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Abstract— Maintaining a sufficient and timely blood supply is an urgent and critical challenge in public health, where even minor 

miscalculations can lead to life-threatening shortages. This study evaluates the performance of machine learning models to improve 

blood donation forecasting. Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) generated synthetic 

datasets that mirror real-world donation patterns to address data scarcity and variability issues. Leveraging transactional data from 

the Blood Bank Information System (BBISv2), a blood tracking system used by 22 main blood collection sites under the Ministry of 

Health (MoH) in Malaysia, 50 synthetic datasets were created and validated to ensure consistency with real data. The synthetic data 

showed minimal deviations from real data across key metrics, including mean (differences under 10%), variance (1 to 2 units), and 

skewness and kurtosis (0.03 or less). Among the models, the Random Forest algorithm demonstrated the highest performance, achieving 

an accuracy of 98.7%, a precision of 0.91, and an Area Under the Receiver Operating Characteristic (AUC-ROC) score of 0.92, making 

it the most reliable for predicting blood donation rates. Linear Regression also performed well, with an accuracy of 98.6%, while Neural 

Networks and Support Vector Machines (SVM) showed lower performance. This research provides a valuable tool for optimizing blood 

donation strategies, particularly in scenarios where real data is limited. Integrating validated synthetic data offers a novel approach for 

enhancing resource management in healthcare, ensuring reliable blood supply during high-demand periods. 
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I. INTRODUCTION

Blood shortages are a critical challenge in healthcare 

systems, particularly in emergency care and chronic illness 

treatments, as noted by Sethuraman et al. [1]. Predicting blood 
donation rates is complex, with numerous dynamic factors 

leading to inefficiencies and potential shortages, as discussed 

by Maheshwari et al. [2]. Traditional forecasting methods 

often fail to capture these variables, increasing risks for 

patients needing transfusions, as highlighted by VanVactor 

[3]. Clauson et al. [4] stressed the importance of predictive 

analytics, and Scala and Lindsay [5] argued for more robust 

models during crises. Various studies have explored factors 

influencing donation rates. Lin et al. [6] examined 

meteorological impacts, while Intharanut et al. [7] studied 

donor characteristics. Ahamed et al. [8] used regression models 

for donor forecasting, and Shih and Rajendran [9] compared 

time series with machine learning algorithms. However, these 

models often miss complex, non-linear factors and lack 

adaptability, as Thijsen et al. [10] and Adhikari et al. [11] noted. 
This study introduces a hybrid model that integrates 

Generative AI (GANs and VAEs) with traditional machine 

learning methods like the PCC and Random Forest. Kumar et 

al. [12] suggest that this integration enhances prediction 

accuracy by generating synthetic data that reflects real-world 
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conditions. The model captures complex interactions between 

CSFs, providing a more robust solution for blood supply 

forecasting, as explored by Alhamda and Rahman [13], Yu et 

al. [14], and Chansamut [15]. Using data from Malaysia's 

BBISv2 system validates the model in real-world settings. 

Validating synthetic data with GANs and VAEs ensures it 

mirrors real patterns accurately, as proposed by Reddy [16] 

and Krishnan and Khastgir [17]. This study contributes to 

healthcare analytics, enhancing blood supply management 

and potentially saving lives, as discussed by Longaray et al. 
[18], anchoring on the following research objectives: 

a. Develop a hybrid predictive model using Generative AI 

and traditional machine learning for accurate blood 

supply forecasting. 

b. Validate synthetic data generated by GANs and VAEs 

to align with real-world patterns. 

c. Compare the hybrid model against traditional models to 

show its superior performance. 

d. Offer a tool for improved blood supply management in 

healthcare. 

By achieving these objectives, the research bolsters blood 
supply chain resilience, aligning with public health 

improvement goals, as emphasized by Haw et al. [19] and 

Pahune and Rewatkar [20]. Accurate blood donation 

forecasting is essential to prevent shortages, as Bou Assi et al. 

[21] highlighted. Donation rates are influenced by complex 

factors, including socioeconomic conditions and donor 

behavior, as noted by Sethuraman et al. [1]. Despite insights 

from Lin et al. [6] and Intharanut et al. [7], models still 

struggle with accuracy under non-standard conditions, 

indicating gaps in the literature, as pointed out by VanVactor 

[3]. Traditional models, such as those discussed by Shih and 
Rajendran [9] and Thakur et al. [22], fail to capture complex 

interactions in blood donation patterns. They overlook 

perishability and dynamic supply-demand factors, limiting 

predictive power, as Ahamed et al. [8] and Krishnan and 

Khastgir [17] noted. These gaps necessitate advanced models, 

as highlighted by Chansamut [15] and Kumar et al. [12]. 

CSFs play a crucial role in blood donation supply chains. 

As Kumar et al. [12] and Wood [23] stated, state population 

impacts the donor pool. Donation rates vary with the day of 

the week, influenced by cultural norms, as Thijsen et al. [10] 

and Lin et al. [6] discussed. Public events and holidays can 

affect donation rates, as shown by Thakur et al. [22] and Bou 
Assi et al. [21]. Historical trends and blood group distribution 

are also essential for forecasting, as noted by Ahamed et al. 

[8], Maheshwari et al. [2], and Gupta et al. [24]. 

Past research established a foundation but lacked advanced 

machine learning integration, as Scriffignano [25] stated. 

Models like Lin et al. [6] and Thakur et al. [22] rely on 

historical data, missing complex patterns. They fail to address 

data scarcity, a limitation noted by Maheshwari et al. [2]. 

Advanced models generating synthetic data are necessary, as 

argued by Afrashtehfar and Abu-Fanas [26]. Technologies 

like blockchain, discussed by Clauson et al. [4], and AI in 
decision-making, outlined by Adhikari et al. [11], offer 

additional solutions. As Nsikan et al. [27] emphasized, real-

time adaptability is crucial for managing blood donation 

patterns. Generative AI techniques like GANs and VAEs can 

address data scarcity, as Labib and Gharib [28] discussed. 

Despite their potential, their application in blood donation 

forecasting remains underexplored, as noted by Reddy [16]. 

Patel and Malik [29] highlighted how Generative AI could 

revolutionize predictive analytics. Hashizume et al. [30] 

stressed AI's role in comprehensive data integration, and Al-

Ma’aitah [31] emphasized the adaptability of AI-driven 

models in healthcare. Integrating Generative AI with machine 

learning, like PCC and Random Forest, improves forecasting 

accuracy, as argued by Hashizume et al. [30]. This approach 

overcomes dataset limitations, aligning with Pahune and 

Rewatkar [20] and Scala and Lindsay [5]. Selvaraj [32] 
emphasized Generative AI's power in data integration, while 

Adhikari et al. [11] and Malik and Naudiyal [33] noted the 

importance of robust, scalable AI models. 

Hybrid models combining GANs, VAEs, and predictive 

machine learning models offer a solid framework for blood 

donation prediction, as Lemon [34] suggested. PCC identifies 

influential CSFs, enhancing model interpretability, as 

Krishnan and Khastgir [17] discussed. Random Forest 

reduces overfitting, as noted by Chai et al. [35]. Combining 

AI techniques improves predictive accuracy and resilience 

[36], as Nsikan et al. [27] and Al-Ma’aitah [31] emphasized. 
Validating synthetic data and evaluating models is crucial, 

as Essila [37] stated. Metrics like mean, variance, and the 

Kolmogorov-Smirnov test assess data alignment, as Adhikari 

et al. [11] noted. The AUC-ROC score is vital for 

performance evaluation, balancing sensitivity and specificity, 

as Reddy [16] and Lee et al. [38] discussed. Rigorous 

validation in predictive analytics is essential, ensuring 

adaptability, as Dhan and Kumar [39] underscored. Hybrid 

models integrating machine learning with Generative AI 

represent a significant advancement in blood donation 

forecasting, as highlighted by Selvaraj [32]. They address 
traditional models' limitations, offering precise insights for 

resource allocation, as Gupta et al. [24] argued. Venugopal 

and Venugopal [40] validated the effectiveness of ensemble 

learning in healthcare, ensuring efficient resource 

management and adequate blood supply. 

II. MATERIALS AND METHOD 

A. Research Design 

This study developed a predictive model for blood 

donation supply using a hybrid approach that combines 
Generative AI techniques with traditional machine learning 

algorithms. The model forecasts blood donation rates based 

on several Critical Success Factors (CSFs): 

a. C1: State Population–The state's population size impact 

on the potential pool of blood donors. 

b. C2: Day of the Week–Variations in donation rates on 

different days. 

c. C3: Public Events/Holidays–Public events and 

holidays affect donation activities. 

d. C4: Historical Donation Trends–Trends in past 

donations to predict future rates. 
e. C5: Blood Group Distribution–Distribution of blood 

groups to ensure a balanced supply. 

The methodology follows these steps: 

a. Data Collection and Preprocessing: Data on the CSFs 

were gathered from sources like BBISv2, followed by 

preprocessing to ensure data consistency and accuracy. 
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b. Synthetic Data Generation: GANs and VAEs were 

used to generate synthetic data to supplement real-

world data, enhancing model robustness. 

c. Feature Engineering: CSFs were normalized and 

selected as features for the model, and PCC analysis 

was conducted to identify the most impactful factors. 

d. Model Development: A Random Forest model was 

developed and trained on the combined real and 

synthetic datasets using CSFs as input features. 

e. Model Evaluation and Iterative Improvement: The 
model's performance was assessed using metrics like 

accuracy, precision, recall, and AUC-ROC, followed 

by iterative refinement. 

f. Final Prediction and Validation: The final model was 

validated against a test dataset to ensure reliability. 

Figure 1 below illustrates the step-by-step process of 

developing a predictive model for blood donation rates. The 

flow begins with data collection and preprocessing, followed 

by synthetic data generation if necessary. Key features are 

selected through feature engineering, and a Random Forest 

model is developed and trained on the combined dataset. The 
model undergoes evaluation, with iterative improvements 

made as needed. The final prediction is validated against a test 

dataset, ensuring the model's accuracy and reliability. 

 
Fig. 1  Blood Donation Prediction Model Flow 

 

 

B. Materials 

This study utilized several key materials for developing 

and validating the predictive model: 

1) Primary Dataset: The dataset from the Blood Bank 
Information System (BBISv2) covers approximately 80% of 

Malaysia's blood donation activities across 22 main collection 

sites. It provides detailed daily records, including donation 

dates, blood group types, state locations, and donation 

volumes. Rigorous preprocessing was conducted to address 

missing values, resolve inconsistencies, and normalize the 

data, ensuring a robust foundation for the model. 

2) Synthetic Data Generation Tools: Generative 

Adversarial Networks (GANs) and Variational Autoencoders 

(VAEs) were used to generate synthetic data, supplementing 

the primary dataset. These tools produced additional data 
points that mimic real-world donation patterns, enhancing the 

dataset's diversity and improving the model's robustness. 

3) Computational Resources: High-performance 

computing resources, including GPU-enabled servers, 

facilitated the processing of complex algorithms in 

Generative AI and Random Forest modeling. These resources 

ensured efficient handling of the extensive dataset and the 

iterative training process. 

4) Software and Libraries: Python, along with libraries 

like TensorFlow, Keras, Scikit-learn, and Pandas, was used 

for data preprocessing, synthetic data generation, model 

development, and performance evaluation. These tools 
provided the computational and analytical capabilities 

required for the predictive model. 

C. Generative AI-Powered Predictive Analytics Model 

Development 

This study employs GANs and VAEs to generate synthetic 

data, enhancing the predictive model's capacity to forecast 

blood donation patterns. By supplementing real data, these 

techniques address data sparsity, particularly in 
underrepresented regions and rare blood types, thereby 

improving the model's robustness and accuracy. 

1) GANs Algorithm Operationalization: GANs involve 

two networks: a Generator and a Discriminator. The 

Generator c reates synthetic data mimicking real-world blood 

donation scenarios, while the Discriminator evaluates the 

data's authenticity. The training process is formulated as a 

min-max game between these two networks as per Equation 

(1): 

���� ���� �	
, �

���∼�����	�
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where: 

a. pdata(x) denotes the distribution of real blood donation 

data, such as daily donation counts by state and blood 

type. This data provided the ground truth for the model, 

including critical factors affecting blood donation 

supply. 

b. pz(z) represents the distribution of input noise fed into 

the Generator. This noise served as a starting point for 
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the Generator to create synthetic data that attempts to 

mirror real-world blood donation scenarios. 

c. V(D, G) is the value function that defines the overall 

objective of the GAN model. The Generator sought to 

minimise this value by producing synthetic blood 

donation data that could convincingly mimic real data, 

thereby deceiving the Discriminator. Conversely, the 

Discriminator aimed to maximise this value by 

accurately distinguishing between real blood donation 

data and the synthetic data generated by the model. 
d. D(x) is the Discriminator’s probability estimate that a 

given data instance x is real. The Discriminator was 

trained on both real data and synthetic data generated 

by the Generator. D(x) outputs a value between 0 and 

1, where 1 indicates high confidence that x is real and 0 

indicates confidence that x is synthetic. 

e. D(G(z)) represents the Discriminator’s probability 

estimate that the blood donation data generated by G(z) 

is real. The Generator aimed to create data such that 

D(G(z))≈1, meaning that the Discriminator would find 

it difficult or impossible to distinguish the synthetic 
blood donation data from the real data. This capability 

was critical in ensuring that the synthetic data closely 

resembled real-world blood donation scenarios, thereby 

enhancing the overall robustness of the predictive 

model. 
This adversarial framework refines the Generator's ability 

to produce realistic data, enhancing the dataset's diversity and 

realism. The synthetic data generated improves the model's 

accuracy by addressing data scarcity and simulating various 

potential blood donation outcomes. 

2) VAEs Algorithm Operationalization: VAEs use an 
encoder-decoder architecture to generate synthetic blood 

donation data. The encoder maps input data into a latent 

space, and the decoder reconstructs this data, capturing the 

underlying distribution of the original dataset. The VAE's 

objective function combines reconstruction loss and a 

regularization term as per Equation (2): 

ℒ	#, $; �
� �&'	�|�
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 (2) 

where: 

a. L(θ,ϕ;x) denotes the VAE's loss function for a specific 

blood donation data point x, parameterized by θ 

(decoder parameters) and ϕ (encoder parameters). This 

loss function is tailored to accurately capture the 

nuances of blood donation patterns across different 
states and blood types. 

b. The first term, �&'	�|�
�123 )*	�|!
� , represents the 

reconstruction loss, which measures how well the 
decoder can regenerate the original blood donation data 

from its encoded latent representation. This ensures that 

the synthetic data maintains fidelity to the real-world 

blood donation scenarios. 

c. The second term, D56	q8	z|x
||p	z

, is the Kullback-

Leibler divergence, serving as a regularization 

mechanism. It ensures that the distribution of latent 

variables—reflective of the critical success factors 

influencing blood donation supply—remains aligned 

with a prior distribution. This regularization is crucial 

for preventing overfitting and ensuring that the 

generated data is generalizable to new, unseen 

scenarios. 

d. The hyperparameter β balances the reconstruction 

accuracy against the regularization imperative. It was 

carefully tuned to ensure that the synthetic blood 

donation data generated by the VAEs maintained high 

fidelity to the complexities introduced by the CSFs 

identified in the study. 

By employing VAEs in this manner, the study was able to 
produce a rich and varied dataset that enhanced the model's 

predictive capabilities, particularly in scenarios with limited 

real-world data. The synthetic data generated by VAEs 

allowed the predictive model to explore a broader range of 

potential blood donation outcomes, thereby improving its 

robustness and accuracy in forecasting blood donation supply 

across different regions and blood types in Malaysia. 

3) Feature Engineering - Normalizing CSFs: Feature 

engineering is crucial for developing a predictive model, as it 

transforms raw data into useful features that enhance 

predictive accuracy. In this study, key Critical Success 
Factors (CSFs) influencing blood donation rates, including 

state population, day of the week, public events/holidays, 

historical donation trends, and blood group distribution, were 

identified. These CSFs were normalized to ensure consistent 

evaluation and comparison across different factors. 

Normalization is an integral part of the feature engineering 

process. It involves scaling each CSF to a uniform range of 1 

to 10, allowing the model to analyze and compare the 

influence of diverse factors on blood donation rates equitably. 

This standardization ensures that the model can 

proportionally assess each factor's impact without being 
skewed by varying scales in the raw data. To ensure effective 

comparison and analysis, each Critical Success Factor (CSF) 

was normalized to a 1-10 scale as per Equation (3): 

Normalized Score< �
= Value<  min	Value


max	Value
  min	Value
B × 9 � 1 (3) 

where: 

a. Value< represents the raw value of the CSF for a 

particular state. 

b. min	Value
and max	Value
 denote the minimum and 

maximum values of that CSF across all states, 

respectively. 

This normalization ensures a uniform scale where 1 

indicates the least favourable condition and 10 the most 

favourable. Examples include: 

a. State Population (C1): Higher scores for larger 

populations. 

b. Day of the Week (C2): Scores reflecting typical 

donation activity fluctuations. 

c. Public Events/Holidays (C3): Scaled based on 
historical impact on donations. 

d. Historical Donation Trends (C4): Higher scores for 

consistent or increasing trends. 

e. Blood Group Distribution (C5): Scaled according to 

availability and demand. 

Table I illustrates normalized data for five states. The 

"Normalized Donation Rate" represents the likelihood of 
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adequate blood supply, with higher scores indicating better 

conditions. This normalization ensures accurate prediction 

and equitable comparison across different states. 

TABLE I 

NORMALIZED DATA BASED ON CSFS FOR BLOOD DONATION SUPPLY 

CSF State 

A 

State 

B 

State 

C 

State 

D 

State 

E 

C1: Population 8.28 3.15 9.96 2.57 3.29 
C2: Day 8.77 3.10 10.00 2.67 2.51 
C3: 
Events/Holidays 

8.77 3.10 10.00 3.52 2.33 

C4: Trends 8.39 3.14 9.97 2.19 3.32 
C5: Blood Group 
Risk 

8.36 3.12 9.98 4.34 2.74 

Normalized 
Donation Rate 

8.40 3.11 9.98 4.68 2.63 

 

The Normalized Donation Rate is a crucial outcome metric 

in the predictive model. It represents the relative likelihood of 

a sufficient blood donation supply in each state, given the set 
of CSFs. Higher scores indicate states that are more likely to 

have adequate blood supplies, considering factors like 

population size, timing, public events, historical trends, and 

the distribution of blood groups. 

4) Synthetic Data Generation: After normalizing the 

CSF, the next step involved enriching the dataset by 

generating synthetic data using GANs and VAEs. These 

models produced 50 synthetic datasets, simulating diverse 

blood donation scenarios across different states. Five random 

states (labelled as States A, B, C, D, and E) were selected to 

generate synthetic CSF data and corresponding normalized 
donation rates. By utilizing the normalized CSFs as a 

foundation, the synthetic data captured a broad spectrum of 

real-world conditions and variations. The purpose of 

employing GANs and VAEs was to expand the dataset, 

enhancing the model’s generalizability. The 50 synthetic 

datasets reflected various potential blood donation scenarios, 

directly based on the normalized CSFs, thereby introducing a 

rich diversity of conditions that mirrored real-world patterns. 

This approach effectively addressed data scarcity issues and 

provided a more robust foundation for model training. Table 

II below presents a sample of the generated synthetic datasets. 
Each row represents a hypothetical state scenario with its 

normalized CSFs, offering a comprehensive view of potential 

real-world situations. The "Normalized Donation Rate 

(Prediction)" column indicates the predicted likelihood of 

adequate blood supply in each scenario. 

TABLE II 

SAMPLE OF SYNTHESIZED SYNTHETIC DATA FOR BLOOD DONATION SUPPLY 

CSF State 

A 

State 

B 

State 

C 

State 

D 

State 

E 

C1: Population 7.2 3.1 10.0 4.6 2.3 
C2: Day of the Week 5.3 3.4 9.8 6.5 4.1 
C3: Events/Holidays 1.2 8.9 7.8 1.1 2.0 
C4: Trends 8.9 4.3 7.2 3.5 7.9 
C5: Blood Group  6.7 9.9 5.1 3.2 7.8 
Normalized Donation 
Rate (Prediction) 

8.1 3.4 9.0 4.1 6.2 

 

5) Synthetic Data Validation: Using GANs and VAEs, a 

total of 50 synthetic datasets were generated, simulating blood 

donation scenarios across different states based on the 

identified CSFs. To ensure that the synthetic data was a 

reliable representation of real-world conditions, a rigorous 

validation process was undertaken: 

a. Mean: The mean of each CSF in the synthetic data was 

calculated and compared to the mean of the real data to 

ensure consistency. The mean provides an average value 

of each CSF, helping to verify that the synthetic data 

aligns with the general trends observed in the real blood 

donation data as per Equation (4): 

 Mean � E
F ∑FHIE �H (4) 

where xi represents a CSF's individual values, such as a 

state's population or the frequency of blood donations on 

a specific day, and n is the total number of synthetic data 

points. This step ensures that the overall level of each CSF 

in the synthetic data mirrors that of the real data, 

maintaining the realistic distribution of factors that affect 
blood donation rates. 

b. Variance: The variance was calculated to measure the 

spread of CSF values from the mean. This metric assesses 

how much the CSF values in the synthetic data differ from 

the average value, providing insights into the diversity and 

variability of the synthetic data compared to the real data 

as per Equation (5): 

 
E
F ∑FHIE 	�H  Mean
J (5) 

In this context, variance helps ensure that the synthetic 

data captures the natural fluctuations in blood donation 

rates and other CSFs across different states and time 

periods. 

c. Skewness: Skewness was calculated to determine the 
asymmetry of the CSF distribution in the synthetic data. 

This metric helps to identify whether the distribution of 

CSFs in the synthetic data is skewed towards higher or 

lower values compared to the real data, which could 

indicate a bias in the synthetic data generation process as 

per Equation (6): 

 
E
F ∑FHIE 	 �KLMean

Standard Deviation

M (6) 

By analyzing skewness, we can ensure that the synthetic 

data accurately reflects the natural skew present in real-

world blood donation data, such as the tendency for more 

donations to occur during certain periods or in specific 

regions. 

d. Kurtosis: Kurtosis was used to assess the peakedness of 

the CSF distribution in the synthetic data. This metric 

indicates whether the data distribution is more peaked or 
flatter than the real data distribution, which could affect 

the predictive model's ability to generalize from the 

synthetic data as per Equation (7): 

 
E
F ∑FHIE 	 �KLMean

Standard Deviation

N (7) 

Kurtosis validation ensures that the synthetic data 

appropriately reflects the concentration of blood donation 

events, whether they are clustered around certain values or 

spread out more evenly. The difference in the power of the 

exponent causes skewness to measure how far and in what 

direction values are distributed around the mean, while 
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kurtosis measures whether the data is heavy-tailed or 

light-tailed compared to a normal distribution. 

e. K-S Test: The K-S test was applied to compare the 

distributions of the real and synthetic data to ensure they 

followed the same distribution. This test helps verify that 

the overall distribution of CSFs in the synthetic data is 

statistically like that of the real data, confirming that the 

synthetic data is a valid representation of real-world 

conditions as per Equation (8): 

 
F,O � PQ)� |RF	�
  RO	�
| (8) 

where Dn,m is the K-S statistic, Fn(x) is the empirical 

distribution function of the real CSF data, and Fm(x) is the 

empirical distribution function of the synthetic CSF data. 

This comparison ensures the synthetic data can reliably 

simulate real blood donation scenarios.  
 

The synthetic data served as an essential supplement to 

real-world data, particularly in cases where real data was 

sparse or inconsistent. By introducing a wide range of 
possible scenarios, the synthetic data enabled the predictive 

model to learn from a more diverse set of examples, thereby 

improving its accuracy and generalizability. The integration 

of synthetic datasets into the model’s training process ensured 

that the model could effectively predict blood donation supply 

across various states and conditions. The synthetic data 

validation process ensured that the synthetic data was robust, 

accurate, and representative of real-world conditions. This 

process, combined with the extensive generation of diverse 

scenarios, contributed to the development of a reliable and 

effective predictive model for managing blood donation 
supply.  

6) Deployment of Random Forest: Random Forest was 

deployed due to its robust ability to handle non-linear 

relationships and high-dimensional data in predicting blood 

donation rates. The algorithm builds multiple decision trees 

from bootstrapped samples of the dataset, and each tree is 

trained on a random subset of features. The prediction for the 

blood donation rate, y^\hat{y}y^, is calculated as the average 

of the predictions from all trees in the forest, as shown in 

Equation (9): 

 Ŝ � E
U ∑UHIE VH	�
 (9) 

where VH	�
 represents the prediction of the i-th decision tree, 

and x is the set of input features, including the normalized 

CSFs such as state population, public events, and blood group 

distribution. This aggregation of predictions ensures stable 

and accurate results, reducing overfitting. 

7) Deployment of SVM: SVM was used to classify blood 

donation scenarios as either sufficient or insufficient based on 

the CSFs. The SVM seeks to find the optimal hyperplane that 

maximizes the margin between the two classes. The 

optimization problem for SVM is expressed in Equation (10): 

���W,X
1
2 |W|J

subject to SH	WZ[H � \
 ≥ 1∀� 
(10) 

where w is the weight vector, b is the bias, xi represents the 

CSFs for the i-th data point, and yi is the label (sufficient or 

insufficient blood donation rate). Both linear and non-linear 

kernels were evaluated to determine the best fit for capturing 

blood donation trends. 

8) Deployment of Neural Networks: A feedforward 

Neural Network with multiple hidden layers was used to 

model non-linear relationships between CSFs and blood 

donation rates. Each neuron computes a weighted sum of the 

input features, as represented by Equation (11): 

 _`aE � _`  b E
J ∑FHIE 	SH  �	WZ[ � \

JT (11) 

In this context, _`  and _`aE represent the weights before and 

after the update, respectively, while b denotes the learning 

rate, controlling the size of the weight adjustments during 

training. The actual donation rate is denoted by yi, and the 

activation function a(z) can be either the sigmoid function 

(which maps the output between 0 and 1) or the Rectified 

Linear Unit (ReLU) function (which outputs 0 for negative 

values and passes through positive values).The term 	wZx �\
 represents the weighted sum of the input features, where w 
is the weight vector, x is the input, and b is the bias. This 

process enables the neural network to progressively learn 

from the data, minimizing the error between the predicted 

donation rates and the actual donation rates. 

9) Deployment of Linear Regression: Linear Regression 

was deployed to establish a linear relationship between CSFs 

and blood donation rates. The model fits a linear equation to 

predict the donation rate y, represented by Equation (12): 

 S � +d � +E�E � +J�J � ⋯ � +F�F (12) 

where �E, �J…represent the CSFs, and β0, β1…βn are the 
coefficients learned during training. Although simple, Linear 

Regression serves as a useful baseline for comparison with 

more complex models. 

10) Predictive Model Training: Training involved 

integrating real-world data with the 50 synthetic datasets 

generated by GANs and VAEs to address data sparsity. The 

Random Forest algorithm was chosen for its robustness in 

handling complex interactions. Feature selection was guided 

by the PCC, identifying the most relevant CSFs to reduce 

complexity and improve accuracy. Hyperparameters were 

fine-tuned, and cross-validation was employed to prevent 
overfitting. The inclusion of synthetic data allowed the model 

to handle edge cases and outliers effectively. This rigorous 

training approach resulted in a reliable predictive tool capable 

of optimizing blood resource allocation across Malaysia. 

11) Continuous Monitoring and Adaptation of the Model: 

To ensure long-term effectiveness, the predictive model for 

blood donation supply undergoes continuous monitoring and 

adaptation. Advanced analytics dashboards track key metrics 

such as accuracy, precision, recall, and AUC-ROC in real 

time. Any performance degradation is promptly addressed 

through automated retraining pipelines that incorporate new 

data and user feedback, allowing the model to adapt to 
changing donation patterns. The retraining process can be 

mathematically represented as per Equation (13): 

 #f � 1 � #f  bgh	#f; 
f
 (13) 
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In predicting blood donation supply, the formula provided 

plays a critical role in continuously updating and refining the 

model to ensure its predictions remain accurate and relevant. 

Here’s how the parameters are explained in this setting: 

a. #f represents the model parameters at iteration. In the 

case of blood donation prediction, these parameters 

could include the weights assigned to various factors 

such as state population, day of the week, public events, 

historical donation trends, and blood group distribution. 
These parameters are adjusted at each iteration to 

improve the model's accuracy. 

b. b is the learning rate, which controls how much the 

model parameters are adjusted in response to new data. 

For example, suppose new data indicates a significant 

change in blood donation patterns (such as a sudden 

increase in donations due to a public awareness 

campaign). In that case, the learning rate determines 

how quickly the model adapts to this new information. 

A higher learning rate results in larger adjustments, 
while a lower rate leads to more gradual changes. 

c. gh	#f; 
f
 is the gradient of the loss function L 

concerning the model parameters. The loss function L 

measures the difference between the predicted and 

actual blood donation rates observed in the data. The 

gradient provides direction on how to adjust the 

parameters #f to reduce this difference. Minimizing the 

loss function makes the model more accurate in 

predicting blood donation rates. 

By periodically integrating new datasets and leveraging 
machine learning techniques like reinforcement learning, the 

model adapts to real-time changes in blood donation patterns. 

Additionally, synthetic data generated by GANs and VAEs is 

periodically updated to reflect evolving trends, ensuring the 

model remains robust and accurate.  

12) Development of the Predictive Analytics Model 

Interface Using Python: The Blood Donation Predictive 

Analytics Model was developed using Python, employing 

libraries such as Tkinter, Scikit-learn, TensorFlow, Keras, 

Pandas, and NumPy. The Tkinter-based interface enables 

users to input various Critical Success Factors (CSFs) 

affecting blood donation rates, including state population, day 
of the week, public events, historical trends, and blood group 

distribution. 

The model outputs a normalized donation rate on a scale 

from 0 to 10: 

a. 0-3: Low supply, indicating a potential shortfall and the 

need for immediate action like donation campaigns. 
b. 4-7: Moderate supply, suggesting regular drives and 

trend monitoring to prevent shortages. 

c. 8-10: Healthy supply allows resource reallocation as 

needed. 

This user-friendly interface provides healthcare 

professionals and policymakers quick, actionable insights to 

optimize blood resource management and support informed 

decision-making in real-time scenarios. As shown in Figure 

2.0 below, the prototype interface allows users to input 

various CSFs influencing blood donation rates, such as state 

population, day of the week, public events/holidays, historical 
donation trends, and blood group distribution. 

 

 
Fig. 2  Blood Donation Predictive Analytics Model Interface 

D. Model Evaluation of Predictive Accuracy: The 

Quantitative Approach 

The model's predictive accuracy was evaluated using a set 

of performance metrics to ensure its reliability in forecasting 

blood donation supply across different states and blood types. 
The following metrics were used to assess the model’s 

effectiveness: It is calculated as per Equation (14): 

 Accuracy � ZiaZU
ZiaZUajiajU (14) 

where TP represents true positives (correctly predicted 

adequate blood supply), TN represents true negatives 

(correctly predicted inadequate blood supply), FP represents 

false positives (incorrectly predicted adequate blood supply), 

and FN represents false negatives (incorrectly predicted 

inadequate blood supply). Precision evaluates the proportion 

of true positives out of the total predicted positives, indicating 

the model's accuracy in predicting days with sufficient blood 

supply. It is calculated as per Equation (15): 

 Precision � Zi
Ziaji (15) 

Recall (Sensitivity): Recall measures the proportion of true 

positives out of the actual positives, assessing the model's 

ability to identify all days with sufficient blood supply. It is 

calculated as per Equation (16): 

 Recall � Zi
ZiajU (16) 

The AUC-ROC comprehensively evaluates the model's 

ability to discriminate between days with adequate and 

inadequate blood supply. The ROC curve plots the true 
positive rate (recall) against the false positive rate (FPR), 

which is calculated as per Equation (17): 

 FPR � ji
jiaZU (17) 

This set of metrics ensured a thorough comparison of 

different predictive models, verifying that the chosen model 

could reliably predict variations in blood donation supply, 

particularly across different blood types and states. 

III. RESULTS AND DISCUSSION 

This section presents the findings from evaluating various 

machine learning models developed for forecasting blood 
donation supply. The models, including Random Forest, 

SVM, Neural Networks, and Linear Regression, were trained 
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using synthetic datasets generated via GANs and VAEs The 

synthetic data was rigorously validated, demonstrating high 

accuracy and minimal deviations from real-world data across 

key statistical metrics. The evaluation aimed to assess the 

predictive performance of these models in forecasting blood 

donation outcomes. 

A. Validation of Generative AI Model: Ensuring Synthetic 

Data Accuracy for Blood Donation Predictions 

The synthetic data for blood donation supply, consisting of 

50 datasets generated by GANs and VAEs, was validated to 

ensure its accuracy in reflecting real-world blood donation 

patterns. This validation involved comparing summary 

statistics—mean, variance, skewness, and kurtosis—between 

the real and synthetic data, and conducting a K-S test to verify 

the distribution alignment. 

TABLE III 

MEAN COMPARISON 

CSF Real Data 

Mean 

Synthetic Data 

Mean 

C1: State Population 5.44 5.45 

C2: Day of the Week 5.42 5.45 
C3: Public Events/Holidays 4.2 4.54 
C4: Historical Donation 
Trends 

6.36 5.86 

C5: Blood Group 
Distribution 

6.54 6.44 

Normalized Donation Rate 5.44 5.45 

 

Table III above shows that the mean values for the 

synthetic data closely mirror the real data, with no more than 

0.34 differences across all CSFs. This tight alignment 

indicates that the synthetic data accurately captures the 

average behavior of key factors influencing blood donation. 

With deviations under 10%, the synthetic data can be 

confidently used for predictive modeling without introducing 

significant bias or misrepresenting real-world tendencies. 

TABLE IV 

VARIANCE COMPARISON 

CSF Real Data 

Variance 

Synthetic Data 

Variance 

C1: State Population 7.9975 9.3239 
C2: Day of the Week 8.1824 9.6209 
C3: Public 

Events/Holidays 

13.524 15.041 

C4: Historical Donation 
Trends 

7.9875 9.8739 

C5: Blood Group 
Distribution 

10.357 12.457 

Normalized Donation 
Rate 

9.4124 10.532 

 

Table IV highlights a slight increase in variance in the 

synthetic data compared to the real data, with differences 

ranging from 1 to 2 units across CSFs. The higher variance in 

the synthetic data suggests a broader representation of 

possible outcomes, which can be advantageous for generating 

more flexible predictions. While slightly more spread out, the 

synthetic data still effectively captures the variability present 

in real-world donation behaviors, enhancing the model's 

ability to forecast diverse scenarios. 

TABLE V 

SKEWNESS COMPARISON 

CSF Real Data 

Skewness 

Synthetic Data 

Skewness 

C1: State Population 0.48 0.5 
C2: Day of the Week 0.35 0.38 
C3: Public 
Events/Holidays 

0.52 0.55 

C4: Historical 

Donation Trends 

0.49 0.51 

C5: Blood Group 
Distribution 

0.42 0.45 

Normalized Donation 
Rate 

0.48 0.5 

 

Table V demonstrates that the synthetic data closely 

matches the skewness of the real data, with differences in 

skewness values between 0.02 and 0.03 across all CSFs. This 

indicates that the synthetic data replicates the asymmetry of 

the real data's distribution, ensuring that both common and 

less frequent donation behaviors are accurately represented. 

Such alignment in skewness is essential for making reliable 
predictions about irregular or atypical donation patterns. 

TABLE VI 

KURTOSIS COMPARISON 

CSF Real Data 

Kurtosis 

Synthetic Data 

Kurtosis 

C1: State Population 1.77 1.8 
C2: Day of the Week 1.64 1.68 
C3: Public 
Events/Holidays 2.2 2.26 

C4: Historical Donation 
Trends 1.91 1.96 
C5: Blood Group 
Distribution 1.82 1.85 
Normalized Donation 
Rate 2.05 2.1 

 

Table VI illustrates that the kurtosis values for the synthetic 

data are nearly identical to those of the real data. Differences 

are minimal, remaining within a 0.05 range across all CSFs. 

This indicates that the synthetic data captures the occurrence 

of outliers and extreme values with high accuracy, which is 

crucial for modeling rare but impactful donation events. The 

similar kurtosis values validate the synthetic data’s capacity 

to reflect real-world donation spikes, enhancing the 
robustness of the predictive model. 

TABLE VII 

K-S TEST RESULTS 

CSF Dn,m 

C1: State Population 0.2 
C2: Day of the Week 0.4 
C3: Public Events/Holidays 0.45 
C4: Historical Donation Trends 0.4 
C5: Blood Group Distribution 0.35 

Normalized Donation Rate 0.3 

 

Table VII lists the K-S test results, showing the maximum 
distance between the empirical distribution functions of the 

real and synthetic data. The K-S test results in Table VII 

confirm that the synthetic data closely follows the distribution 

of the real data, with Dn,m values below 0.5 across all CSFs. 

For the Normalized Donation Rate, the Dn,m value of 0.30 
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shows a powerful alignment between the real and synthetic 

data. This ensures that the synthetic data effectively captures 

the overall distribution trends, validating its use in forecasting 

real-world blood donation outcomes confidently. 

B. Quantitative Comparative Study: Performance 

Evaluation of Machine Learning Models 

The predictive performance of various machine learning 
models was analyzed to assess their efficacy in forecasting 

blood donation rates. The models evaluated include Random 

Forest, SVM, Neural Networks, and Linear Regression. All 

models were trained and tested on the same set of 50 synthetic 

datasets generated using CSFs to ensure consistency and 

integrity across comparisons. The same CSF input was 

applied to each model to generate predictions, which were 

then compared against real prediction data to validate 

performance. The models’ performance was assessed using 

key metrics such as accuracy, precision, recall, and AUC-

ROC. 

TABLE VIII 

SUMMARY OF MODEL PERFORMANCE COMPARISONS 

Model 

Type 

Predicted 

Donation 

Rate 

Accuracy Precision Recall 
AUC-

ROC 

Random 

Forest 

8.4084 98.70% 0.91 0.89 0.92 

Neural 

Networks 

7.5337 87.60% 0.72 0.7 0.74 

SVM 8.1583 93.20% 0.81 0.79 0.83 

Linear 

Regression 

8.3975 98.60% 0.89 0.88 0.9 

 

Table VIII above presents a comparative summary of the 

models' predicted donation rates alongside the key 

performance metrics. The results indicate that the Random 

Forest model demonstrated the highest accuracy (98.7%) and 

superior precision (0.91), followed closely by the Linear 

Regression model, which achieved an accuracy of 98.6%. 

Both models produced predictions that were very close to the 
actual donation rate, with minimal deviation. The Neural 

Networks model exhibited the lowest performance across all 

metrics, suggesting that its predictive capabilities were less 

effective for this dataset. The SVM model performed 

moderately, with an accuracy of 93.2%, but did not match the 

predictive strength of Random Forest or Linear Regression. 

This study evaluates the predictive performance of four 

machine learning models—Random Forest, SVM, Neural 

Networks, and Linear Regression—in forecasting blood 

donation rates. By leveraging 50 synthetic datasets generated 

from CSFs all models were trained and tested under the same 

conditions, ensuring consistency and comparability. Using 
validated synthetic data enabled a robust framework for 

assessing model performance against real-world data, 

providing theoretical and practical implications for blood 

donation forecasting. From a theoretical perspective, this 

study demonstrates the importance of model selection in 

predictive analytics, particularly for time-sensitive tasks such 

as blood donation supply management. The findings reinforce 

that Random Forest, as an ensemble learning method, 

outperforms other traditional models in handling high-

dimensional data and capturing complex interactions between 

features. Its decision tree-based structure, combined with 
feature bagging, makes it particularly effective in scenarios 

where multiple factors (e.g., population, public events, 

holidays) contribute to the prediction outcome. The superior 

accuracy (98.7%), precision (0.91), and AUC-ROC (0.92) of 

the Random Forest model highlight its robustness in real-

world applications, as it consistently outperformed other 

models across various metrics. 

Additionally, the results indicate that Linear Regression, 

despite being a simpler algorithm, showed strong predictive 

power (accuracy of 98.6%). This aligns with theoretical 

expectations that linear models can effectively capture 
relationships when the input-output behavior follows a linear 

trend. However, its limitations become apparent when dealing 

with more complex, nonlinear data structures, where models 

like Random Forest excel. In contrast, Neural Networks, often 

regarded for their ability to model non-linear relationships, 

underperformed in this context. The lower accuracy (87.6%) 

and precision (0.72) suggest that the neural network model 

struggled with the dataset's characteristics, possibly due to 

overfitting or insufficient tuning of hyperparameters. This 

highlights an important theoretical consideration: while 

neural networks are powerful in complex scenarios, they may 
not always outperform simpler models when the underlying 

data does not warrant such complexity. SVM also exhibited 

moderate performance (accuracy of 93.2%), which is 

consistent with the model’s sensitivity to the choice of kernel 

function and regularization parameters, factors that may have 

limited its performance in this study. 

The practical implications of these findings are significant 

for healthcare systems, particularly in the context of blood 

donation supply management. Accurate forecasting of 

donation rates is crucial for optimizing resource allocation, 

scheduling donation drives, and maintaining adequate blood 
supplies. The superior performance of the Random Forest 

model suggests that it can be reliably deployed to predict 

donation trends, especially in data-rich environments where 

multiple factors influence donation behavior. By 

incorporating Random Forest into decision-making 

frameworks, healthcare providers can reduce the risk of 

shortages, improving patient outcomes and operational 

efficiency. 

Moreover, validating synthetic data through multiple 

statistical tests (mean, variance, skewness, kurtosis, and the 

K-S test) emphasizes the value of synthetic data generation 

for real-world applications. When real data is scarce, 
sensitive, or incomplete, using high-quality synthetic datasets, 

as demonstrated in this study, offers a practical solution for 

training machine learning models. In this context, the small 

deviations (less than 10%) between real and synthetic data 

regarding mean and distribution metrics provide confidence 

that synthetic data can be reliably used for future forecasting. 

Adopting predictive models like Random Forest, trained on 

validated synthetic data for blood banks and public health 

organizations can support more efficient planning and real-

time decision-making. For instance, during high-demand 

periods (e.g., holidays or public events), these models can be 
integrated into automated systems that provide actionable 

insights, enabling rapid adjustments to donation strategies. 

This study also contributes to the broader discussion on the 

applicability of machine learning in healthcare. By illustrating 

the trade-offs between different models, this research 

highlights that more complex models, such as Neural 
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Networks, may not always yield better results in specific 

domains. Instead, simpler models, such as Linear Regression, 

and ensemble methods, like Random Forest, can outperform 

neural networks when data complexity is moderate, as with 

blood donation trends. 

Additionally, the findings emphasize the importance of 

data quality in predictive modeling. The accurate and 

consistent performance of models trained on high-quality 

synthetic data underscores the potential for Generative AI 

techniques (such as GANs and VAEs) to mitigate challenges 
related to data scarcity or incomplete datasets. As healthcare 

systems continue to digitize and collect vast amounts of data, 

the ability to generate and use synthetic data will play an 

increasingly important role in training models that generalize 

well in real-world scenarios. 

IV. CONCLUSION 

This study successfully achieved its research objectives by 
evaluating the performance of various machine learning 

models in forecasting blood donation rates. Using synthetic 

datasets generated via Generative AI techniques such as 

GANs and VAEs, the study ensured that the models were 

trained on high-quality, validated data that closely mirrored 

real-world donation trends. The statistical validation of the 

synthetic data showed minimal deviations in mean, variance, 

skewness, kurtosis, and distribution alignment (K-S test), 

confirming that the synthetic data accurately represented real-

world behaviours, with deviations under 10%. The findings 

demonstrated that the Random Forest model outperformed 

other models, achieving the highest accuracy (98.7%), 
precision (0.91), and AUC-ROC (0.92), making it the most 

reliable for predicting blood donation rates. Linear Regression 

also showed strong predictive performance, with an accuracy 

of 98.6%, proving to be a robust alternative to Random Forest. 

In contrast, the Neural Networks and SVM models 

underperformed, with lower accuracy and precision, 

suggesting they were less suited to the specific characteristics 

of the dataset used in this study. The validation of the 

synthetic data used for training these models is particularly 

noteworthy, as it ensures that the models' predictions are 

reliable and applicable in real-world scenarios. The slight 
increase in variance in the synthetic data compared to the real 

data provided a broader scenario representation, further 

enhancing the models' generalizability. 

This study demonstrates the efficacy of machine learning 

models, particularly Random Forest, to predict blood 

donation rates, ensuring more informed decision-making and 

better resource allocation in healthcare management. The 

success of using validated synthetic data provides a strong 

foundation for future predictive analytics efforts in healthcare, 

where real-world data may be limited or unavailable. The 

findings contribute to the field by emphasizing the role of 
high-quality synthetic data in enhancing the accuracy and 

reliability of machine learning models for critical forecasting 

tasks, such as managing blood donation supply. 
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