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Abstract—Anomaly detection is critical in various sectors, offering significant advantages by precisely identifying and mitigating system 

failures and errors, thus preventing severe losses. This study provides a comprehensive comparative anomaly detection analysis through 

two sophisticated deep learning models: Autoencoder and Long Short-Term Memory (LSTM) Autoencoder, explicitly focusing on 

temperature and sound time series data. The paper starts with a detailed theoretical foundation, elaborating on both models' mechanics 

and mathematical formulations. We then advance to the empirical phase, where these models are rigorously trained and tested against 

a robust dataset. The effectiveness of each model is meticulously assessed through a suite of metrics that gauge their accuracy, sensitivity, 

and robustness in anomaly detection scenarios. Additionally, we explore the deployment of these models in a real-time environment, 

where they actively engage in anomaly detection on incoming data streams. The anomalies detected are dynamically displayed on a 

user-friendly graphical interface, making the results readily accessible and interpretable for users at all levels of technical expertise. 

Quantitative evaluations of the models are conducted using key performance metrics such as accuracy, precision, recall, and F1-score. 

Our analysis reveals that the LSTM Autoencoder model excels with an impressive accuracy rate of 99%, while other metrics also affirm 

its superior performance, marking it as exceptionally effective and reliable. This study highlights the LSTM Autoencoder's advanced 

anomaly detection capabilities and establishes its superiority over the traditional Autoencoder model in processing complex time series 

data. The insights gained here are crucial for industries focused on predictive maintenance and quality control, where early anomaly 

detection is key to maintaining operational efficiency and safety. 
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I. INTRODUCTION

The rapid growth of sensors and advancements in sensing 

technologies have been influencing many industries, 

including manufacturing [1], agriculture [2], transportation 

[3], robotics [4], and to name a few.  These sensors 

continuously generate univariate or multivariate data, which 

can be helpful to monitor and predict equipment performance, 

identify potential failures, optimize maintenance schedules, 

and ensure safety in various industrial applications [5], [6], 

[7], [8]. Identifying anomalous subsequences in time-series 

sensor data is crucial. They can signal critical events, 

including production faults, delivery delays, system 

malfunctions, or irregular heartbeats, making their detection 
highly significant [9]. Mechanical devices like autonomous 

vehicles, engines, and aircraft parts commonly have multiple 

sensors to track their functioning and condition over time. 

Given that time series data are typically large and complex, 

conventional approaches, such as mathematical models 

assuming stability or prediction models based on error 

predictions, are often insufficient in dealing with the 

unpredictability of such data [10].  
The main issues in anomaly detection for time-series 

sensor data include high dimensionality and complexity due 

to multiple variables and their interactions, which complicate 

accurate modeling [11]. Temporal dependencies pose a 

challenge as patterns can influence anomalies over time, 

requiring advanced models to handle sequential data [12]. 

Non-stationarity is another concern, as the statistical 

properties of time-series data can change, necessitating 

models that adapt to evolving patterns. Additionally, the 

imbalanced nature of datasets, where anomalies are much 

rarer than everyday observations, as presented in Fig. 1, can 

lead to biased models that overlook anomalies. Finally, the 
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scarcity of labeled data for training models makes it difficult 

to identify anomalies, as manual labeling is often impractical 

and resource-intensive. 

 

 
Fig. 1  Time-series data with rare anomaly observations compared to normal 

observations 

Researchers have introduced numerous algorithms to 

automatically identify these unusual patterns by applying 
statistical models [13], linear models, proximity, machine 

learning, and deep learning algorithms [14]. Statistical 

solutions are most widely utilized for anomaly detection, and 

k-NN-based algorithms are the commonly employed and 

simplest unsupervised method to detect outliers. This 

distance-based algorithm determines the anomaly score by 

calculating the k-nearest-neighbors (k-NN) distance. Despite 

its effectiveness, this approach is computationally intensive, 

highly sensitive to the choice of k, and can struggle when 

normal data points lack sufficient neighboring points. Breunig 

et al. [15] proposed the widely adopted unsupervised method 
for local density-based anomaly detection, introduced as a 

Local Outlier Factor (LOF). LOF identifies the k-nearest-

neighbors for each instance by measuring its distances to all 

other instances. This method assesses the local density 

deviation of a data point relative to its neighbors, making it 

particularly effective for detecting anomalies in complex 

datasets. The LOF algorithm enhancement is presented in the 

connectivity-based outlier factor (COF) approach to improve 

anomaly detection capabilities in linear systems [16]. 

Additionally, clustering-based algorithms have been 

introduced as unsupervised anomaly detection methods, 

which group similar data points into clusters based on 
characteristics or features. Any data points that do not fit well 

into any cluster or lie a significant distance from cluster 

centroids are considered an anomaly. However, the non-

deterministic nature of clustering algorithms does not always 

allow for precisely determining the correct number of clusters, 

complicating the computation of anomaly scores.  

Recent advancements in deep learning algorithms have 

significantly enhanced time-series analysis. Wei et al. [17] 

proposed an anomaly detection method using LSTM-

autoencoder architecture, training their model on normal 

timestamps to identify later anomalies based on error 

thresholds for indoor quality data. Similarly, in [18], four 

different types of outliers have been measured in ECG data by 

applying RNN-LSTM approach. Combining the Wavelet and 

Hilbert transform with a deep learning algorithm is proposed 

in [19] to detect irregularities within temporal data patterns. 

This work introduces a novel approach to detecting new or 

unusual patterns in data using deep autoencoders. Their 

method involves compressing data through these 
autoencoders and setting an error threshold to identify novelty 

groups by combining density-based clustering [20]. Munir et 

al. also adopted deep autoencoders but focused on the fraud 

detection domain within large-scale accounting data [21]. By 

leveraging the autoencoders’ ability to learn standard data 

patterns, their system effectively highlights anomalies that 

deviate from these patterns, aiding in the early detection and 

prevention of fraud.  

In this work, we present anomaly detection in temperature 

and sound time series using Autoencoder and LSTM 

Autoencoder architecture and provide a comparative analysis 
of their performance using various metrics. Anomaly 

detection in temperature and sound time series data is crucial 

across multiple applications due to its significant impact on 

safety, efficiency, and cost savings. In temperature data, 

detecting anomalies can prevent equipment failures, ensure 

safety by identifying hazardous conditions, maintain product 

quality, and enhance energy efficiency. For sound data, 

anomaly detection is essential in machine condition 

monitoring for predictive maintenance, enhancing security 

through surveillance, and monitoring health by identifying 

irregular sounds in medical contexts. Additionally, it plays a 
key role in environmental noise monitoring and quality 

control in manufacturing processes.  

II. MATERIAL AND METHOD 

A. Technical Background of Anomaly Detection 

As we mentioned above, anomaly detection is a critical 

data analysis method utilized in various domains such as 

finance, network security, and health monitoring to pinpoint 

atypical data points that significantly deviate from the norm. 

Anomalies are classified into point, contextual, and collective 
anomalies, each pertinent to distinct scenarios like detecting 

fraud or analyzing network traffic. Conventional statistical 

techniques have progressed into more advanced machine 

learning methods, encompassing supervised, unsupervised, 

and semi-supervised learning [22], [23], [24]. Notably, 

AutoEncoders in semi-supervised contexts have garnered 

attention for their effectiveness in learning normal data 

distributions and detecting outliers based on reconstruction 

errors [25].  

Deep learning approaches, including convolutional (CNN) 

and recurrent neural networks (RNN), further enhance 
anomaly detection capabilities, particularly in managing high-

dimensional and dynamic data streams [26], [27], [28]. 

Successful anomaly detection necessitates sophisticated 

analytical methods to tackle challenges such as high 

dimensionality and imbalanced datasets, with assessment 

often relying on metrics like Precision, Recall, and the AUC-

ROC curve rather than conventional accuracy measures. This 

1862



field rapidly evolves as new data intricacies surface, 

emphasizing the necessity for innovative anomaly detection 

algorithms. 

B. Principles of Autoencoder and LSTM-Autoencoder 

An autoencoder is a form of unsupervised learning model 

primarily designed to compress input data into a significant 

representation and then decode it to reconstruct the input as 
closely as possible to the original. This encoding-decoding 

architecture are widely applied in feature extraction, image 

denoising, image compression and search, missing value 

imputation, and anomaly detection tasks. In terms of anomaly 

detection, obtaining normal and abnormal datasets is 

challenging due to the lack of explicit instructions or 

conditions for collecting genuine abnormal data from the 

target environment [29].  

 

 
Fig. 1  Autoencoder architecture 

 

Autoencoders and LSTM-Autoencoders are pivotal in 

anomaly detection for time series data, as they excel at 
learning data representations and reconstructing input 

patterns. Traditional autoencoders, comprising an encoder 

and decoder, reduce input dimensions to a compressed 

representation and reconstruct the original input by 

minimizing reconstruction error.  Fig. 2 presents the 

conventional Autoencoder architecture, and the input 

dimensions are reduced through the encoder from 3000 to a 

compressed representation of 200 dimensions. The decoder 

then reconstructs the original input from this compressed 

representation. Traditional autoencoder architecture can be 

efficient when data does not have sequential relationships, as 
in the case of static or non-temporal data. This architecture 

works well for static data but fails to capture temporal 

dependencies crucial for time series data.  

When there is sequential relationship between data points, 

such as in time-series data, it is crucial to preserve the 

temporal information. Fig. 3 illustrates the LSTM-

Autoencoder architecture designed to address this need. The 

LSTM-Autoencoder consists of an LSTM-based encoder and 

decoder. The encoder processes sequential input data to 

capture temporal dependencies and compresses it into an 

encoded representation. The decoder then reconstructs the 

input from this encoded representation, ensuring that 
sequential relationships within the data are maintained. This 

makes the LSTM-Autoencoder architecture particularly 

suitable for time-series data, where the order and 

dependencies between data points are essential for accurate 

anomaly detection and prediction. 
 

Fig. 3  LSTM-Autoencoder architecture 

 

C. Data Collection and Preprocessing  

In this work, we utilized the HAI (HIL-based Augmented 

ICS) Security Dataset, which was gathered from an industrial 

control system (ICS) test environment enhanced with a 

Hardware-In-the-Loop (HIL) simulator [30]. The HIL 

simulator replicates pumped-storage hydropower and steam-

turbine power generation processes. The testbed comprises 

four distinct processes: the boiler process, the turbine process, 

the water treatment process, and the HIL simulation. The 
boiler process (P1) entails low-pressure and moderate-

temperature water-to-water heat transfer, regulated using the 

Emerson Ovation Distributed Control System (DCS). The 

turbine process (P2) features a rotor kit that accurately 

replicates the dynamics of a real rotating machine, managed 

by GE's Mark VIe DCS. The data captures multiple 

measurements at one-minute intervals from August 4 to 7, 

2022, and includes 280k data rows with five columns, 

including flow temperature (P1_FT01), flow temperature zero 

(P1_FT01Z), pressure indicator transmitter (P1_PIT01), 

turbine inlet temperature (P2_TIT01), and vibration 

transmitter readings (P1_VIBTR01).  
During the pre-processing phase, we conducted data 

cleaning procedures by removing missing values, converting 

timestamp values to a DateTime format, and coercing any 

non-numeric values in the sensor readings to numeric types. 

Data points were sampled at one-minute intervals to maintain 

temporal structure for time-series analysis. We normalized 

and processed the dataset using PyTorch’s “Dataset” and 

“DataLoader” classes.  

D. Data Collection and Preprocessing AutoEncoder Model 

Architecture  

As we mentioned above, an autoencoder learns to minimize 

the reconstruction error for normal data during training by 

creating nearly identical reconstructed input, as presented in 

Fig. 4Error! Reference source not found.. The detailed 

formulation of the autoencoder model for the time series data 

can be formulated as follows:  

1) Input data: The input time-series data is represented as 

����� ��, where m is the number of features.  

2) Encoder function: The encoder 	
   transforms the 

input data x into a lower-dimensional representation � � �� 

(with n < m) using Eq. (1). 
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 � ����� � ������� �  ������� � � � �� � �  ���  (1) 

where ��  and ��  represent weight matrices and ��  and �� 

are bias vectors. The activation function utilized in the neural 

network layers of the autoencoder is the ReLU (Rectified 

Linear Unit) function.  

3) Latent space representation: The latent space,  , 

encapsulates the key characteristics of the input data in a 

condensed format.  

4) Decoder function: The decoder !"   reconstructs the 

input data from the latent representation with the following 

Eq. (2). 

 �′ � $% �
� � ������& �  ������' � 
 �  �' � �  �&� (2) 

where �(  and �)  are weight matrices and �(  and �)  are 

bias vectors.  

5) Reconstruction error: The reconstruction error is 

calculated as the mean squared error (MSE) between the 

original input � and the reconstructed input �’ as presented in 

Eq. (3) 

 +,- � ||� / �′||� (3) 

The training process aims to reduce the reconstruction error, 

which is defined as the difference between the original input 

and its reconstruction. During the anomaly detection stage, 

the trained autoencoder evaluates new data points. The 

reconstruction error is computed for each data point, and 

points with errors exceeding a predefined threshold are 
classified as anomalies (Eq. (4)):  

 Anomaly � 71, if Error > Threshold
0,  otherwise  (4) 

More precisely, abnormal inputs typically result in higher 

reconstruction errors during inference than regular inputs, 

thus facilitating their detection based on the differences in 

reconstructed values. However, the convolutional 

Autoencoder architecture does not consider the temporal 

relationships between data points. Therefore, the model 

analyzes each data point independently. 

 
Fig. 4 Autoencoder architecture with normal and abnormal data detection 

results 

In a more concise form, the loss in the Autoencoder 

architecture is calculated using the following Eq. (5):  

 � �G, H� � �
I J ��K /  $% �����KI

KL�
����  (5) 

where $% and �� show the encoder and decoder parameters, 

respectively. The overall equation sums up differences 

between the original input x and the reconstructed 

$% �����K�� . During training, the Autoencoder aims to 

minimize this loss, meaning it tries to make the reconstructed 

outputs as close as possible to the original inputs. This 

minimization process tunes the parameters " and 
 of the 

encoder and decoder, respectively. In anomaly detection, 

Autoencoders are trained on normal data. When new data is 

inputted, if the reconstruction error (difference between the 

input and its reconstruction) is significantly high, the data is 

considered anomalous. Due to training mostly on normal data, 

the model fails to reconstruct outliers or anomalies effectively.   

E. LSTM Autoencoder Model Architecture 

To learn the temporal relationship between data points, the 

Autoencoder model uses the capabilities of the LSTM model 

as follows. The time series dataset is represented with a length 

of L, where each data point ����� ��  consists of m-

dimensional vector readings for m variables at time-instance 

M�.   
 O � P���� , ���� ,  ��(� , … , ��R�S (6) 

First, the model is trained with normal time-series data as 

presented in Fig. 5. The value ���� at time M� and the hidden 

state TU
��V��

 of the encoder at time M� / � are used to compute 

the hidden state TU
���

 of the encoder at time M�. The hidden 

state TU
�(�

, generated by the encoder is referred to as a feature 

vector and serves as the initial hidden vector of the decoder. 

The decoder then takes the features generated by encoders as 
input and reconstructs the original data in reverse order. The 

autoencoder learns to minimize Mean Squared Error (MSE) 

between the input sequence  W���, W���,  W�(�, … , W�X�  and 

reconstructed sequence W�^��, W�^�� ,  W�^(� , … , W�^X� the input. 

The learning objective of the model is as Eq. (7): 

 Minimize ∑ ∑ [x��� / x�∧��[�]�L�O∈_]  (7) 

 

 

Fig. 5  LSTM Autoencoder training phase 

 
Fig. 6  LSTM-Autoencoder inference phase representation 
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In contrast to the learning phase, in the inference process 

(Fig. 6), the encoder generates a feature vector, which is then 

used as the initial hidden vector for the decoder. The main 

distinction is that the reconstructed output of the decoder �(^() 

is inputted to the next decoder layer instead of the original 

data.  

F. Performance Evaluation Metrics  

The above algorithms are evaluated using accuracy (A), 

precision (P), F-score, and recall(R), and metrics. 

Precision(P) indicates the ratio of accurately identified 

anomalies to the total number of points labeled as anomalies.  

  ` � abcad
abcadcebceb ;  g � ab

abceb
;  � � ab

abced
  (8) 

Recall assesses the ratio of accurately detected anomalies 

to the total number of actual anomalies. Where True Positives 

(TP) refers to the number of actual anomalies that are correctly 

identified as anomalies. True Negatives (TN) denote the 

number of normal points accurately identified as normal. 
False Positives (FP) are the normal points incorrectly 

identified as anomalies, while False Negatives (FN) represent 

the actual anomalies mistakenly identified as normal. The F1-

Score is calculated as the harmonic mean of precision and 

recall, using the formula (Precision×Recall) / (Precision + 

Recall). On the other hand, Accuracy assesses the ratio of 

correctly identified instances (including both anomalies and 

normal instances) to the total number of cases.  

III. RESULT AND DISCUSSION 

A. Experimental Environment and Training Details 

We utilized PyTorch, an open-source machine learning 

library, to implement both Autoencoder and LSTM 

Autoencoder models. Before feeding the data into the network, 

we applied Min-Max Scaling to rescale each feature within 

the 0 to 1 range. This scaling process involves subtracting the 

minimum value and dividing it by the range of each feature, 

ensuring that all features contribute equally to the model and 

preventing scale imbalances.  

We employed the Adam optimizer with Mean Squared 

Error (MSE) loss during training. Thanks to the lightweight 
nature of our models, training on an NVIDIA GeForce RTX 

3050 Laptop GPU was completed in under a minute. The 

dataset is split into training, validation, and testing sets by 

dividing 70%, 15%, and 15% segments, respectively.  

We used a training set to train Autoencoder and LSTM 

Autoencoder-based anomaly detectors and validated the 

results using a validation set. Next, we used unseen data to 

test the performance of anomaly detectors. We created the 

GUI dashboard using the Python Plotpy library.  

B. Comparative Analysis 

Fig. 7 and Fig. 8 represent the training and validation loss 

results over the epochs for Autoencoder and LSTM-

autoencoder-based anomaly detectors, respectively. Note that 

during the training we applied early stop condition to prevent 

overfitting and hyperparameter tuning the model. As can be 

seen from the graphs both models perform well with less 

training and validation losses. The comparison demonstrates 

the model's ability to effectively learn and reconstruct 

sequential patterns in the time-series data, leveraging the 

LSTM architecture's capability to capture temporal 

dependencies.  

 
Fig. 7  Autoencoder training and validation loss results 

 

Fig. 8  LSTM-Autoencoder training and validation loss results 

 

In this next step, we evaluate the input and reconstructed 

input comparison results over the test set for both 

Autoencoder and LSTM-Encoder approaches. Fig. 9 and Fig. 

10 show the performance comparison of both models in terms 

of input and reconstruction of input values. As can be seen, 

the reconstruction capability of the Autoencoder based 

anomaly detection is slightly weak compared to the LSTM-

Autoencoder based approach. Therefore, the input and 

reconstructed input is not fully overlapping in only 

autoencoder solution. Whereas the reconstruction error is not 
distinguishable in the LSTM-Autoencoder based approach as 

presented in Fig. 10.  
 

 
Fig. 9  Input and reconstructed input results using Autoencoder  
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Fig. 10  Input and reconstructed input results using LSTM-Autoencoder 

 

Fig. 11 highlights the comparative performance of the 

standard Autoencoder and the LSTM Autoencoder models 

across three error metrics. The LSTM Autoencoder 

consistently outperforms the standard Autoencoder, with 

lower MSE (0.01 vs. 0.03), MAE (0.05 vs. 0.09), and RMSE 

(0.13 vs. 0.21). This demonstrates the enhanced capability of 

LSTM-based architectures in handling sequential data for 

time-series anomaly detection tasks, providing more accurate 

and reliable reconstructions compared to the standard 

Autoencoder. 
 

 
Fig. 11  MSE, MAE, RMSE error metrics 

 

Fig. 12 presents a comparative analysis of performance 

metrics for the standard Autoencoder and the LSTM 

Autoencoder models, illustrating four key metrics: Accuracy, 
Precision, Recall, and F1 score. The LSTM Autoencoder 

achieves a notably higher accuracy of 0.991 compared to its 

0.971, indicating its superior reliability in correctly 

identifying normal and anomalous data points. In terms of 

precision, the LSTM Autoencoder shows a value of 0.985, 

surpassing the Autoencoder's precision of 0.961, which 

suggests a higher proportion of true positive anomalies among 

the detected anomalies and fewer false positives. 

 

 
Fig. 12  Accuracy, Precision, Recall, and F1 score metrics 

Furthermore, the LSTM Autoencoder demonstrates an 

impressive recall of 0.988, whereas the Autoencoder records 

a recall of 0.942, highlighting the LSTM Autoencoder's 

effectiveness at identifying actual anomalies with fewer false 

negatives. Lastly, the LSTM Autoencoder's F1 score is 0.987, 

outperforming the Autoencoder's F1 score of 0.942. This 

comprehensive performance evaluation underscores the 

overall superior capability of the LSTM Autoencoder in 

balancing precision and recall for anomaly detection tasks, 

making it a more robust model for time-series anomaly 
detection. 

 
Fig. 13  GUI output with normal data 

 

Fig. 13 and Fig. 14 represent the GUI to visualize the 

standard data and abnormal data detection from the deployed 

models, respectively. As can be seen from the figures, the 

model can efficiently detect the abnormal conditions for each 
feature and represent the input and its reconstructed output 

with an anomaly score. When there is no anomaly condition, 

the model shows an empty window with an anomaly score for 

each input value.  

IV. CONCLUSION 

This work represents a comparative analysis of deep 

learning models, specifically the Autoencoder and LSTM 

Autoencoder, for anomaly detection in time series data. We 
evaluated these models on temperature and sound data, 

demonstrating their capability to identify anomalies. The 

LSTM Autoencoder significantly outperformed the standard 

Autoencoder, achieving 99% accuracy and excelling in 

precision, recall, and F1-score. This model's robustness and 

reliability make it suitable for real-time anomaly detection. 

The results underscore the practical applicability of LSTM 

Autoencoder in preventing system failures and critical losses 

across various domains. 
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