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Abstract—As the global webtoon market experiences rapid and substantial growth, webtoon platforms increasingly recognize the
critical need for customized recommendation services that effectively utilize advanced user personalization technology. This strategic
approach is essential for strengthening their market competitiveness in an increasingly crowded digital landscape. Conventional
recommendation systems typically rely on content-based or collaborative filtering techniques, primarily measuring user similarities.
However, these traditional methods often lead to significant challenges, such as the cold start problem and difficulties with long-tail
deployment, primarily due to insufficient user data, especially for new or niche content. We propose an innovative recommendation
algorithm based on a sophisticated autoencoder architecture to address and overcome these persistent challenges. Qur approach
involves a comprehensive evaluation of this algorithm alongside specialized art style and synopsis analysis algorithms. This multi-
faceted algorithm is designed to extract hidden features from various components of webtoons and utilizes advanced clustering
techniques through in-depth similarity analysis. This process enables the system to precisely determine intricate connections between
individual webtoons. Furthermore, we implement a specialized autoencoder for style feature extraction in the art style analysis
component to enhance and refine our approach. Complementing this, we employ a domain-specific BERT-based model, augmented
with extensive data augmentation techniques, for comprehensive synopsis similarity analysis. In this study, the strategic use of
autoencoders allows for the efficient and accurate reconstruction of important features from both the art style and synopsis of webtoons.
This innovative approach results in a significantly more robust, scalable, and effective recommendation system, capable of handling the
diverse and evolving nature of webtoon content.
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more on webtoons that suit their tastes and preferences as
I. INTRODUCTION options expand. This preference is subdivided into multiple
aspects, such as the story, art style, and main character's charm.
Therefore, each webtoon platform approached the market
using personalization technology as its primary technology
[3]. User personalization technology allows users to access
their preferred content more conveniently within the platform
[4]. Therefore, if the various tastes of each user are analyzed
and customized recommendation services are provided based
on personalization technology, the size of the webtoon market
will grow further.
The conventional personalized recommendation system
introduced collaborative filtering and content-based filtering.
This filtering technique measures similarity based on user-

Recently, as smartphones have become popular and
communication technology has developed, they have become
a popular cultural product with the advantages of short
consumption time and quick accessibility. Additionally,
starting with COVID-19, the webtoon market has proliferated
as non-face-to-face popular culture products are preferred [1].
According to a market research agency report, the size of the
global webtoon market is expected to grow from $4.7 billion
in 2021 to $60.1 billion in 2030 at an average annual growth
rate of 40.8% [2].

Amid fierce competition in the webtoon market, each
platform provides users with various options. Users focus
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based interests, preferences, and observed behavior [5].
However, such a recommendation system has a cold start
problem that makes it difficult to introduce in long-tail
distribution, where promotions are applied only to options
frequently accessed by users and when data accumulation is
insufficient [4]. Additionally, recommendation systems are
only based on the user's interest in options and do not reflect
the unique characteristics of each content [6]. Therefore, to
overcome these limitations, we propose a recommendation
system for each webtoon, an autoencoder-based style
similarity inference, and a domain-specific BERT-based
recommendation algorithm [7].

II. MATERIALS AND METHOD

A. Data Acquisition

Synopsis and art style are the first features users encounter
among the various components of webtoons. When designing
a recommendation system, we extract the features of each
webtoon and measure the similarity of features between
webtoons. For this system, clustering and feature engineering
were applied to extract and analyze features for each webtoon.
For this experiment, we use the webtoons of the Naver
Webtoon Platform [8]. The raw data set consists of the 588
labeled webtoon image data (Fig. 1) and 1,632 webtoon
synopsis data (Fig. 2).
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Fig. 1 Example of a webtoon image dataset
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B. Recommendation System CNN-based and Pretrained
General Bert

The art style-based Similarity Analysis is two methods
feature extraction using CNN and clustering using PCA[9].
The feature extraction step selects a specific section for the
calculation style loss. Then, the feature values of the art style
are extracted by dividing the style into its components[10].
This method extracts the features of the webtoon's art style.
Style transfer uses existing CNN generators to extract features
from images. The style features select the features of the art
style using the Gram Matrix. The loss function used in learning
to choose the most valid style features is Eq. (1).

Lstyle (C_i' J_C)) = Z%:o w,E; (1)

The clustering step inputs the webtoon art style's feature
vector values [11]. The feature values of the webtoon art style
are the characteristics of the CNN model and are output as
high-dimensional vector values. After fast and efficient
dimensionality reduction through PCA, clusters are formed

based on k-means clustering and the Elbow method, as shown
in Fig. 3 [12] [13].
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Fig. 3 A clustering based on similarity using style transfer architectures

The synopsis-based similarity analysis uses sentence
similarity measurement and feature extraction using natural
language processing. Feature extraction consists of the BERT
model, which is the Transformer model's multi-layered model.
This model extracts the embedding vector and trains rare
words, core words, and context based on their frequency of
occurrence, as shown in Fig. 4.

a. Token Embedding: Combining often arising long
subcategory words into a single unit.

b. Segment Embedding: This is the process of composing
words separated into tokens into sentences and then
discriminating them.

c. Position Embedding: This is the process of encoding the
sequence of each token.
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Fig.4 A clustering based on similarity using BERT(STS model) architectures:
Input webtoon synopsis data to obtain an embedding vector of the sentences
within the synopsis. Measure the cosine similarity of derived values to group
webtoons with similar synopsis.
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Due to its characteristics, the BERT model shows excellent
performance in entity recognition and intent classification and
can be applied to a variety of sentences. Therefore, the BERT
model is most suitable for webtoon synopsis analysis because
the analysis of webtoons requires feature extraction
considering genre context and core keyword extraction [14].



Using BERT-based word embedding, sentences in the
synopsis are output as vectors, cosine similarity is derived, and
sentences are classified into clusters with high similarity. The
expression is shown in Eq. (2).

A'B Zl 1 AiXB;
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Similarity =
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C. Proposed AutoEncoder-based and Domain-specific
Finetuning Recommendation System

An autoencoder-based art style-based Similarity Analysis
has two stages: training the autoencoder to extract hidden
features and obtaining representative vectors of art style
features for each webtoon through similarity analysis. As a
feature extractor, the trained encoder extracts feature vectors
of art styles.

d. Encoder: Compresses input data into a lower-
dimensional latent space, extracting essential features.

e. Decoder: Reconstructs input data from latent variables,
evaluating latent space representation.

The autoencoder model(Figure 5) is trained with a 4-layer
encoder and a 4-layer decoder with a symmetric structure. It
excels at learning various artists' styles without fixed patterns.
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Fig. 5 The architecture of Autoencoder before training

The feature extractor obtains and uses only the feature
vectors. When the input image is dimensionally reduced to
latent variables through the encoder, the similarity is
measured based on these vector values [15]. The loss function
used for training the encoder is to maximize the Evidence
Lower in the case of a variational autoencoder. This consists
of reconstruction. The expression is shown in Eq. (3).

L = —Eqzmllogp(xl2)] + KL(q(z0)||p(2)) ~ (3)

The domain-specific finetuning of BERT has two stages:

data generation and finetuning [16][17]. In this study, GPT-4

is used as the Closed LLM to generate a train STS dataset

specialized in the webtoon domain, focusing on genres such

as fantasy, martial arts, and thriller, by querying with a
defined template, as shown in Fig. 6 [18][19].
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Fig. 6 Prompt template example for Korean webtoon STS, For placeholders,
“{high_score}” € {4,4.5,5}, “{low_score}” € {2.5, 3, 3.5}
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A test STS dataset is constructed using Korean sentence
data augmentation techniques based on the generated paired
dataset [20], [21].

TABLEI
METHODS FOR NLP DATA AUGMENTATION
Methods Original Augmentation
Random Az} = T rf o o] 7rehHe 24
Deletion ZHd B4 A% AT 7= uksk
T 7h= s}
Synonym  #}419] RE A2le] Aol
Replacement Ao] 9w A E o 2} o}o] & Zo}
Zol goll 5ol gl ol &d
Eaats i s v =3 | o a ad A
adE YR oelg Agste g
Random ‘A o] HE ‘U HE2 Aolo.
Swap Aol FA O AL
N B RAL LETIS,
2ELT B3, F3 =
B9 7A} |},
Random  FWFWAFOR WP WATOR
Insertion e =4 a1 e AW
Ak 1o A= wAsh s 1)
AR Q) A= AAH 9
Fahz o Tk o FA At
FAAT. o] Al oAl M 9
AN Fol g uA Aol ¥l A
AL Fo N2 P
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The custom dataset and the augmented dataset are then
unified. Based on this unified dataset, the data is split, and a
pre-trained BERT model is fine-tuned to perform similarity
analysis of synopses in a recommendation system using
embedding vectors [22].

D. Evaluation Methods

The evaluation aims to measure the performance of the
recommendation system, which takes user webtoon usage
data as input and outputs a recommendation list. In this
evaluation, the recommendation system's accuracy and recall
are measured and recorded using a confusion matrix based on
the recommendations' input and output [23].

e TP (True Positive): Webtoons recommended by the
system that the user actually chose.
TN (True Negative): Webtoons recommended by the
system that the user did not choose.
FP (False Positive): The system does not recommend
webtoons; the user chooses them.
FN (False Negative): Webtoons not recommended by
the system or chosen by the user.

TABLE I
CONFUSION MATRIX FOR WEBTOON RECOMMENDATION MODEL
Predicted Positive Predicted Negative
Actual Positive  True Positive (TP) False Negative(FN)
Actual False Positive (FP) True Negative(TN)
Negative

For the confusion matrix's output, the recommendation
system's input data is the preferred webtoon list collected
from users through surveys. Precision and Mean Average



Precision (MAP) are measured by comparing the
recommended webtoons chosen by the user (TP) with the
entire list of possible recommendations (Truth Grounds), such
as Table IT and Fig. 8 [24].

E FH ALY BN BIHE AT HREA

Fig. 7 Sample of Input data collection survey questions

The proportion of webtoons the user selects from the
recommended list is considered a good result if it is close to
1. The equation is in (4).

TP
TP+FP

Precison =

(4)

MAP is measured for all users to obtain an average precision
across the user base. The equation is in Eq. (5).

MAP@K = ﬁZz’i:l(AP@K)u (5)

Using survey data from 120 respondents in Fig. 7, the
recommendation system is evaluated on 588 webtoons
serialized on platform Naver. The evaluation includes:

o Randomly extracting 25 samples from all respondents
to measure MAP.

o Randomly extracting 50 samples from all respondents
to measure MAP.

o Randomly extracting 75 samples from all respondents
to measure MAP.

o Randomly extracting 100 samples from all respondents
to measure MAP.

The data required for measuring evaluation metrics include
the recommendation system’s output based on user
preferences and all possible webtoon recommendations. The
webtoons used are from platform Naver’s free serialized
webtoon list, which has the highest user engagement. The
survey target group consists of users in their 20s and 30s,
irrespective of gender [25].

number_list
number_rang

Fig. 8 Defining the Printable List for Ground Truth Settings

A random survey is conducted targeting this age group to
collect 100 samples, such as Fig. 9. Data collection is
undertaken via surveys, where users select their preferred
webtoons by genre to form the model's input data. Non-
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selected webtoons from the recommended list are defined as
FP data

Fig. 9 Questions for User Webtoon Selection to Define TP and FP Data

The recommendation system's performance is evaluated by
measuring the Average Precision per user and calculating the
Mean Average Precision across all users. This indicates how
well user preferences are reflected and how high the relevant
items rank in the recommendation list.

III. RESULTS AND DISCUSSION

In this study, we experiment with two webtoon
recommendation systems that analyze two webtoon
components, synopsis and art style, and compare their
performance [26]. The first system combines a CNN-based
image similarity analysis model with a recommendation
system utilizing a pre-trained model with good results. Using
synthetic data, the second system combines an AutoEncoder-
based image similarity analysis model with a domain-specific
fine-tuned BERT model. We measure user satisfaction with
each webtoon recommendation system [27]. Therefore, in this
study, we conducted user response-based experiments to select
the most efficient feature extraction algorithm that produces
the best similarity measurement and clustering results based
on the performance indicators of individual algorithms. The
user response data for measuring the mAP(mean Average
Precision) of the first system, which combines a CNN-based
image similarity analysis model with a recommendation
system utilizing a pre-trained model that has shown good
results, has been collected from a total of 120 participants as
of November 17, 2023.
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Fig. 10 Response for the recommendation system combining a CNN-based
image similarity analysis model with a pre-trained BERT model

Similarly, the user response data for measuring the mAP of
the second system, which combines an AutoEncoder-based
image similarity analysis model with a domain-specific fine-



tuned BERT model using synthetic data, had been collected
from 120 participants as of June 11, 2024.
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Fig. 11  Response for the recommendation system combining an

Autoencoder-based image similarity analysis model with a domain-specific
finetuned BERT model

A. Experimental Results of Recommendation System CNN-
based and Pretrained General Bert-based

We used the silhouette coefficient as the metric of
evaluation[28]. The silhouette coefficient refers to the distance
between each cluster group derived using the algorithm and
the index distance that measures the distance between
elements within the cluster (it ranges from -1 to 1). Successful
clustering occurs when the silhouette coefficient is close to 1.
The formula for the silhouette coefficient is Eq. (6).

, b(i)-a(i)
S(L) = max{a(i),b(i)} (6)

VGG19is a conventional CNN model that extracts art styles
in Style Transfer [10]. However, compared to their
performance, the VGG series models do not exceed the human
recognition error rate and are easy to overload. Therefore, we
considered two models of VGG19 and ResNet50, and
experiments were performed using these two models (Table 3).

TABLE III
PERFORMANCE OF DIFFERENT COLOR MODES, CNN MODELS, AND
ARCHITECTURES
Evaluation Metrics

Model Color Num of Silhouette

Mode Cluster(K) Coefficient
VGGI19 RGB 34 0.48

Gray 18 0.53
Resent50 RGB 47 0.68

Gray 26 0.52

As shown in Table III, the Resnet50 model on the 588
webtoons data derived the highest extraction value, 0.68, in the
RGB Image color mode. Also, the most optimized cluster(K)
value is 47. The evaluation indices are the Spearman and
Pearson correlation [29]. The Spearman correlation coefficient
is utilized to assess monotonicity, which measures the
statistical dependence of the specific two variables. The
equation is Eq. (7).

SROCC =1——2—
M(MZ2-1)

M 2
i=1%i

) ()

The Pearson correlation coefficient is an indicator that
measures the level of the linear association between the
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specific two variables. This means that a ratio value is obtained
by dividing the covariance by the product of the standard
deviation (It ranges from -1 to 1). The equation is Eq. (8).

M X=X (¥;-T)

PLCC =
Jzﬁil(xi—i)z(yi—?)z

(®)

Learning was performed using the KLUE-RoBERTa model
[30], an open-source published on Huggingface, among the
Korean BERT models.

TABLE IV
PERFORMANCE BERT MODEL (STS MODEL)
Cosine Euclidean Manhattan Dot
Model
Pearson  Spearman Pearson Spearman
KLUE-
RoBERTa 0.875 0.854 0.855 0.849

The webtoon recommendation system employs the
algorithm outlined in Table 4. We evaluated the system's
performance using previously established methods. Survey
responses provided the data for calculating the Mean Average
Precision (mAP). The system achieved an average mAP of
50.5%.

B. Experimental Results of Proposed AutoEncoder-Based
Recommendation System

The autoencoder model's performance was evaluated using
the mean squared error (MSE) as an evaluation metric [31].
The MSE measures the average squared difference between
the actual and predicted values and is used to assess the
quality of the reconstructed inputs from the latent space. The
formula for the MSE is shown in Eq. (9).

_lym 2
MSE = i, d ®)
TABLE V
RECONSTRUCTION ERROR OF TRAINED AUTOENCODER MODEL
Metric Value
MSE(Image) 0.032

The low MSE values for images indicate that the
autoencoder model effectively captures the essential features
of the input data and reconstructs them with high accuracy.

The webtoon synopsis data collected from each model was
then converted to semantic textual similarity(STS) data for
fine-tuning with a custom-created STS dataset(Figure 12)
better to suit the specific characteristics of the
recommendation system used in the experiments(TABLE 6)
[32] . The experiment results are depicted in TABLE 6.

"sentence2":
"labels": {"label

Fig. 12 Example of custom-created STS datasets for fine-tuning



TABLE VI
PERFORMANCE OF DIFFERENT BERT MODELS(CUSTOM TEST DATASET
EVALUATION) BEFORE AND AFTER FINE-TUNING WITH OUR CUSTOM
WEBTOON STS TRAIN DATASETS. BATCH SIZE AND EPOCH WERE SELECTED
TO GIVE THE MOST OPTIMAL VALUES [33].

Cosine Euclidean Manhattan Dot
Model

Pearson  Spearman Pearson Spearman
KLUE-
RoBERTa 0.757 0.745 0.735 0.794
After FT 0.772 0.789 0.805 0.8

When fine-tuning the KLUE-RoBERTa base model with
our custom STS dataset, we observed an improvement in
sentence similarity analysis by approximately 2% to 4% in the
webtoon story domain [34], [35]. The webtoon
recommendation system, which utilizes the algorithm,
achieved an average mAP result of 65.1% from survey
responses, as defined by the previously established evaluation
methods.

IV. CONCLUSION

This study experimented with art style and synopsis
analysis techniques to enhance the performance of webtoon
recommendation systems, proposing an autoencoder-based
analysis technique coupled with a domain-specific fine-
tuning method. The key findings of our research can be
summarized as follows: The combination of an autoencoder
model and a domain-specific fine-tuned BERT model
outperformed the conventional combination of CNN-based
models and general BERT models, improving the average
mAP from 50.5% to 65.1%. The autoencoder model
effectively extracted and reconstructed crucial features from
webtoon art styles, as evidenced by the low MSE value of
0.032. The domain-specific fine-tuned BERT model showed
a 2-4% performance improvement in semantic similarity
analysis of webtoon synopses. Our proposed system
successfully bridged the gap between visual and textual
components by generating a unified latent space
representation encompassing both artistic style and narrative
elements.

These results underscore the importance of comprehensive
analysis of both art style and synopsis in webtoon
recommendation systems. Notably, the application of
domain-specific learning and data augmentation techniques
significantly contributed to the enhancement of the
recommendation system's performance. The significance of
this study lies in the following aspects: First, as personalized
recommendations gain importance in the webtoon industry,
our research presents the potential for developing more
accurate and meaningful recommendation systems. Second,
combining autoencoders and domain-specific BERT models
introduces a novel methodology capable of effectively
processing complex and diverse webtoon data. Last, our
approach demonstrates the potential to overcome the
limitations of existing methods in addressing cold start
problems and handling long-tail distributions.

However, this study also has several limitations: One is that
the dataset used in the experiments was limited to a single
platform (Naver Webtoon), which may restrict the
generalizability of the results. Another is that the lack of long-
term analysis of user feedback and interaction data makes it
challenging to assess the system's sustained performance.

1949

For future research directions, we propose the following
considerations: Incorporating data from various webtoon
platforms to enhance the model's generalization capabilities.
Developing dynamic models that reflect long-term changes in
user preferences and webtoon trends. Exploring ways to
improve model performance by considering additional
webtoon elements (e.g., author style, serialization schedule,
user reviews). Developing algorithms that take into account
privacy protection and ethical recommendations.

In conclusion, this study presents a novel methodology for
improving the performance of webtoon recommendation
systems. This methodology is expected to contribute to
advancing the webtoon industry and enhancing user
experience. Future research can address this study's
limitations and develop more advanced recommendation
systems based on the proposed directions.
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