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Abstract— Intelligent reflecting surface, or IRS, has shown great promise for wireless networks. IRS provides flexible wireless channel 

control and setup by dynamically adjusting numerous devices' reflection amplitudes/phase shifts. This dramatically increases the 

wireless signal transmission rate and dependability. In cognitive radio networks, spectrum sensing and communication security are 

critical components. Intelligent reflecting surfaces (IRS) to improve the sensing performance and the accuracy of spectrum sensing 

simultaneously. This work and through MATLAB simulation, carries out analysis of the effect of user traffic (Tuser), noise factor (Nfactor), 

and probability of false alarm (Pfalse) on the ability of an IRS based wireless system to spectrum sense through computation of detection 

probability (Pdetection). The work provided results, analysis, and mathematical models for both stable and unstable environmental 

conditions. In addition, two Signal-to-Noise Ratio (SNR) levels are considered, 20% and 80% noise. This enables spectrum sensing to 

be assessed under different conditions. The results shows that Pdetection decreases as Nfactor increases per percentage of Tuser with a 

logarithmic shape function. The work also indicates a tenfold increase in the noise factor as the user traffic level goes above 50%. As 

the noise factor increases for a fixed probability of false alarm, and with user traffic increase, detection probability decreases, and as

Pfalse increases, so does the Pdetection. The results indicate that there should be a balance in Tuser with Nfactor to optimize Pdetection and reduce 

the effect of Pfalse in spectrum sensing. 
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I. INTRODUCTION

The intelligent reflecting surface (IRS) is a novel technique 
for increasing the effectiveness of wireless communication 
networks in smart radio environments. It is used to improve 
the communication qualities of wireless networks. To 
mitigate the negative consequences of naturally occurring 
wireless propagation, it alters the scattering, reflection, and 
refraction of radio waves [1], [2].  

In traditional wireless communication systems, data is 
transferred from a transmitter to a receiver over an erratic 
propagation environment. Intelligent reflecting surfaces 
(IRSs) hold great potential for real-time reconfigurable 
propagation contexts as they may enhance communication 
rate and expand the number of users served.  An IRS is a real-
time reconfigurable reflect array that modifies the wireless 
propagation environment strategically by utilizing a large 
number of low-cost passive components [3], [4]. 

With the crucial exception that an IRS uses passive 
beamforming, which merely permits phase shifts to be applied 
to the incoming signal and reflects the signal without 
amplification. The cases for relays and implementing an IRS-
assisted system are comparable. Conventional wireless 
communication systems can function better when IRS-
assisted communication is included. Installing an IRS in a 
structure can have a significant impact on the signal strength 
and interference attenuation at the receiver side [5], [6], [7]. 

Effective management of scarce spectrum resources is a 
critical function of cognitive radio (CR). However, effective 
spectrum sensing is necessary, using intelligent reflecting 
surface (IRS) specifically for spectrum sensing. IRS is used 
to optimize the performance of spectrum sensing. Throughput 
and spectrum sensing parameters—namely, the likelihood of 
a false alarm and missed detection—are usually used to assess 
performance [8], [9].  

As wireless communication technology advances, people's 
need to stay connected to the outside world is growing, which 
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is forcing us to squeeze a lot of smart wireless devices into a 
narrow spectrum. This proliferation causes a problem with 
spectrum shortage. One of the more enticing solutions to the 
spectrum shortage issue has been cognitive radio. When a 
licensed or primary user is not using the spectrum, unlicensed 
or secondary users can access it opportunistically through CR. 
Spectrum sensing can be utilized to identify the unoccupied 
area of the spectrum [10], [11]. 

In cognitive radio networks, spectrum sensing and 
communication security are critical components. IRS has 
recently been utilized as a new method to reach the desired 
spectrum detection probability by using a safe approximation 
for the Q -function to convert the likelihood of detection into 
a manageable computational system [3], [12], [13]. 

A critical component of cognitive radio networks is energy 
detection. When there is significant channel fading, though, it 
performs poorly and interferes with the primary users. An 
intelligent reflecting surface (IRS)-enhanced energy detection 
for spectrum sensing is essential to address this problem. The 
central limit theorem and the Gamma distribution 
approximation are used to generate the closed-form equations 
for the average probability of detection [14], [15], .  

When there are obstructions blocking, spectrum sensing 
has poor detection performance. As a result, fusion techniques 
based on cooperative spectrum sensing can be improved by 
intelligent reflecting surfaces (IRS). Spectrum sensing is an 
essential front-end technology in a cognitive radio network. It 
is used to track spectrum weak points and monitor the 
occupancy state of the spectrum. An individual can sense the 
spectrum in three significant ways: energy detection, 
matching filter detection, and feature detection. Since energy 
detection is a form of blind sensing technology and has the 
lowest complexity, it has a high study value in the spectrum 
sensing field [16]. 

Intelligent reflecting surfaces (IRS) have been shown to 
improve wireless device performance in propagation 
scenarios, according to a recent study [17] that was founded 
on earlier research. The study looks into cognitive radio's 
spectrum sensing skills in situations where the IRS aids 

wireless propagation. The authors explore the energy 
detection performance in an IRS-aided propagation context, 
emphasizing the importance of the problem. They use SNR 
statistics with the central limit theorem. 

In addition to endorsing the work done by [17], researchers 
in [18] also stressed the significance of SNR as a calibrating 
parameter and the fading of communication channels. They 
strive to find solutions for communication problems arising in 
cognitive radio networks between primary and secondary 
users. According to experts, a new study indicates that 
Intelligent Reflecting Surfaces (IRS) may be able to control 
the propagation channel of wireless devices. IRS impacts 
cognitive radio networks' spectrum sensing because it alters 
the channel. The work in [18] demonstrates the usefulness of 
employing IRS, and its computer simulations, which indicate 
that the RIS and relaying technologies significantly improve 
the achievable rate and error performance when used with 
other devices. Such work is also mentioned in [19], and [20]. 

Researchers in [21] looked at cognitive radio as a crucial 
enabling method that gives vital information on spectrum 
availability is spectrum sensing. Their work is based on the 
assumption that the primary user (PU) signals received at the 

cognitive radio (CR) or secondary user (SU) may be 
practically too weak for accurate detection due to significant 
wireless channel fading and route loss. They addressed the 
problem by proposing a novel intelligent reflecting surface 
(IRS)-assisted spectrum sensing technique for CR.  

In [22], researchers examined reconfigurable intelligent 
surface devices. They considered the cognitive cycle and 
concluded that spectrum sensing plays the most significant 
function in cognitive radio-based dynamic spectrum 
management. According to research in [22], reconfigurable 
smart surfaces have much potential to enable smart radio 
environments because they enhance spectrum management 
and signal coverage. The work in [23] validated the 
hypotheses in [22] and considered the quantity of components 
required to attain optimal signal detection. This should lessen 
the high demand for broadband services and the dispersion of 
spectrum resources. The researchers in [23] concluded that 
cognitive radio might be able to address the lack of available 
spectrum. 

The study is validated by [24], which supports the idea that 
intelligent reflecting surfaces (IRS) can improve the 
performance of wireless systems in various signal 
propagation scenarios. The study in [24] concentrated on 
applying a statistical model that also took SNR into account 
to assess cognitive radio's spectrum-sensing capabilities in 
wireless environments enhanced by IRS technology. 

In [25], the SNR factor is also connected to IRS and sensor 
networks. The study concentrated on the one-degree-of-
freedom chi-square distribution of signal-to-noise ratio (SNR) 
in wireless systems with fixed transmit power that use 
intelligent reflecting surfaces (IRS). IRS can be used in the 
cognitive radio secondary network, where the secondary 
source adjusts its power to cause little interference at the 
primary destination. The study covered SNR and adaptive 
systems in connection to IRS. [26], which addresses power 
and cost and examines an IRS-assisted integrated sensing and 
communication system, further bolsters the findings. 

Spectrum sensing-based cognitive radio networks (CRNs) 
are also discussed in [27], with the mention that intelligent 
wireless communication systems aim to better use the 
available frequency spectrum. The work looked at noise, 
which affects the energy detection (ED) method due to the 
nature of noise variation, which affects the detection 
capability.  

Because the IRS changes radio waves, the work in [27] is 
also backed by [28] and [29] in their study of the IRS's 
influence on radio waves. The reviewers believed that IRS 
had significant potential to overcome the shortcomings of 
traditional antennas and fortify wireless networks going 
forward. The study further claimed that IRS technology 
creates a paradigm shift by enhancing network capacity, 
energy efficiency, and signal coverage. 

Researchers looked into next-generation mobile networks 
expected to stand out for their integration of sensing 
functionalities. The authors in [30] emphasized the 
importance of understanding how sensing and 
communication functionalities interact regarding resource 
utilization while providing insights and guidelines for 
developing efficient physical-layer techniques. The authors 
concluded that this requires researching the tradeoff in current 
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integrated systems between the user's achievable rate and the 
detection probability for target monitoring. 

The work in [30] is supported by [31] considered IRSs and 
their potential applications in future wireless communications, 
where expanding coverage is essential. They believed in the 
particular case of blocking in line-of-sight-blocked settings. 
Thus, they considered the Analysis of the matching coverage 
probability of IRS-assisted communication systems crucial.  

Researchers discuss the effectiveness of combining IRS 
with improved channel quality and dependability in [32]. The 
researchers claimed that since the development of intelligent 
reflecting surface (IRS) technology, wireless communication 
systems have experienced a substantial metamorphosis with 
promising future developments for enhancing the performance 
of wireless sensor node-based Internet of Things (IoT) 
applications. A comprehensive analysis of the functionality of 
multi-agent IoT monitoring systems driven by IRS was offered 
in the work. Using probability mode, the researchers 
concentrated on IRS unit selection criteria. Since cars are 
thought of as mobile nodes and WSN sensor nodes are fixed in 
locations, the significance of IRS in wireless communication 
and channel dependability with non-line-of-sight geometrics is 
also explored in vehicular applications [33]. 

The use of reconfigurable intelligent surfaces and 
intelligent reflecting surface devices for 5G and 6G 
applications is also covered in [34], [35], [36]. To increase the 
spectrum efficacy and energy efficiency of next-generation 
wireless communication systems, researchers saw such 
devices as a technological tool that could be utilized to 
reorganize wireless propagation ecosystems—there are many 
reflecting components cause the surfaces' ability to alter their 
phase shift effectively. 

The key to realizing efficient, ultrafast, and reliable 
communication is the upcoming 6G wireless communication 
networks, which are anticipated to link everything, offer full-
dimensional wireless coverage, and combine all features to 
enable full-vertical applications. Intelligent reflecting 
surfaces (IRS) with wireless environment control capabilities 
are a viable solution for 6G networks. In particular, using 
massively adjustable elements, IRS may achieve fine-grained 
3-D passive beamforming by intelligently controlling the 
wavefront, including the phase, amplitude, and frequency. 

IRS is thought to be a promising technology that can 
effectively enhance wireless communication networks' 
performance by intelligently and adaptively controlling the 
channel environment using large passive reflecting devices 
with a competitive advantage in 6G networks, the hardware 
architecture of IRS, and the new IRS-assisted system 
paradigm, will adapt to the 6G networks and provide an IoT 
based application network. 

This research carries out a comprehensive analysis of the 
communication efficiency of IRS devices. The work focuses 
on spectrum analysis in cognitive radio networks and the 
detection probability (Pdetection) and how it is affected by 
noise factor (NF), Signal-to-Noise Ratio (SNR), Probability 
of False Alarm (Pfalse), and User Traffic (TU). The rest of 
this paper is divided into introduction, material and methods, 
results and discussion, conclusions. 

 
 

II. MATERIALS AND METHOD 
This work simulates spectrum sensing in cognitive radio 

networks under different scenarios using intelligent reflecting 
surfaces (IRSs). The user traffic intensity (Tuser), noise factor 
(Nfactor), signal-to-noise ratio (SNR), and user traffic are 
significant parameters that are considered. The study 
examines how these characteristics affect detection 
probabilities (Pdetection). It also includes the profit from the 
IRS. A presentation of the detection probability against SNR 
under different settings is made. 

The process carried out in the simulation is: 
a. Determining the noise level through noise factors. 
b. Allocating Signal-to-Noise range.  
c. Determining a false alarm parameter. 
d. Selecting user traffic parameters. 
e. Computing path gains for the positioned IRS. 
f. Detection probability calculation. 

III. RESULTS AND DISCUSSION 
Tables I shows the simulation results for detection 

probability (Pdetection), as a result of varying the noise factor 
(Nfactor), with false alarm (Pfalse) is set to 0.01, and 20% SNR, 
and user traffic (Tuser) is set to three different values {10%, 
50%, 90%}. 

TABLE I 
RELATIONSHIP BETWEEN NFACTOR AND PDETECTION FOR PFALSE=0.01 

Nfactor 
Tuser=10% Tuser=50% Tuser=100% 

Pdetection 
0.00126 0.80 0.68 0.56 
0.00158 0.77 0.65 0.53 

0.002 0.74 0.62 0.50 
0.0025 0.71 0.59 0.47 
0.0032 0.68 0.56 0.44 
0.004 0.65 0.53 0.41 
0.005 0.62 0.50 0.38 

0.0063 0.59 0.47 0.35 
0.0079 0.56 0.44 0.32 

0.01 0.53 0.41 0.28 
0.0126 0.50 0.38 0.25 
0.0158 0.47 0.35 0.22 

0.02 0.44 0.32 0.19 
0.025 0.41 0.28 0.16 
0.032 0.38 0.25 0.13 
0.04 0.35 0.22 0.10 
0.05 0.32 0.19 0.08 

0.063 0.28 0.16 0.05 
0.079 0.25 0.13 0.04 

0.1 0.22 0.10 0.02 
 
From Table I, it is clear that Pdetection decreases as Nfactor 

increases per percentage of Tuser. Figure 1 compares the three 
levels of user traffic and how in conjunction with Nfactor 
affecting Pdetection. 

Figure 1 response can be expressed as in equation (1). 

 ���������� = −��
������ − � (1) 

Where; 
� = 0.13 

        ���
��
� ���� � = 0.3   
       ��!"##�   ���� � = 0.2  

��%
& ���� � = 0.1   
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Fig. 1  Relationship between Pdetection and Nfactor as a function of Tuser and Pfalse 

 
Figure 1 shows a decreasing Pdetection over an SNR range (0 

dB to 30 dB) as a function of Nfactor. A natural logarithmic 
function describes the response curves. The Figure also shows 
that response curves are controlled by the Tuser. This control 
shifts the curves up or down depending on the level of user 
traffic experienced by the wireless network. Hence, this can be 
used as design criteria to enable better probability detection per 
user traffic. 

Figure 2 shows the relationship between average Pdetection and 
user traffic. From the Figure, it is clear that as Tuser increases, 
Pdetection decreases. This is due to the accumulative large data, 
which reduces the efficiency of detection and spectrum sensing. 
In addition, as shown in Table I, the 0.5 Pdetection occurs at 
lower SNR values as the Tuser increases. This is due to increased 
noise levels, as more users are detected and more 
communication channels are established. 

 

 
Fig. 2  Relationship between Average Pdetection and Tuser as a function of Nfactor 
and Pfalse 

 
From Table I, it is also noticeable that the noise factor ratio 

(0.5 Pdetection) at 10% user traffic to 50% user traffic is 0.25, and 
the ratio of the Nfactor at 50% Tuser to 90% Tuser is 2.5. This 
is a good indication of the network spectrum sensing and its 
relation to Tuser, which is related to SNR, as data traffic and 
the level of noise are increasing. 

Table II presents simulation results relating Tuser variation to 
Pdetection as Nfactor increases, and for a constant Pfalse. 

 
 
 
 

TABLE II 
RELATIONSHIP BETWEEN TUSER AND PDETECTION FOR PFALSE=0.01 

Tuser 
Nfactor=0.00126 Nfactor=0.00316 Nfactor=0.01 

Pdetection 
10 0.80 0.68 0.56 
20 0.77 0.65 0.53 
30 0.74 0.62 0.50 
40 0.71 0.59 0.47 
50 0.68 0.56 0.44 
60 0.65 0.53 0.41 
70 0.62 0.50 0.38 
80 0.59 0.47 0.35 
90 0.56 0.44 0.32 
    

 
Figure 3 shows the relationship between Nfactor and Pdetection 

as a function of increasing Tuser. 
 

 
Fig. 3  Relationship between Average Pdetection and Nfactor as a function of Tuser 
for Pfalse=0.01 

 
From Figure 3, it is clear that as the noise factor increases for 

a fixed probability of false alarm, and with user traffic increase, 
detection probability decreases, with a reducing average. This 
is related to the relationship between noise factor and SNR as 
described in equation (2). 

 �'(���) =
*+�,�(-./012 3��4�./012 5 6

*+�,�(-712012 3��4�712012 5 6
  (2) 

Equation (2) can be simplified as in equation (3). 

 �'(���) = �+38./�
�+38712� (3) 

The noise figure (F) is given as in equation (4). 

 9 �#�� = 10 ∗ �
�;�'(���)< (4) 

 
The Nfactor is the measure of deterioration of the signal to 

noise ratio during communication in the wireless network. 
Since the signal to noise ratio at the output will always be lower 
than the Signal to Noise ratio at the input, Nfactor is always less 
than 1. With clear indication from equation (2) that lower the 
Nfactor value, results in better device performance and higher 
detection probability and spectrum sensing. 

Table III shows the relationship between Pfalse and Pdetection as 
a function of increasing Nfactor for a %10 Tuser. Table III shows 
that as Pfalse increases, Pdetection also increases within an Nfactor 
dimension. The second dimension is the reduction of Pdetection as 
Nfactor increases.  
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TABLE III 
RELATIONSHIP BETWEEN NFACTOR AND PDETECTION FOR TUSER=10% 

Pfalse 
Nfactor=0.00126 Nfactor=0.00316 Nfactor=0.01 

Pdetection 
0.01 0.80 0.68 0.53 
0.02 0.83 0.72 0.56 
0.03 0.85 0.74 0.59 
0.04 0.86 0.75 0.61 
0.05 0.87 0.77 0.62 
0.06 0.88 0.78 0.64 
0.07 0.89 0.79 0.65 
0.08 0.90 0.80 0.66 
0.09 0.90 0.81 0.67 
1.00 0.91 0.82 0.68 
 
However, it is noticeable from Figure 4 that the average 

Pdetection, which is a function of both an increase in Pfalse, and a 
function of Nfactor is higher than that presented in Figure 3, 
which is a function of Tuser and Nfactor. This is logical, as Pdetection 
values are higher for higher Pfalse, while Pdetection values decrease 
as a function of Tuser. 

 

 
Fig. 4  Relationship between Average Pdetection and Nfactor as a function of Pfalse 
for Tuser=10%. 

 
Table IV shows the relationship between Pfalse and Pdetection as 

a function of increasing Nfactor for a 50% Tuser. 

TABLE IV 
RELATIONSHIP BETWEEN NFACTOR AND PDETECTION FOR TUSER=50% 

Pfalse 
Nfactor=0.00126 Nfactor=0.00316 Nfactor=0.01 

Pdetection 
0.01 0.68 0.56 0.41 
0.02 0.72 0.59 0.44 
0.03 0.74 0.62 0.46 
0.04 0.75 0.64 0.48 
0.05 0.77 0.65 0.50 
0.06 0.78 0.67 0.51 
0.07 0.79 0.68 0.53 
0.08 0.80 0.69 0.54 
0.09 0.81 0.70 0.55 
1.00 0.82 0.71 0.56 
 

Table IV shows that as Pfalse increases, so does Pdetection. 
Figure 5 shows that the average Pdetection decreases with 
increasing Nfactor, but increases as Pfalse increases (In comparison 
with Figure 3). However, as Pdetection decreases with the increase 
in Tuser, the values in Figure 5 are less than those in Figure 4, as 
Tuser is increased to 50%. 

 

 
Fig. 5  Relationship between Average Pdetection and Nfactor as a function of Pfalse 
for Tuser=50%. 

 
Table V shows the relationship between Pfalse and Pdetection as 

a function of increasing noise factor for a 90% Tuser. 

TABLE V 
RELATIONSHIP BETWEEN NFACTOR AND PDETECTION FOR TUSER=90% 

Pfalse 
Nfactor=0.00126 Nfactor=0.00316 Nfactor=0.01 

Pdetection 
0.01 0.56 0.44 0.28 
0.02 0.59 0.47 0.31 
0.03 0.62 0.49 0.34 
0.04 0.61 0.51 0.36 
0.05 0.65 0.53 0.37 
0.06 0.67 0.54 0.39 
0.07 0.68 0.56 0.40 
0.08 0.69 0.57 0.41 
0.09 0.70 0.58 0.42 
0.1 0.71 0.59 0.44 
 

The results in Table V shows that as Pfalse increases, so does 
the Pdetection. Figure 6 shows that the average Pdetection decreases 
with increasing Nfactor, but increases as Pfalse increases (In 
comparison with Figure 3). However, as Pdetection decreases with 
the increase in Tuser, the values in Figure 6 are less than those in 
Figures 4 and 5, as Tuser is increased to 90%. 

 

 
Fig. 6  Relationship between Average Pdetection and Nfactor as a function of Pfalse 
for Tuser=90%. 
 

The previous results indicate that there should be a balance 
in Tuser with Nfactor in order to optimize Pdetection and reduce the 
effect of Pfalse in spectrum sensing. This will make the network 
communication system more robust and reliable, with the IRS 
having its most effect on improving communication links and 
communication efficiency.  
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Table VI shows a comparison between Pdetection values as a 
function of both Nfactor and Tuser. From the Table VI, it is clear 
that as Tuser and Nfactor increase, Pdetection decreases. In addition, 
there is some kind of symmetry in the listed values, if 
considered as a matrix. The diagonal values (approximately 
0.6), separate the high Pdetection both the high level (0.77), and 
low level (approximately 0.5). Closer look at the distributed 
values shows that there is a difference of 0.5 between the 
highest Pdetection and the lowest one. This enables 
characterization of the IRS wireless communication system 
response. 

TABLE VI 
RELATIONSHIP BETWEEN PFALSE AND PDETECTION AS A FUNCTION OF TUSER 

Nfactor 
Pdetection 

Tuser 
10% 50% 90% 

0.00126 0.56 0.44 0.28 
0.00136 0.59 0.47 0.31 

0.01 0.62 0.49 0.34 
 

Table VII shows the simulation results for Pdetection, as a result 
of varying Nfactor, with Pfalse is set to 0.01, and 80% SNR, and 
Tuser is set to three different values {10%, 50%, 90%}. 

TABLE VII 
RELATIONSHIP BETWEEN NFACTOR AND PDETECTION FOR PFALSE=0.01 AND 80% 

SNR 

Nfactor 
Tuser=10% Tuser=50% Tuser=100% 

Pdetection 
0.00126 0.87 0.79 0.72 
0.00158 0.85 0.77 0.70 

0.002 0.83 0.76 0.68 
0.0025 0.81 0.74 0.66 
0.0032 0.79 0.72 0.64 
0.004 0.77 0.70 0.62 
0.005 0.76 0.68 0.60 

0.0063 0.74 0.66 0.58 
0.0079 0.72 0.64 0.56 

0.01 0.70 0.62 0.54 
0.0126 0.68 0.60 0.52 
0.0158 0.66 0.58 0.50 

0.02 0.64 0.56 0.48 
0.025 0.62 0.54 0.46 
0.032 0.60 0.52 0.44 
0.04 0.58 0.50 0.42 
0.05 0.56 0.48 0.40 

0.063 0.54 0.46 0.38 
0.079 0.52 0.44 0.36 

0.1 0.50 0.42 0.34 
 

Comparing Table VII with Table I, shows that the 0.5 
Pdetection values occurs at higher levels of Nfactor. This is due to 
the increase in IRS gain as a result of the increase in the SNR 
from 20% to 80%. Figure 7 shows a decreasing Pdetection over an 
SNR range (0 dB to 30 dB) as a function of Nfactor. A natural 
logarithmic function describes the response curves. The Figure 
also shows that response curves are controlled by Tuser. 
Comparing the responses in Figure 7 with the ones in Figure 1, 
shows that the plots in Figure 7 are closer to each other with 
higher values associated with the increase in SNR from 20% to 
80%, which affected the IRS gain and resulted in a reverse in 
mathematical model coefficients as shown in equation (5). 

 �� = −=�
������ + ?  (5) 

Where; 
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Fig. 7  Relationship between Pdetection and Nfactor as a function of Tuser 
and Pfalse (80% SNR) 

 
Figure 8 shows the relationship between average Pdetection and 

Tuser for both 20% SNR and 80% SNR. From the Figure, it is 
clear that as the percentage of SNR increases, so does Pdetection. 
Although, for a specific SNR range, Pdetection decreases as a 
function of Tuser. 

 

 
Fig. 8 Comparison between 20% SNR and 80% SNR   of Relationship 
between Average Pdetection and Nfactor as a function of Pfalse for Tuser=10%. 

Table VIII presents simulation results relating Tuser variation 
to Pdetection as Nfactor increases, and for a constant Pfalse for 80% 
SNR, with Figure 9 showing a comparison between 20% SNR 
and 80% SNR Pdetection as a function of Tuser at 0.01 Pfalse. 

TABLE VIII 
RELATIONSHIP BETWEEN TUSER AND PDETECTION FOR PFALSE=0.01, SNR 80% 

Tuser% 
Nfactor=0.00126 Nfactor=0.00316 Nfactor=0.01 

Pdetection 
10 0.87 0.79 0.70 
20 0.85 0.77 0.68 
30 0.83 0.76 0.66 
40 0.81 0.74 0.64 
50 0.79 0.72 0.62 
60 0.77 0.70 0.60 
70 0.76 0.68 0.58 
80 0.74 0.66 0.56 
90 0.72 0.64 0.54 

 
Figure 9 shows that Pdetection is less affected by Tuser at 80% 

SNR compared to 20% SNR. Table IX shows that as Pfalse 
increases, Pdetection also increases much more for 80% SNR 
compared to Table III, within a noise factor dimension.  
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Fig. 9  Comparison between 20% SNR and 80% SNR for Relationship between 
Average Pdetection and Nfactor as a function of Tuser for Pfalse=0.01 

TABLE IX 
RELATIONSHIP BETWEEN PFALSE AND PDETECTION FOR TUSER=10%, 80% SNR 

Pfalse 
Nfactor=0.00126 Nfactor=0.00316 Nfactor=0.01 

Pdetection 
0.01 0.87 0.79 0.70 
0.02 0.89 0.81 0.72 
0.03 0.90 0.83 0.73 
0.04 0.91 0.84 0.75 
0.05 0.92 0.85 0.76 
0.06 0.92 0.86 0.77 
0.07 0.93 0.86 0.78 
0.08 0.93 0.87 0.78 
0.09 0.93 0.88 0.79 
0.1 0.94 0.88 0.80 
 
Figure 10 shows a comparison Pdetection at 20% SNR and 80% 

SNR, with the values at 80% are higher as expected. The 
dimension of Pdetection reduction as Nfactor increases is also 
evident for both cases.  

 

 
Fig. 10  Relationship between Pdetection and Nfactor as a function of Tuser and Pfalse 
(80% SNR) 

 
Table X shows the relationship between Pfalse Pdetection as a 

function of increasing Nfactor for a 50% user traffic and 80% 
SNR, with Figure 11 showing a comparison between 20% SNR 
and 80% SNR. 

 
 
 
 

TABLE X 
RELATIONSHIP BETWEEN PFALSE AND PDETECTION FOR TUSER=50% 

Pfalse 
Nfactor=0.00126 Nfactor=0.00316 Nfactor=0.01 

Pdetection 
0.01 0.79 0.72 0.62 
0.02 0.81 0.74 0.64 
0.03 0.83 0.75 0.66 
0.04 0.84 0.77 0.67 
0.05 0.85 0.78 0.68 
0.06 0.86 0.79 0.69 
0.07 0.86 0.79 0.70 
0.08 0.87 0.80 0.71 
0.09 0.88 0.81 0.72 
0.1 0.88 0.82 0.72 
 

 
Fig. 11  Comparison between 20% SNR and 80% SNR for the Relationship 
between Average Pdetection and Nfactor as a function of Pfalse for Tuser=50%. 

 
Table XI shows that as Pfalse increases, so does the Pdetection. 

Figure 11 shows that the average Pdetection at 80% SNR is higher 
than that at 20% SNR, but both suffer reduction with increasing 
Nfactor. Table XI shows the relationship between Pfalse and 
Pdetection as a function of increasing Nfactor for a 90% Tuser and 
80% SNR. 

TABLE XI 
RELATIONSHIP BETWEEN PFALSE AND PDETECTION FOR TUSER=90% , 80% SNR 

Pfalse 
Nfactor=0.00126 Nfactor=0.00316 Nfactor=0.01 

Pdetection 
0.01 0.72 0.64 0.54 
0.02 0.74 0.66 0.56 
0.03 0.75 0.68 0.58 
0.04 0.77 0.69 0.59 
0.05 0.78 0.70 0.60 
0.06 0.79 0.71 0.61 
0.07 0.79 0.72 0.62 
0.08 0.80 0.73 0.63 
0.09 0.81 0.74 0.64 
0.1 0.82 0.74 0.65 
 
The results in Table XII shows that as Pfalse increases, so does 

Pdetection. This is true for both 20% SNR and 80% SNR.  Figure 
12 shows that Pdetection is still higher at 90% traffic for 80% SNR 
compared to 20% SNR.  
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Fig. 12  Comparison between 20% SNR and 80% SNR for the Relationship 
between Average Pdetection and Nfactor as a function of Pfalse for Tuser=90%. 

 
A comparison of Pdetection values as a function of Tuser and 

Nfactor is presented in Table XII. The table makes it evident that 
Pdetection drops as Tuser and Nfactor rise. Furthermore, when viewed 
as a matrix, the mentioned values exhibit some symmetry. 
Approximately 0.8 is the diagonal value that divides the high 
Pdetection from the low Pdetection. The low level (approximately 0.7) 
and high level (0.85) both exhibit symmetry. A closer 
examination of the dispersed numbers reveals that the top and 
lowest detection probabilities differ by about 0.3. As a result, 
characterization of the IRS wireless communication system 
response is made possible. 

TABLE XII 
RELATIONSHIP BETWEEN PFALSE AND PDETECTION AS A FUNCTION OF TUSER FOR 

80% SNR 

Nfactor 
Pdetection 

Tuser 
10% 50% 90% 

0.00126 0.91 0.85 0.78 
0.00316 0.85 0.78 0.70 

0.01 0.76 0.68 0.60 
    

 
Tables XIII shows the simulation results for Pdetection, as a 

result of varying the Nfactor with Pfalse is set to 0.01, and 80% 
SNR, and Tuser is set to three different values {10%, 50%, 90%}. 
The results simulates variable environmental conditions and 
instability of communication. Figure 13 shows a comparison, 
with the responses for unstable conditions having lower values 
compared to the stable ones. This is logical, as instability 
negatively affects spectrum sensing. 

TABLE XIII 
RELATIONSHIP BETWEEN NFACTOR AND PDETECTION FOR PFALSE=0.01 AND 80% SNR 

AND VARIABLE ENVIRONMENT CONDITIONS 

Nfactor 
Tuser=10% Tuser=50% Tuser=100% 

Pdetection 
0.00126 0.80 0.75 0.64 
0.00158 0.79 0.66 0.64 
0.002 0.77 0.68 0.65 

0.0025 0.79 0.66 0.57 
0.0032 0.74 0.66 0.57 
0.004 0.73 0.66 0.60 
0.005 0.70 0.58 0.61 

0.0063 0.71 0.66 0.53 
0.0079 0.64 0.60 0.53 
0.01 0.67 0.55 0.52 

0.0126 0.65 0.57 0.43 
0.0158 0.60 0.55 0.44 

Nfactor 
Tuser=10% Tuser=50% Tuser=100% 

Pdetection 
0.02 0.59 0.50 0.45 
0.025 0.59 0.51 0.45 
0.032 0.54 0.43 0.42 
0.04 0.53 0.46 0.38 
0.05 0.42 0.42 0.30 
0.063 0.50 0.42 0.30 
0.079 0.45 0.39 0.28 
0.1 0.47 0.38 0.27 

 
Fig. 13  Comparison between stable and unstable spectrum sensing for the 
Relationship between Average Pdetection and Nfactor as a function of Pfalse. 

 
Figure 14 shows the characteristics and effect of instability 

on the responses signals, as a function of Nfactor for a range of 
user traffic. 

 

 
Fig. 14  Relationship between Pdetection and Nfactor as a function of Tuser and Pfalse 
under unstable conditions. 

IV. CONCLUSION 
The IRS, or intelligent reflecting surface, exhibits 

significant potential for use in wireless networks. IRS 
dynamically modifies the reflection amplitudes and phase 
shifts of many devices to enable flexible wireless channel 
control and configuration. The wireless signal's reliability and 
transmission rate are significantly increased as a result. 
Spectrum sensing and communication security are essential 
elements of cognitive radio networks. The precision of 
spectrum sensing and security performance can be 
simultaneously enhanced by intelligent reflecting surfaces 
(IRS). This work computes the detection probability (Pdetection) 
of an IRS-based wireless system and uses MATLAB 
simulation to analyze the impact of user traffic (Tuser), noise 
factor (Nfactor), and likelihood of false alarm (Pfalse) on the 
system's capacity to sense the spectrum. Results, an analysis, 
and a mathematical model is provided, which describes the 
response and ability to detect and sense cognitive radio 
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spectrum under both stable and unstable conditions, and under 
different noise and user traffic situations. Furthermore, two 
levels of Signal-to-Noise Ratio (SNR)—20% and 80% 
noise—are considered. This makes it possible to evaluate 
spectrum sensing in various scenarios. According to the data, 
Pdetection declines with a logarithmic form function as Nfactor 
rises per percentage of Tuser. The investigation also reveals 
that when the user traffic level rises above 50%, the noise 
factor increases tenfold. For a certain probability of false 
alarm, the noise factor rises, user traffic increases, detection 
probability falls, and Pfalse increases along with Pdetection. 
According to the results, Tuser and Nfactor should be balanced 
to maximize Pdetection and minimize Pfalse's impact on spectrum 
sensing. This can be achieved, by optimizing the 
communication channel and its capacity to enable less noisy 
signals, which enables higher bit rate with lower false alarms 
probability, and higher probability of detection. The provision 
of better channel capacity, which is dependent on SNR, is a 
key factor in enabling lower false alarms and better detection 
probability. In addition, with adaptive IRS and more 
intelligent control, higher traffic and lower noise factor is 
achieved. 

Future work should consider number of elements per IRS 
devices that could lead to more efficient communication and 
better spectrum detection. Also, using large number of 
elements per IRS, enable higher user traffic with better 
channel optimization and wider tolerance to the presence of 
noise. 
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