for safeguarding sensitive text data. The 

implementation is publicly available for further development and testing. 

Keywords—Unimodular hill cipher; advanced encryption standard; hybrid encryption; data security; Python. 

Manuscript received 9 Sep. 2024; revised 19 Jan. 2025; accepted 26 Mar. 2025. Date of publication 30 Apr. 2025. 

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License. 

I. INTRODUCTION

Information security has become one of the most critical 

issues in this digital era, where almost every aspect of human 
life is connected to information and communication 

technology. The rapid growth in the use of the internet and 

digital devices has paved the way for various forms of threats 

to data privacy and security. The increasing number of 

cyberattacks, such as data theft, hacking, and digital fraud, has 

emphasized the importance of developing and implementing 

more secure and reliable encryption techniques to protect 

sensitive information. Encryption converts the original data 

(plaintext) into an unreadable form (ciphertext) using specific 

algorithms and encryption keys. The primary purpose of 

encryption is to ensure that only authorized parties can access 
the information after it has gone through the decryption 

process. The Advanced Encryption Standard (AES) has 

become one of the most widely used encryption standards 

among the various encryption algorithms available. It is 

widely recognized for its ability to provide high security and 

efficiency in data processing [1], [2], [3]. 
AES, which was implemented by the National Institute of 

Standards and Technology (NIST) in 2001, offers 

symmetrical encryption with a key length of 128-bit, 192-bit, 

or 256-bit. This algorithm has been extensively tested and 

used in various applications, including data encryption for 

wireless networks, data storage, and confidential 

communications. While AES is highly effective, the 

challenges continue to evolve as computing capabilities and 

attack methods become more sophisticated. Therefore, using 

additional algorithms or hybrid encryption is becoming 

increasingly important in dealing with this new threat. 
Unimodular Hill Cipher (UHC) is a variant of the Hill Cipher 

algorithm, which was first introduced by Lester S. Hill in 

1929. Hill Cipher is a classic encryption method that uses 

matrix operations to convert plaintext into ciphertext. The 

444



main advantage of the Hill Cipher is its ability to generate 

ciphertext that is significantly different from the plaintext, 

even if only one character in the plaintext is changed. 

Unimodular Hill Cipher is a unique form of Hill Cipher in 

which the key matrix used is unimodular, i.e., has a 

determinant of ±1. This ensures the matrix can be easily 

inverted, an essential condition for successful decryption. 

Combining the Unimodular Hill Cipher and AES in a hybrid 

encryption system provides several advantages. First, UHC 

offers additional data transformation complexity, making 
cryptographic analysis more difficult. Second, AES adds a 

recognized and proven layer of security, thereby increasing 

the system's resilience to various types of attacks. Combining 

these two algorithms is expected to result in a stronger 

encryption solution, more resistant to hacking or analysis 

attempts by unauthorized parties. All the above narratives are 

contained in Figure 1 below.  
 

 
Fig. 1  Encryption and Decryption Process Flow Diagram 

 

This diagram outlines the main stages of encryption and 

decryption. The process starts with the Unimodular Hill 

Cipher (UHC), producing an initial ciphertext, followed by 

Advanced Encryption Standard (AES) for the final ciphertext. 

Decryption reverses this sequence, beginning with AES and 

ending with UHC. This layered approach enhances security 

by adding complexity at each stage [4], [5], [6]. 

This research aims to develop and implement a text 

encryption program combining the Unimodular Hill Cipher 

and AES. The program is designed to encrypt text in layers, 
where the original text is first encrypted using UHC, and then 

the result of that encryption is encrypted again using AES. 

This approach is expected to achieve a higher level of security 

than using one of the algorithms separately. In this study, the 

encryption and decryption process were implemented using 

the Python programming language. Python's choice is based 

on its ability to support various cryptographic libraries and its 

ease of developing complex programs. The program generates 

an initial plaintext file that can be modified and an output file 

containing the final encryption result. The program's structure 

is also designed to be flexible and easy to further develop for 
future applications. The next section of this paper discusses a 

literature review of the methodology used in program 

development, implementation results, and analysis of the 

performance and security of the proposed encryption system. 

We hope this research can make a real contribution to the field 

of information security, especially in developing more secure 

and reliable encryption techniques [7], [8], [9]. 

II. MATERIALS AND METHOD 

This methodology section outlines the systematic approach 

used in the research to develop and implement a text 

encryption system based on a combination of Unimodular Hill 
Cipher (UHC) and Advanced Encryption Standard (AES). 

This methodology is designed to ensure that every step in the 

encryption and decryption process is carried out precisely, 

allowing for a thorough evaluation of the effectiveness and 

security of the developed system. This section details the 

stages involved, from algorithm selection and preparation to 

code development, testing, and analyzing results. The 

approach implemented includes key selection, 

implementation of encryption and decryption algorithms, and 

evaluation methods to ensure that the system functions as 

intended and meets the expected security standards. A 
detailed explanation of each aspect of this methodology aims 

to understand clearly how these encryption systems are 

developed and tested. The method used in this study includes 

several key stages required to create, implement, and test a 

text encryption program using a combination of Unimodular 

Hill Cipher (UHC) and Advanced Encryption Standard 

(AES). This approach is designed to ensure that the resulting 

encryption solution has a high level of security and efficiency 

in the encryption and decryption process [10], [11], [12]. 

The first stage in this methodology is the selection and 

preparation of the algorithm. Unimodular Hill Cipher (UHC) 

was chosen for its ability to perform matrix-based encryption 
using an unimodular key matrix with a determinant of ±1. 

This step involves randomly generating a key matrix and 

ensuring its determinants are qualified to allow decryption. 

The plaintext text is converted into a numeric vector, which is 

then multiplied by a key matrix to generate the ciphertext. 

This ciphertext is then converted back into text characters that 

form the final ciphertext, which becomes the input for the next 

encryption stage. For the second layer, the Advanced 

Encryption Standard (AES), a widely recognized symmetric 

encryption algorithm, is used. AES keys are randomly 

generated and adjusted to the selected key length, such as 128-
bit, 192-bit, or 256-bit. The program uses AES in the 

Electronic Codebook (ECB) mode of operation for simplicity 

of implementation. Text that has been encrypted using UHC 

is then re-encrypted using AES, with a process that involves 

dividing the ciphertext into blocks corresponding to the AES 

key's length, which is then encrypted independently [13], 

[14], [15]. 

The encryption program was developed using the Python 

programming language, which was chosen for its support for 

numerical operations and powerful cryptographic libraries. 

The main libraries include numpy for matrix operations and 
pycryptodome for AES implementations. The program is 

modularly designed, with each function handling one aspect 

of the encryption or decryption process, including tasks for 

UHC, AES, and other supporting functions. The program 

accepts plaintext text as input through the original.txt file, and 

the encrypted result is stored in the uhcAES_encrypted.txt 

file. The create_original_text function is provided to make it 

easier for users to change the content of plaintext files. After 

the development of the program is completed, the testing and 

445



validation stage is carried out. Testing begins with testing the 

encryption and decryption functions individually to ensure 

each component functions correctly. Furthermore, a complete 

encryption process that combines UHC and AES is tested to 

ensure that the resulting ciphertext can be appropriately 

encrypted and decrypted without data loss. In addition, the 

program is tested against several basic cryptographic attack 

scenarios to provide a preliminary idea of the level of security 

offered by the combination of UHC and AES [16], [17], [18]. 

Each stage of development and testing is documented in 
detail to ensure process transparency and facilitate replication 

by other researchers. This documentation includes descriptions 

of key functions, examples of use, and test results. The final 

report includes an introduction, literature review, methodology, 

results, analysis, conclusions, and suggestions for further 

development. The program's source code and user instructions 

are also compiled in an easily accessible and understandable 

format, emphasizing ease of use and the possibility of further 

development by the community or other researchers. Figure 2 

below provides a clearer illustration of all these processes. The 

flowchart illustrates the algorithm's implementation steps, 
including key generation, encryption, and result storage. It 

highlights the systematic design and ensures that each step 

contributes to maintaining data integrity and efficient 

processing [19], [20], [21]. 
 

 
Fig. 2  Algorithm Implementation Flowchart  

III. RESULTS AND DISCUSSION 

This section presents the results of implementing and 

testing a text encryption system that combines Unimodular 

Hill Cipher (UHC) and Advanced Encryption Standard 

(AES). The focus of this discussion is to evaluate the 

effectiveness and efficiency of the developed hybrid 

encryption system and compare the results obtained with 

existing theoretical and cryptographic expectations. We 

discuss various aspects, including the algorithm's 

performance in terms of encryption and decryption runtime, 

resistance to cryptographic attacks, and the quality of the 

resulting ciphertext. Additionally, this section identifies and 

analyzes potential weaknesses and challenges that arise 
during testing and provides insight into how the combination 

of these two algorithms affects the overall security and 

performance of the system. Comparing the results obtained 

with other encryption methods is hoped to provide a clearer 

picture of the advantages and limitations of the proposed 

hybrid approach [22], [23].  

The process of encrypting and decrypting text using a 

hybrid system of Unimodular Hill Cipher (UHC) and 

Advanced Encryption Standard (AES) is carried out through 

several structured steps to ensure data integrity and security. 

At the encryption stage, the original text stored in the 

original.txt file is first subjected to encryption using UHC. 

The result of this encryption is stored in an encryption.txt file, 

where the original text has been converted into a ciphertext 

form by the UHC algorithm. Furthermore, the ciphertext 

generated from the UHC process is further encrypted using 
AES. This encryption process results in a 

uhcAES_encrypted.txt file, which contains the final 

ciphertext, resulting from a combination of the two 

algorithms. For the decryption process, the first step is to read 

the uhcAES_encrypted.txt file, which results from the final 

encryption. This ciphertext is then decrypted using AES to 

revert it to its previous form of UHC ciphertext. The AES 

decryption results are stored in uhcAES_decrypted.txt files. 

Next, these files are processed through a UHC decryption step 

to restore the data to its original form. This decrypted text is 

then stored in a dekrpsi.txt file, hopefully matching the 
original text in the original.txt file. This process ensures that 

the encrypted data can be recovered accurately, guaranteeing 

that the encryption and decryption systems are running 

correctly, and that the data remains safe. This is stated in 

Table 1 below [24], [25]. 

The original text used in this study is a key element 

determining the effectiveness and resilience of the developed 

encryption system. For experimental purposes, the original 

text is taken from various sources to ensure that the encryption 

and decryption results can be thoroughly tested on different 

types of content. The selected text includes various formats 
and complexities, including plain text of varying lengths and 

text containing special characters and non-alphabetic 

symbols. Variations in this original text aim to test the 

robustness of encryption systems against various scenarios 

and ensure that Unimodular Hill Cipher (UHC) and Advanced 

Encryption Standard (AES) algorithms can handle different 

types of data without sacrificing security or integrity. Each 

original text is stored in an original.txt file and processed 

through an encryption stage to produce a ciphertext that is 

then analyzed.  

TABLE I 

SCENARIOS OF THE ENCRYPTION PROCESS – DECRYPTION AND RESULTING 

FILES 

Encryption Process 

Original Encryption by 

UHC 

Encryption by AES 

original.txt enkripsi.txt uhcAES_encrypted
.txt 

Decryption Process 

Encryption Results 
by UHC + AES 

Decryption by 
UHC 

Original Text 

uhcAES_encrypted

.txt 

uhcAES_decrypted

.txt 

dekrpsi.txt 

 

With this approach, this study seeks to provide a 

comprehensive overview of encryption systems' performance 

and reliability on various types of inputs and assesses the 

effectiveness of the techniques applied in a broader context. 

All the above descriptions can be seen in more detail in Figure 

3 below  [26], [27].  

446



 
Fig. 3  The original text 

 
The list of keys used in this encryption system is: [2, 2020, 

4, 5, 101, 4040, 8, 10, 202, 40, 1010, 404, 20, 505]. These 

keys are chosen to ensure sufficient variation in the encryption 

process, with each value in the list serving as an element of 

the key matrix on the Unimodular Hill Cipher (UHC) 

algorithm. The selection of these values is based on the 

principle of randomness and even distribution to increase the 
complexity of encryption. In the context of AES, this key is 

also used to generate a larger encryption key, which ensures 

additional security for the encrypted data. The use of this 

diverse key list helps in testing the system's resilience to 

different types of inputs and ensuring that the resulting 

encryption is entirely secure and difficult to predict [28], [29]. 

For more access to the implementation and source code of 

text encryption systems using Unimodular Hill Cipher (UHC) 

and Advanced Encryption Standard (AES), you can visit our 

GitHub repository at https://github.com/dwijonarko/py-uhc-

aes-text.  This repository provides all the necessary files, 
including Python code for the UHC and AES algorithms, and 

documentation explaining how to use and set up the program. 

Here, you also find installation instructions, sample data, and 

test results that can assist you in understanding and modifying 

the implementation as needed. We encourage users and 

researchers to explore these repositories, provide feedback, or 

contribute to further developing these encryption systems. An 

important note related to the results of this study is that the 

decryption carried out has succeeded in recovering the 

original text accurately. The decryption process results in the 

ciphertext generated from encryption with Unimodular Hill 

Cipher (UHC) and Advanced Encryption Standard (AES) 
consistent with the original.txt files. Therefore, because the 

decryption generates text identical to the original text without 

any data loss or alteration, an in-depth analysis of the accuracy 

of the decryption does not need to be included separately in 

this report. In other words, the accuracy of the decryption 

results can be ensured without the need for additional 

analysis, so that the focus of the study can be directed to other 

aspects of the encryption system, such as algorithm 

performance and multiple analyses [30], [31]. 

Time, entropy, and correlation analysis are all critical aspects 

of evaluating encryption systems, providing in-depth insights 

into the performance and security of the encryption methods 

applied. First, time analysis measures the duration required for 

encryption and decryption processes on various data sizes. This 

measurement involves recording the execution time of each stage 

of the encryption and decryption process to determine the 
algorithm's efficiency and identify potential bottlenecks in the 

system. Furthermore, entropy analysis is used to measure the 

level of chaos in the generated ciphertext. Entropy, which 

measures the probability distribution of characters in ciphertext, 

is essential to ensure that encryption successfully eliminates 

exploitable patterns. High entropy indicates that the ciphertext 

has an even and random distribution of characters, increasing 

data security. Finally, correlation analysis assessed the 

relationship between characters in the ciphertext and the 

plaintext. The low correlation between the characters in 

ciphertext and plaintext indicates that the encryption system has 
effectively removed recognizable patterns from the original data. 

Through this analysis, we can evaluate the extent to which the 

encryption system successfully maintains data confidentiality 

and ensures that the system's performance meets the expected 

standards. By combining the results of these three analyses, we 

can get a comprehensive picture of the quality and security of the 

encryption systems that have been developed. All these 

descriptions can be seen more clearly in Table 2 below [32], [33]. 

Based on the encryption timetables above, the hybrid 

encryption system combining Unimodular Hill Cipher (UHC) 

and Advanced Encryption Standard (AES) demonstrates 

relatively efficient encryption and decryption times across 
various file sizes. In the previous paper by Arifin et al. ]10], 

which combined UHC and RSA, the processing time tended to 

be longer, particularly for larger files, due to the computational 

complexity of RSA involving modular exponentiation with 

asymmetric keys. In comparison, the AES algorithm in this 

study utilizes symmetric keys, which are computationally 

lighter, resulting in faster encryption times, especially for larger 

file sizes, as shown in Table 2, where an initial file size of 6 B 

was encrypted to 10,240 B. Additionally, the AES-based hybrid 

method's distribution of encryption time is more stable than that 

447



of RSA, which often experiences exponential increases in time 

for large files. This makes the UHC-AES method more 

practical for applications requiring both high security and time 

efficiency [1], [10], [34].  

TABLE II 

ANALYSIS OF TIME, ENTROPY, AND CORRELATION 

Password 1 Password 2 
Encryption 

Time (ms) 

Decryption 

Time (ms) 

File Size 

(Byte) 

The Value of 

Entropy 
Correlation 

2 2024 12.229681 11.516094 16128 7.985074257 0.1820418380004798 

40 2024 40.903807 26.238203 16000 7.984681571 0.1820418380004798 

101 2024 112.50186 116.90855 16000 7.98094018 0.1820418380004798 

2020 2024 295899.8199 300106.4525 16000 7.986204426 0.1820418380004798 

2 17082024 10.204315 12.937546 16128 7.982736964 0.1820418380004798 

40 17082024 39.904594 28.150797 15980 7.984135638 0.1820418380004798 

101 17082024 178.717852 113.425016 15980 7.985681772 0.1820418380004798 

2020 17082024 296214.7319 297732.6298 15980 7.982945143 0.1820418380004798 

 

Based on Table 2, the following visualizations provide a 

clearer picture of the encryption and decryption time, file size, 

and entropy values for the various password combinations 

tested. Figure 4 below clearly visualizes the duration of time 

it takes to encrypt and decrypt various password 

combinations. This graph shows the relationship between 

encryption and decryption times for various password 
combinations.  

 

 
Fig. 4  Encryption and Decryption Runtime Graph 

 

It provides insights into the algorithm's performance, 

indicating dependencies on password length or data size and 

identifying potential efficiency bottlenecks. In this graph, the 

X-axis shows the encryption time in milliseconds, while the 
Y-axis shows the decryption time in milliseconds. The dots 

on the graph represent each password pair tested, with labels 

indicating the specific combination of Password 1 and 

Password 2. This graph aims to illustrate the relationship 

between the time required for encryption and decryption and 

to provide insight into how much the processing time varies 

based on the password combination used. With this analysis, 

we can identify patterns or outliers in encryption and 

decryption performance and evaluate the efficiency of the 

algorithms implemented in the system [35], [36]. 

Figure 5 below illustrates how the entropy value changes 
based on the password combination used. In this graph, the X-

axis represents the password pair under test, while the Y-axis 

represents the measured entropy value. Each dot on the plot 

line represents the entropy of the encrypted file for a given 

password combination.  

 

 
Fig. 5  Line Plot: Entropy Value Based on Password Combination 

 

The line connecting these points allows us to see trends or 

patterns in entropy values. This graph is important for 

understanding how stable or varying the level of entropy 

generated by various password combinations is and for 

evaluating the encryption system's cryptographic strength 

based on the encrypted data's entropy. Moreover, this plot 

depicts the entropy values of the ciphertext for different 

password combinations. It evaluates how well the encryption 
obfuscates patterns in the original data, with higher entropy 

indicating more randomness and better cryptographic strength 

[37], [38]. 

Figure 6 provides insight into the distribution of encryption 

and decryption runtime for different password combinations. 

The boxplot displays variations in runtime for encryption and 

decryption across different password combinations. It 

identifies consistency and anomalies in performance, 

providing insights into the algorithm's reliability. In this 

boxplot, the X-axis indicates the type of time (encryption or 

decryption), while the Y-axis represents the duration of time 
in milliseconds. Each box plot depicts the interquartile, 

median, and outlier ranges of the time required for the 

encryption and decryption. With this visualization, we can 

quickly identify how consistent or varied the time needed for 

each type of process is and detect any extreme values or 

anomalies in the data. This graph helps evaluate the efficiency 

and reliability of encryption and decryption algorithms based 

on the measured runtime [39], [40]. 

448



 
Fig. 6  Boxplot: Distribution of Encryption and Decryption Time  

 
Figure 7 illustrates the distribution of entropy values of the 

encrypted data. The histogram represents the frequency 

distribution of entropy values for the ciphertext. A uniform 

distribution indicates a higher security level, while 

recognizable patterns may highlight weaknesses in the 

encryption process. On this histogram, the X-axis shows the 

range of entropy values, while the Y-axis depicts the frequency 
of occurrence of these values in the dataset. Each bar on the 

histogram represents the number of encrypted files with an 

entropy value in each interval. These graphs allow us to analyze 

how often certain entropy values appear and identify patterns 

or distributions of entropy values in the data. With this 

information, we can assess the cryptographic strength of the 

encryption system and determine how well the system 

generates data that has high entropy, which is an indicator of 

the level of security of the encryption applied [41].  

 

 
Fig. 7  Histogram Entropy Value 

 

Figure 8 below provides a comprehensive visual 
comparison of different password combinations across 

several performance metrics. This radar chart compares 

password combinations based on encryption time, decryption 

time, file size, and entropy value. It visualizes performance 

differences, helping identify combinations that balance 

security and efficiency. Moreover, the radar chart illustrates 

how each password pair performs relative to encryption time, 

decryption time, file size, and entropy value. Each axis of the 

radar chart represents one of these metrics, with the data 
points plotted to form a polygon that encapsulates the 

performance profile of each password pair. By comparing 

these polygons, we can quickly identify strengths and 

weaknesses in each password's performance across various 

criteria. This visualization is valuable for understanding how 

different password combinations impact overall system 

performance and encryption effectiveness, offering insights 

into which combinations provide the optimal balance between 

security and efficiency [42]. 

 

 
Fig. 8  Radar Chart: Comparing Passwords based on Multiple Metrics 

 

Histogram analysis of the original text file provides in-

depth insight into the frequency distribution of characters in 

the text. By visualizing the histogram, we can identify the 

449



pattern of character distribution and the frequency of 

occurrence of each character in the text, which helps in 

understanding the structure and complexity of the data. This 

histogram allows us to see which characters appear most often 

and which appear infrequently, providing important 

information about the texture of the original data before the 

encryption process is implemented. This analysis is also 

helpful in identifying potential patterns or structures that 

could affect the effectiveness of encryption and for comparing 

how the distribution of characters changes after the text is 
encrypted. By understanding the initial distribution of 

characters, we can evaluate how well the encryption system 

obfuscates information and eliminates patterns that attackers 

can exploit. All of this can be seen more clearly in Figure 9 

below. The histogram shows the frequency distribution of 

characters in the original text. It provides a baseline for 

understanding how encryption disrupts these patterns, 

demonstrating the algorithm’s effectiveness in masking data 

structure [43]. 

Histogram analysis of encrypted text files is a crucial step 

in evaluating the effectiveness of the encryption system 
implemented. By examining the histogram of the ciphertext, 

we can assess the extent to which encryption has succeeded in 

obscuring the distribution of the original characters and 

eliminating recognizable patterns. This histogram provides an 

overview of the frequency of character occurrence in 

ciphertext, which should ideally show an even distribution 

without a clear pattern, signaling that the data has been well 

encrypted and secure.  

 

 
Fig. 9  Histogram analysis of the original text file 

 

The comparison between the original text histogram and 

the ciphertext histogram allows us to evaluate how effective 

the encryption algorithm is in hiding the original information 

and preventing statistical analysis that the attacker might 

perform. By concluding this histogram analysis, we can be 

sure that the encryption system has functioned according to 

its design purpose. Thus, the histogram analysis of the 

encrypted text file concludes the results and discussion 

section of this paper, providing a comprehensive conclusion 
to the evaluation of the encryption system that has been 

developed. This can be seen more clearly in Table 3 below. 

[34], [44]. 

TABLE III 

HISTOGRAM ANALYSIS OF ENCRYPTED TEXT FILES 

Password 1 Password 2 Histogram of Encrypted Files 

2 2024 

 

450



40 2024 

 

101 2024 

 

2020 2024 

 

451



2 17082024 

 

40 17082024 

 

101 17082024 

 

452



2020 17082024 

 

 
The hybrid encryption system combining Unimodular Hill 

Cipher (UHC) and Advanced Encryption Standard (AES) 

demonstrates strong performance against pattern-based 
cryptographic attacks, as evidenced by time, entropy, and 

correlation analyses. However, the study does not address its 

effectiveness against side-channel attacks and quantum 

computing-based threats. Side-channel attacks, such as power 

or timing analysis, require implementation-level defenses like 

noise injection or masking. While AES remains relatively 

secure in a quantum context, with its 256-bit key length 

recommended to counteract Grover's Algorithm, UHC, as a 

classical algorithm, may be more susceptible to quantum 

analysis, especially if its key structure is predictable. 

Strengthening the system with longer AES keys and exploring 

quantum-resistant alternatives, such as lattice-based 
cryptography, would enhance security [4], [13], [24]. 

IV. CONCLUSION  

This study's conclusion shows that combining Unimodular 

Hill Cipher (UHC) and Advanced Encryption Standard (AES) 

in a hybrid encryption system successfully provides a higher 

level of security compared to using either algorithm 

separately. UHC, with its unimodular matrix nature, can 
produce complex text transformations, which are difficult for 

attackers to analyze or break without knowing the exact keys. 

This provides the first layer of encryption that is already 

strong. However, since UHC is a classic algorithm, its use as 

the only encryption method may still be vulnerable to more 

sophisticated modern attacks. On the other hand, AES has 

proven to be a global encryption standard that provides an 

extra layer of security, especially in the face of brute force 

attacks and other attacks that are often effective against 

simpler algorithms. Combining these two algorithms in a 

single encryption system provides a significant advantage, 

where UHC creates initial complexity, and AES strengthens 
it with more durable and hard-to-break encryption. This 

double encryption process ensures that even if one layer of 

encryption can be broken, the other layer still protects the 

integrity and confidentiality of the data. 

The implementation of this program using the Python 

programming language has also proven to be effective. 

Python provides robust and flexible libraries, such as numpy 

for matrix manipulation and pycryptodome for cryptographic 

operations, which facilitate the development of complex 
algorithms such as UHC and AES. The modular structure of 

the program allows for high flexibility so that it can be easily 

expanded or customized for other specific needs. In addition, 

the program has been tested in various scenarios, and the 

results show that this hybrid encryption system works well, 

resulting in a secure ciphertext that can be appropriately 

returned to plaintext through the decryption process. 

However, this study also reveals some challenges that need to 

be considered in further development. For example, although 

UHC provides complex text transformations, its security 

relies heavily on selecting a completely random and 

unpredictable key matrix. On the other hand, the AES mode 
of operation used, namely ECB, while easy to implement, is 

known to have weaknesses in handling repetitive data, which 

attackers can leverage to map patterns in the ciphertext. 

Therefore, as a further development step, it is recommended 

to explore the use of more secure AES operating modes, such 

as CBC (Cipher Block Chaining), and improve key generation 

methods for UHC. 

Overall, the research contributes to developing more secure 

encryption methods by combining the power of two 

algorithms, UHC and AES. This hybrid encryption system 

shows great potential for use in a wide range of applications 
requiring high data protection. The results of this research are 

expected to be the basis for further study in the field of 

cryptography, especially in developing more sophisticated 

encryption techniques resistant to various types of modern 

cryptographic attacks. Although the combination of 

Unimodular Hill Cipher (UHC) and Advanced Encryption 

Standard (AES) in hybrid encryption systems shows 

significant improvements in terms of security, some open 

issues still require further research. One of the main problems 

is vulnerability to more sophisticated cryptographic attacks, 

specifically those that may exploit patterns in ciphertext 

generated by the Electronic Codebook (ECB) operating mode 
of AES. This model is known to be insecure enough for some 

applications, mainly when the generated ciphertext displays 

repetitive patterns, thus opening up opportunities for attackers 

453



to map the original data structure. In addition, although UHC 

offers complexity in text transformation, generating a truly 

random and evenly distributed key matrix is still a challenge, 

as inaccuracies in key generation can reduce the expected 

level of security. Finally, integrating UHC and AES in the 

context of massive text encryption or on resource-constrained 

systems is also an area that needs further exploration to ensure 

that these solutions remain efficient without sacrificing 

security. Future research can focus on developing a more 

secure operating mode for AES and improving key generation 
algorithms for UHC to strengthen the resilience of these 

encryption systems to various types of modern cryptographic 

attacks. 

REFERENCES 

[1] S. Arifin, I. B. Muktyas, P. W. Prasetyo, and A. A. Abdillah, 

“Unimodular matrix and bernoulli map on text encryption algorithm 

using python,” Al-Jabar  J. Pendidik. Mat., vol. 12, no. 2, pp. 447–

455, 2021. 

[2] M. Sokouti, A. Zakerolhosseini, and B. Sokouti, “Medical image 

encryption: an application for improved padding based GGH 

encryption algorithm,” Open Med. Inform. J., vol. 10, p. 11, 2016. 

[3] J. Kaur, S. Lamba, and P. Saini, “Advanced encryption standard: 

attacks and current research trends,” in 2021 international conference 

on advance computing and innovative technologies in engineering 

(ICACITE), IEEE, 2021, pp. 112–116. 

[4] S. Arifin, F. I. F. I. Kurniadi, I. G. A. G. A. Yudistira, R. Nariswari, N. 

P. N. P. Murnaka, and I. B. I. B. Muktyas, “Image Encryption 

Algorithm Through Hill Cipher, Shift 128 Cipher, and Logistic Map 

Using Python,” IEEE, 2022, pp. 221–226. 

[5] H. Li, C. Shao, and Z. Wang, “Detecting fault injection attacks based 

on compressed sensing and integer linear programming,” IEEE Trans. 

Dependable Secur. Comput., vol. 16, no. 3, pp. 476–483, 2018. 

[6] N. G. Zinabu and S. Asferaw, “Enhanced Security of Advanced 

Encryption Standard (ES-AES) Algorithm,” Am. J. Comput. Sci. 

Technol., vol. 5, no. 2, pp. 41–48, 2022. 

[7] I. B. I. B. Muktyas, Sulistiawati, and S. Arifin, “Digital image 

encryption algorithm through unimodular matrix and logistic map 

using Python,” in AIP Conference Proceedings, American Institute of 

Physics Inc., Apr. 2021. doi: 10.1063/5.0041653. 

[8] M. M. Dimitrov, “Designing Boolean Functions and Digital Sequences 

for Cryptology and Communications,” Bulgarian Academy of 

Sciences, 2023. 

[9] N. Ahmad and S. M. R. Hasan, “A new ASIC implementation of an 

advanced encryption standard (AES) crypto-hardware accelerator,” 

Microelectronics J., vol. 117, p. 105255, 2021. 

[10] S. Arifin, D. Wijonarko, Suwarno, and E. K. Sijabat, “Application of 

Unimodular Hill Cipher and RSA Methods to Text Encryption 

Algorithms Using Python,” J. Comput. Sci., vol. 20, no. 5, pp. 548–

563, May 2024, doi: 10.3844/jcssp.2024.548.563. 

[11] J. T. Ligon, The Use of Locally Invertible Convolutional Encoders for 

Encryption. North Carolina State University, 2010. 

[12] B. Langenberg, H. Pham, and R. Steinwandt, “Reducing the cost of 

implementing the advanced encryption standard as a quantum circuit,” 

IEEE Trans. Quantum Eng., vol. 1, pp. 1–12, 2020. 

[13] S. Arifin et al., “Algorithm for Digital Image Encryption Using 

Multiple Hill Ciphers, a Unimodular Matrix, and a Logistic Map,” Int. 

J. Intell. Syst. Appl. Eng., vol. 11, no. 6, pp. 311–324, 2023. 

[14] K. Muttaqin and J. Rahmadoni, “Analysis and design of file security 

system AES (advanced encryption standard) cryptography based,” J. 

Appl. Eng. Technol. Sci., vol. 1, no. 2, pp. 113–123, 2020. 

[15] A. Hafsa, M. Fradi, A. Sghaier, J. Malek, and M. Machhout, “Real-

time video security system using chaos-improved advanced encryption 

standard (IAES),” Multimed. Tools Appl., pp. 1–24, 2022. 

[16] S. Arifin, I. Bayu Muktyas, and K. Iswara Sukmawati, “Product of two 

groups integers modulo m,n and their factor groups using python,” in 

Journal of Physics: Conference Series, IOP Publishing Ltd, Mar. 2021. 

doi: 10.1088/1742-6596/1778/1/012026. 

[17] A. Altigani, S. Hasan, B. Barry, S. Naserelden, M. A. Elsadig, and H. 

T. Elshoush, “A polymorphic advanced encryption standard–a novel 

approach,” IEEE Access, vol. 9, pp. 20191–20207, 2021. 

 

[18] S. M. Kareem and A. M. S. Rahma, “New method for improving add 

round key in the advanced encryption standard algorithm,” Inf. Secur. 

J. A Glob. Perspect., vol. 30, no. 6, pp. 371–383, 2021. 

[19] A. A. Abdillah, Azwardi, S. Permana, I. Susanto, F. Zainuri, and S. 

Arifin, “Performance Evaluation Of Linear Discriminant Analysis 

And Support Vector Machines To Classify Cesarean Section,” 

Eastern-European J. Enterp. Technol., vol. 5, no. 2–113, pp. 37–43, 

2021, doi: 10.15587/1729-4061.2021.242798. 

[20] M. E. Smid, “Development of the advanced encryption standard,” J. 

Res. Natl. Inst. Stand. Technol., vol. 126, 2021. 

[21] I. P. Pujiono, E. H. Rachmawanto, and D. A. Nugroho, “The 

Implementation of Improved Advanced Encryption Standard and 

Least Significant Bit for Securing Messages in Images,” J. Appl. Intell. 

Syst., vol. 8, no. 1, pp. 69–80, 2023. 

[22] S. Arifin and I. B. Muktyas, “Membangkitkan Suatu Matriks 

Unimodular Dengan Python,” J. Deriv. J. Mat. dan Pendidik. Mat., 

vol. 5, no. 2, pp. 1–10, 2018. 

[23] E. G. AbdAllah, Y. R. Kuang, and C. Huang, “Advanced encryption 

standard new instructions (aes-ni) analysis: Security, performance, and 

power consumption,” in Proceedings of the 2020 12th International 

Conference on Computer and Automation Engineering, 2020, pp. 167–

172. 

[24] S. Arifin, K. Tan, A. T. Ariani, S. Rosdiana, and M. N. Abdullah, “The 

Audio Encryption Approach uses a Unimodular Matrix and a Logistic 

Function,” Int. J. Emerg. Technol. Adv. Eng., vol. 13, no. 4, pp. 71–81, 

2023. 

[25] M. Boussif, “On The Security of Advanced Encryption Standard 

(AES),” in 2022 8th International Conference on Engineering, 

Applied Sciences, and Technology (ICEAST), IEEE, 2022, pp. 83–88. 

[26] P. K. Keserwani and M. C. Govil, A Hybrid Symmetric Key 

Cryptography Method to Provide Secure Data Transmission, vol. 

1241 CCIS. 2020. doi: 10.1007/978-981-15-6318-8_38. 

[27] E. R. Persulesy and B. P. Tomasouw, “A design of a text messages 

security system on digital images using modified Hill Cipher and Lsb 

method,” 2023, p. 050026. doi: 10.1063/5.0125398. 

[28] P. N. Lone and D. Singh, “Application of algebra and chaos theory in 

security of color images,” Optik (Stuttg)., vol. 218, 2020, 

doi:10.1016/j.ijleo.2020.165155. 

[29] H. Touil, N. E. Akkad, and K. Satori, “Text Encryption: Hybrid 

cryptographic method using Vigenere and Hill Ciphers,” 2020 

International Conference on Intelligent Systems and Computer Vision 

(ISCV), pp. 1–6, Jun. 2020, doi: 10.1109/iscv49265.2020.9204095. 

[30] V. N. Kumar and N. Ravi Shankar, Cryptanalysis of A New 

Cryptosystem of Color Image Using a Dynamic-Chaos Hill Cipher 

Algorithm: A Chosen Ciphertext Attack, vol. 1119. 2020. 

doi:10.1007/978-981-15-2414-1_47. 

[31] J. Sathya Priya, V. Krithikaa, S. Monika, and P. Nivethini, Ensuring 

Security in Sharing of Information Using Cryptographic Technique, 

vol. 846. 2019. doi: 10.1007/978-981-13-2182-5_3. 

[32] A. Negi, D. Saxena, and K. Suneja, “High Level Synthesis of Chaos 

based Text Encryption Using Modified Hill Cipher Algorithm,” in 

2020 IEEE 17th India Council International Conference, INDICON 

2020, 2020. doi: 10.1109/indicon49873.2020.9342591. 

[33] S. Hraoui, F. Gmira, M. F. Abbou, A. J. Oulidi, and A. Jarjar, “A New 

Cryptosystem of Color Image Using a Dynamic-Chaos Hill Cipher 

Algorithm,” Procedia Comput. Sci., vol. 148, pp. 399–408, 2019, 

doi:10.1016/j.procs.2019.01.048. 

[34] R. Safitri, P. W. Prasetyo, D. E. Wijayanti, S. Arifin, F. Setyawan, and 

J. Repka, “Improving Text Security by Using The Combination of 

Vigenere Cipher and Rubik’s Cube Methods of the Size 4×4×4,” Al-

Jabar J. Pendidik. Mat., vol. 14, no. 2, pp. 281–297, 2023. 

[35] M. Fadlan, Suprianto, Muhammad, and Y. Amaliah, Double layered 

text encryption using beaufort and hill cipher techniques. 2020. 

doi:10.1109/ICIC50835.2020.9288538. 

[36] D. Rachmawati, A. Sharif, and Ericko, “Hybrid Cryptosystem 

Combination Algorithm of Hill Cipher 3x3 and Elgamal to Secure 

Instant Messaging for Android,” in Journal of Physics: Conference 

Series, 2019. doi: 10.1088/1742-6596/1235/1/012074. 

[37] Z. Qowi and N. Hudallah, “Combining caesar cipher and hill cipher in 

the generating encryption key on the vigenere cipher algorithm,” in 

Journal of Physics: Conference Series, 2021. doi: 10.1088/1742-

6596/1918/4/042009. 

[38] R. Jayanthi and K. J. Singh, “A public key-based encryption and 

signature verification model for secured image transmission in 

network,” Int. J. Internet Technol. Secur. Trans., vol. 9, no. 3, pp. 299–

312, 2019, doi: 10.1504/IJITST.2019.101823. 

 

454



[39] P. Kuppuswamy and S. Q. Al-Khalidi Al-Maliki, “A novel symmetric 

hybrid cryptography technique using Linear Block Cipher (LBC) and 

simple symmetric key,” J. Theor. Appl. Inf. Technol., vol. 99, no. 10, 

pp. 2216–2226, 2021. 

[40] D. Novianto and Y. Setiawan, “Aplikasi Pengamanan Informasi 

Menggunakan Metode Least Significant Bit (Lsb) dan Algoritma 

Kriptografi Advanced Encryption Standard (AES),” J. Inform. Glob., 

vol. 9, no. 2, 2019. 

[41] H. A. A. Al-Ukaily and R. S. Kareem, “Using the numerical solution for 

partial fractional differential equation by ADI numerical method to 

cryptography in Hill matrix system,” J. Discret. Math. Sci. Cryptogr., vol. 

25, no. 8, pp. 2661–2666, 2022, doi:10.1080/09720529.2021.1896649. 

[42] Ritu, Niram, E. Narwal, and S. Gill, A Novel Cipher Technique Using 

Substitution and Transposition Methods, vol. 434. 2022. 

doi:10.1007/978-981-19-1122-4_14. 

[43] B. Vasuki, L. Shobana, and B. Roopa, “Data Encryption Using Face 

Antimagic Labeling and Hill Cipher,” Math. Stat., vol. 10, no. 2, pp. 

431–435, 2022, doi: 10.13189/ms.2022.100218. 

[44] F. F. M. Yahia and A. M. Abushaala, “Cryptography using Affine Hill 

Cipher Combining with Hybrid Edge Detection (Canny-LoG) and 

LSB for Data Hiding,” in 2022 IEEE 2nd International Maghreb 

Meeting of the Conference on Sciences and Techniques of Automatic 

Control and Computer Engineering, MI-STA 2022 - Proceeding, 2022, 

pp. 379–384. doi: 10.1109/MI-STA54861.2022.9837714. 

 

455




