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Abstract—Sentiment analysis plays a crucial role in helping businesses understand consumer perceptions, improve decision-making, 

and enhance customer satisfaction. However, large-scale sentiment classification in Indonesian-language texts remains a challenge due 

to the scarcity of labeled datasets and limited computational resources. This study introduces an automated sentiment labeling approach 

that integrates chunking and Rule-Based Machine Translation (RBMT) to optimize efficiency and accuracy. Unlike Self-Supervised 

Learning (SSL), Active Learning (AL), and Transformer-based models (e.g., BERT), which demand extensive labeled data and high-

performance computing, the proposed method offers a scalable and resource-efficient solution. A dataset comprising 225,000 entries 

was preprocessed and segmented into smaller chunks to enhance processing efficiency. Seven classification algorithms, Decision Tree, 

Support Vector Machine (SVM), Random Forest, K-Nearest Neighbors (KNN), Naïve Bayes, Logistic Regression, and Multilayer 

Perceptron (MLP), were employed for performance evaluation. Results show that MLP and Random Forest achieve the highest 

accuracy, ranging from 0.886 to 0.900, confirming their effectiveness for sentiment classification. Furthermore, the proposed Chunking 

+ RBMT method achieves 89.9% accuracy, outperforming SSL (87.3%) and AL (86.5%), while maintaining significantly lower

computational requirements compared to Transformer-based models (90.5%). This study demonstrates the effectiveness of Chunking

in reducing computational overhead while maintaining high classification accuracy. Overall, the findings validate the proposed

approach as a practical alternative for large-scale sentiment classification in low-resource settings, with strong potential to improve

automated sentiment analysis in the Indonesian language.

Keywords—Sentiment analysis; automated labeling; Rule-Based Machine Translation (RBMT); classification algorithms. 

Manuscript received 7 Nov. 2024; revised 9 Apr. 2025; accepted 17 May 2025. Date of publication 30 Jun. 2025. 

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License. 

I. INTRODUCTION

In today's era of data transparency, sentiment analysis is 
crucial for organizational growth, particularly in industries 
relying on consumer perceptions to develop products and 
services [1]. By understanding consumer perceptions, 
organizations can identify their preferences, needs, and 
expectations [2]. A responsive and empathetic corporate culture 
that prioritizes consumer needs is crucial for enhancing 
customer satisfaction with products and services [3]. 

Based on the earlier discussion regarding the importance of 
consumer analysis, sentiment analysis is conducted by 
applying a sentiment classification approach to Indonesian 
language texts. However, the data available within the scope 
of this research is not yet labeled. Furthermore, labeling the 
dataset manually is challenging, as it involves assessing 
225,000 consumer reviews. Therefore, a computational 
approach is necessary to automate the labeling process. 

Automated labeling is performed using Rule-Based Machine 
Translation (RBMT), a widely recognized and effective 
method [4]. However, the effort to apply automated labeling 
encounters obstacles due to the high-performance computing 
power required, especially given the limited computational 
resources available for this research. To overcome this 
challenge, this study proposes a novel automated labeling 
method by integrating Chunking and Rule-Based Machine 
Translation (RBMT) to optimize computational efficiency. 
Unlike Self-Supervised Learning (SSL), Active Learning 
(AL), and Transformer-based approaches (e.g., BERT), 
which require extensive labeled datasets or high-performance 
computing, this approach offers a scalable and resource-
efficient solution for large-scale sentiment analysis in 
Indonesian-language texts. Chunking effectively divides 
large datasets into smaller, manageable parts to facilitate 
processing, while RBMT ensures accurate sentiment 
classification without relying on deep learning-based 
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annotation techniques [5], [6]. By leveraging this combination, 
this study contributes to improving sentiment classification 
performance while maintaining computational feasibility in 
low-resource environments. By dividing large datasets into 
smaller chunks, this approach not only reduces computational 
load but also enhances the accuracy of RBMT by improving 
contextual segmentation, leading to more precise sentiment 
classification. Empirical results demonstrate that Chunking 
combined with RBMT achieves competitive accuracy while 
significantly reducing computational requirements, making it 
a practical alternative to deep learning-based sentiment 
classification. 

This study aims to identify efficient methods for conducting 
automated labeling, enabling sentiment analysis of Indonesian 
text with high accuracy. The proposed solution involves 
implementing a cluster head utilization and network knowledge 
method (chunk) to split the dataset into smaller files [5], [6], 
thereby facilitating automated labeling through a rule-based 
machine translation method. This research contributes to the 
development of an effective and efficient method for automated 
label extraction. This method is expected to produce well-
labeled datasets, thereby improving sentiment classification 
accuracy in Indonesian-language texts. 

Various approaches have been developed to address 
challenges in semi-automated and fully automated labeling 
methods. Building semi-automated text annotations using 
classification models such as SVM and Random Forest 
contributes to parameter optimization through Grid-search and 
Random Search [7]. The development of semi-automated 
labeling methods also employs techniques like Self-Supervised 
Learning and Weighted Feature Consideration for DDoS attack 
analysis [8]. Semi-automated labeling systems for English texts 
using active learning and semi-supervised learning optimize the 
labeling process by integrating human intervention into the 
machine [9]. Exploration of transformer models for automating 
ICD coding has shown that such approaches can optimize the 
MIMIC-III and MIMIC-II medical datasets [10]. Methods for 
annotating thyroid nodule data on ultrasound images have been 
developed, resulting in high-quality radiology image 
annotations [11]. Semi-automated labeling has also been 
applied to EEG datasets for detecting movement intentions [12]. 
Leveraging deep learning models such as BioBERT and BERT 
for automated labeling of neurological reports has enabled the 
generation of labeled medical imaging datasets for analysis and 
diagnosis purposes [13]. Network Intrusion Detection Systems 
and Statistical Network Intrusion Detection Systems have been 
implemented for labeling network-based data, particularly for 
threat detection in computer networks [14]. Additionally, 
labeling for human action recognition datasets using digital 
twins, video, and image data has been explored [15]. Other 
advancements include enhancing autonomous driver 
performance through semi-automated labeling of vehicle image 
data [16]. 

Unlike previous studies that focus on semi-automated or 
deep learning-based labeling approaches such as Self-
Supervised Learning (SSL) [8], Active Learning (AL) [9], and 
Transformer-based models like BERT [10], [13], this study 
introduces a fully automated sentiment labeling method 
specifically tailored to Indonesian-language texts by 
combining Chunking [5], [6], [17] and Rule-Based Machine 
Translation (RBMT) [4], [25]. While SSL and AL have been 
successfully applied in English or medical contexts, no prior 

studies were found that implement a Chunk + RBMT 
combination for sentiment classification in Indonesian texts. 
This novel integration addresses two major gaps: the scarcity 
of large-scale labeled datasets in Bahasa Indonesia and the 
computational inefficiencies of deep learning models in low-
resource settings. Therefore, the proposed approach 
contributes a unique and scalable solution that enhances 
processing efficiency and broadens the methodological 
landscape of Indonesian natural language processing research. 

Previous studies focused on developing automated or semi-
automated labeling methods to reduce time and cost when 
performed manually, using various techniques and 
methodologies for more accurate analysis and modeling. This 
current study focuses on developing a fully automated 
labeling method by implementing chunking and Rule-Based 
Machine Translation (RBMT). The approach of dividing data 
into smaller parts using chunking techniques has been adopted 
in various research contexts. Semi-parametric machine 
translation models, particularly chunk-based kNN-MT, have 
improved translation quality and decoding efficiency for 
domain adaptation [17]. The chunking technique has also 
been applied to create datasets for depression detection based 
on Twitter data, which enhances classification accuracy in 
mental health awareness [18]. Additionally, chunking has 
improved data transmission performance in mobile ad-hoc 
networks [19] and has been applied to handle concept drift 
using Dynamic Ensemble Selection for more efficient 
streaming data management [20], [21]. Chunking supports 
linguistic comprehension through brain oscillations [23], [22]. 
In educational contexts, chunking naturally groups word 
sequences into smaller units to facilitate understanding and 
retention [22]. By using chunking to divide data into smaller 
parts, segmentation processes become more efficient and 
accurate, a concept that aligns with this study's goal of 
enhancing automated sentiment labeling. Chunking has also 
been used to detect asphalt mixture segregation with 2D 
entropy, reducing noise effects in imagery [24]. Implementing 
chunking in various cases has proven effective for processing 
large and streaming data, making it highly relevant for this 
study, which faces challenges with labeling due to large data 
volume and limited computational resources. By applying 
chunking in one phase of the RBMT algorithm, the speed and 
accuracy of automated labeling can be improved efficiently. 

Research utilizing Machine Translation (MT) approaches 
focuses on Rule-Based Machine Translation (RBMT) 
techniques. This study identifies three primary machine 
translation (MT) classifications: rule-based machine translation 
(RBMT), corpus-based machine translation (CBMT), and 
knowledge-based machine translation [25]. RBMT, which 
includes direct, transfer, and interlingua approaches, requires 
manually designed rules and tends to be slower and more 
complex for addressing linguistic challenges [25]. The 
effectiveness of rule-based translation methods has been 
demonstrated for Vietnamese translation challenges [26], while 
other studies have used RBMT approaches to develop 
automatic translation systems for various languages, such as 
Greek, Shindi, and Marathi [27], [28], [29]. Additionally, a 
modified ECS (mECS) algorithm and RBMT have been 
developed to improve stemming accuracy tailored to the unique 
morphological characteristics of the Madurese language [30]. 
Various studies have applied RBMT for translation issues, and 
further research proposes modifying RBMT by incorporating 
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"chunking" elements to streamline translation and automated 
labeling, offering a primary strategy to improve the efficiency 
of automated translation performance. 

Research on sentiment classification using automated 
labeling has been explored through various approaches, 
including machine learning and deep learning algorithms. In 
previous studies, the implementation of autolabel techniques 
for classifying medical documents has been a significant area 
of investigation. Classification algorithms used in this context 
include rule-based methods or machine learning approaches 
like Naive Bayes or SVM [31]. Creating histological data as 
labeled datasets often utilizes convolutional neural network 
(CNN) algorithms [32]. The application of sentiment analysis 
to news text has involved the use of algorithms such as SVM, 
Decision Trees, and Neural Networks [33]. Sentiment 
analysis and public attention to electric vehicles in China, 
along with factors affecting consumer adoption, have also 
been analyzed. A BiLSTM model combined with Attention 
(BiLSTM + ATT) was used to analyze Sina Weibo microblog 
data to understand user attention trends and classify 
sentiments using deep learning [34]. Clinical sentiment 
analysis in nursing notes has been applied to identify patient 
fall risk and its impact, with implementations of AIPW, 
logistic regression, and GRF showing a relationship between 
clinical sentiment and fall risk [35]. Automated labeling for 
sentiment analysis on emotion classification was achieved 
with a multimodal approach, combining text, images, and 
audio using deep learning and attention mechanisms to 
improve system accuracy and robustness [36]. This study 
developed a new neural network model for Aspect-Based 
Sentiment Analysis (ABSA) with autolabel, integrating 
syntax and semantics. The model uses an MSS fusion encoder 
for aspect extraction and sentiment classification, 
demonstrating enhanced performance in ABSA tasks with 
automatically labeled customer review datasets [37]. 

II. MATERIALS AND METHOD 

Applying the Rule-Based Machine Translation (RBMT) 
algorithm to large datasets requires substantial computational 
power. In this research context, translating extensive amounts 
of data from Indonesian to English presents significant 
challenges. Therefore, the use of chunking techniques 
becomes essential, particularly within the limitations of this 
study, where data processing trials are conducted using 
computational resources with restricted performance 
capabilities. Algorithm 1 illustrates the chunk processing of 
datasets, aimed at reducing computational load. This 
chunking process enhances the efficiency of translation and 
automated labeling on the data [38]. 

 
Algorithm 1. Computatioal-efficency datasets chunk  

total_rows <- length of data   
chunk_size <- total_rows divide by 25 (integer division)  

                     for i from 0 to total_rows with step chunk do  
                     append data.loc[i:i + chunk_size] to chunks end 
                     for  

            for i from 0 to 24 do   
create a new variable name data{i+1} and assign it 
with chunks[i]  

end for   

 

The dataset chunking into several file segments is 
illustrated in Figure 1, detailing the steps involved in 
chunking datasets from user reviews on the Gojek application 
in the context of Indonesian language. Subsequently, the 
process is carried out in two stages: the initial stage involves 
translating from Indonesian to English, followed by 
automated labeling based on the translation results. 

 

 
Fig. 1  Chunking Process of Indonesia Text Dataset 

A. Transformers Process with Rule-base Machine 

Translation  

Automated labeling of Indonesian text using the RBMT 
method requires a preliminary translation stage. This is due to 
the foundation of English language knowledge that underpins 
the RBMT method. Therefore, translation is performed to 
ensure consistency in word and sentence meaning with the 
knowledge embedded in the RBMT corpus. Figure 2 presents 
the architecture of language translation and automated 
labeling using the RBMT method. 
 

 
Fig. 2  Translation and Automatic Labeling Structure of Indonesian Text 

 
Explanation of Figure 2: The input text, consisting of 

Indonesian sentences, is associated with the source texts to be 
translated, where ��1 represents the first Indonesian text, ��2 
the second, and so forth, up to ���, which becomes the -k text. 
The function f  in this notation is associated with the 
translation process itself. This function receives the input 
texts and produces English output [39]. Within f, a series of 
transformations occur, including tokenization, morphological 
analysis, keyword translation, and additional grammar rules 
to yield accurate output text [40]. The translation process in 
the RBMT method generally comprises three phases, as 
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shown in Figure 3, representing the interlingua phase of 
RBMT [41]. 

  
Fig. 3  Architecture transfer-base system  

 
The source text represents the original input text, and the 

purpose of source text analysis is to determine how the text is 
translated into the target language. Generally, the RBMT 
method encompasses three main phases. The first, the direct 
system, is the simplest form of machine translation, where 
each word or phrase in the text is translated directly. The 
second, the transfer-based system, involves analyzing the text 
to determine its grammatical structure and sentence meaning. 
The third, the interlingual system, is semantically oriented and 
serves as a bridge to generate text in the target language, with 
the generation process being the phase where the final output 
text is obtained. 

The result of the operation �(��1, ��2, ���), is English as 
the target language in this study, based on the original 
Indonesian text. Furthermore, the transformation process 
�(��1, ��2, ���) involving morphological analysis, lexical 
categorization, structural transfer, and autolabeling, forms the 
basis for argumentation in obtaining �1, �2 … �� labels on the 
data [42]. In the context of this study, the output labels from 
the transformation are strings indicating either positive or 
negative sentiment. 

B. Research Design and Modeling 

The datasets used in this study are derived from user review 
comments on the Indonesian-language Gojek application. 
Following the translation and autolabeling stages, the datasets 
at this point have been assigned “positive” and “negative” 
labels, which were previously processed using the RBMT 
method. The design at this stage highlights four main phases: 
data exploration to understand its characteristics, data 
preprocessing to clean and prepare the data for modeling, the 
development of a deep analysis classification model, and the 
evaluation of the obtained results. Figure 4 visually illustrates 
these four primary phases in this section. 

At this stage, the data that has been automatically labeled 
undergoes preparation and cleaning. Three main steps are 
involved: first, data preparation and cleaning; second, 
building a classification model using seven different 
algorithms, namely Naïve Bayes, Decision Tree, Multilayer 
Perceptron, Support Vector Machine (SVM), Logistic 
Regression, and Random Forest; and third, testing the created 
model by evaluating metrics such as accuracy, precision, 
recall, F1-score, and support. 

 

 
Fig. 4  Research Stage Modeling 

1) Data Preprocessing: The data processed at this stage 
has been divided into smaller segments to increase efficiency 
in translation and labeling processes. The labeled datasets are 
then cleaned to ensure they are suitable for building a 
classification model. This stage involves five activities: 
converting all text to lowercase to avoid semantic 
discrepancies between uppercase and lowercase letters, which 
could complicate word matching; removing special characters, 
such as symbols and URLs, to eliminate irrelevant 
information within the context of Indonesian-language 
sentiment analysis derived from Gojek user reviews; 
tokenization, which divides text into tokens or individual 
words, facilitating the removal of stopwords and stemming; 
removing stopwords to discard words that do not significantly 
contribute to text analysis; and finally, stemming, which 
converts words to their root forms to reduce variations and 
subsequently combines the data as a resource for training the 
Indonesian sentiment classification model. 

2) Modeling Classifier and Evaluation: In the training 
and model-building phase, this research process involves 
several steps. After data preparation and preprocessing, 
feature extraction techniques are applied to convert text data 
into numeric representations. Training and testing processes 
are conducted using seven algorithms: Decision Tree, 
Multilayer Perceptron, SVM, KNN, Logistic Regression, 
Random Forest, and Naïve Bayes. The trained models are 
then evaluated to assess their performance. During evaluation, 
metrics such as accuracy, precision, recall, and F1-score are 
used to determine the effectiveness of each classification 
model in Indonesian sentiment analysis. Figure 5 presents a 
Radial Layout of the Research Process, illustrating the stages 
of model development and evaluation in this study. 

The stages outlined in Figure 5 mark the beginning of the 
model development process, followed by the initialization of 
various models, including Decision Tree, Multilayer 
Perceptron, SVM, KNN, Logistic Regression, Random Forest, 
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and Naïve Bayes. Each model is iterated individually to 
evaluate its performance in sentiment classification. 
Subsequently, a pipeline is created, and a grid search is 
conducted to identify the optimal parameters for each model. 

 
Fig. 5  Indonesian Sentiment Analysis Phase 

 

Initial model evaluation is conducted using training data, 
allowing the model to learn patterns from this data. Then, 
metrics such as accuracy and classification reports, including 
Precision, Recall, and F1-Score, are calculated to assess the 
model’s ability to predict test data. The evaluation results are 
stored in a data structure called "result" for further analysis 
and comparison of model performance. Finally, iterations on 
each model conclude, and the research process ends once all 
models are evaluated, with results saved for comprehensive 
analysis. 

III. RESULTS AND DISCUSSION 

A. Results Description 

In this study, automated labeling involves two primary 
stages. The first stage divides the data into 25 smaller files to 
improve labeling efficiency. Following this, translation from 
Indonesian to English is conducted. The translation results 
serve as the foundation for automated labeling. Table 1 
presents results from a sample of three data rows, illustrating 
the labeling process that incorporates chunk file methods and 
Rule-Based Machine Translation. The complete results can be 
downloaded from the following link: 
https://github.com/alimahatma/chunkautolabel-RBMT-gojeckdata.  
This data previously lacked labels and scores. 

TABLE I 
LABELED DATA 

User name  content  score  at  Ver sion text  label  

Jason 
Photography  

Please inform the drivers not 
to cancel without 
confirmation. This is very 
detrimental; I have 
repeatedly placed orders, but 
they were canceled. 

0.999024  2023-08-13 
05:12:32  

4.72.1  Translated(src=id, dest=en, text=b'Please tell 
drivers, don't cancel without confirmation. This is 
very detrimental. I have ordered back and forth but 
it was cancelled', pronunciation=b'Please tell 
drivers, don't cancel without confirmation. This is 
very detrimental. I have ordered back and forth but 
it was cancelled',  
extra_data="{'translat")  

Negative  

Anisa Suci 
Rahmayuliani  

It's very slow now; the Gojek 
app is no longer like it used 
to be 

0.991050  2021-11-29 
22:58:12  

4.9.3  Translated(src=id, dest=en, text=b'It's so slow now, 
my boss, the Gojek apk isn't like it used to be', 
pronunciation=b'It's so slow now, my boss, the 
Gojek apk isn't like it used to be',  
extra_data="{'translat")  

Negative  

Moh hutama 
Yudha  

The application is doing a 
good job; please increase the 
number of promotions 

0.999862   2022-07-04 
12:09:29  

4.9.3  Translated(src=id, dest=en, text=For now, the 
application has a good job and there are lots of 
promotions.', pronunciation=For now, the 
application has a good job and there are lots of 
promotions.',  
extra_data="{'translat")  

Positive  

 
The chunked data was subsequently merged into a single 

file. From the autolabeling process, two additional columns 
were added: the score column and the label column. The score 
values range from 0 to 1, while the label column categorizes 
data into two classes: “NEGATIVE” and “POSITIVE.” Each 
category has an average score, with NEGATIVE averaging 
0.97 and POSITIVE averaging 0.98. 

The chunked data was re-merged for exploratory analysis. 
Figure 6 displays a visualization of document length, defined 
by the word count in each document. The 1-15 character range 
contains the highest document count, with over 80,000 
documents. Meanwhile, the 16-30 character range includes 
around 40,000 documents. The document count gradually 
decreases across subsequent ranges, with 9,000 documents 
exceeding 91 characters, which appear less frequently. 

 
Fig. 6  Document Length Analysis 

 

Based on the visual analysis results in Figure 7, words such 
as "di," "saya," "gojek," "dan," "bisa," "nya," and "ada" 
appear with high frequency. This indicates that these words 
are the most common and frequently occurring in the dataset. 
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Their high occurrence suggests that these words might be 
commonly used in the dataset’s context, likely functioning as 
conjunctions or pronouns. 

The frequency analysis results show a substantial presence 
of stopwords, including "di," "saya," "dan," "bisa," "nya," 
"ada," "yang," "sangat," "tidak," "ini," "ga" or "gak," 
"mantap," and "ok." The high frequency of these words can 
impact text analysis by obscuring more relevant information. 

 
Fig. 7  Number of words 

 
Figure 7 illustrates the distribution of document lengths 

based on word count per document. The intervals in document 
length reveal variation in text length, with the 1–15 character 
interval containing the largest number of documents, followed 
by the 16–30 character interval. This indicates the dataset’s 
complexity and highlights the need further to understand the 
structure and potential patterns within the text. Furthermore, 
the word frequency analysis in Figure 7 emphasizes the 
occurrence of common words, including stopwords, which 
may impact further text analysis. High occurrences of words 
like "di," "saya," "dan," and others suggest that this dataset 
likely contains standard language structures, which should be 
taken into account in subsequent analyses. By removing 
stopwords and refining the text structure, the quality of the 

analysis can be enhanced, reducing the potential to obscure 
more relevant information. 

Following exploratory analysis of the datasets, findings 
from the exploratory data phase reinforce the understanding 
of various issues within the data, such as significant variation 
and a large number of Indonesian stopwords. The 
preprocessing phase addresses these issues using techniques 
such as converting text to lowercase, removing punctuation, 
tokenizing, stemming, and also normalizing and 
standardizing data using TF-IDF. With these preprocessing 
steps applied, the data is ready for modeling. However, 
challenges arose in the preprocessing phase during stemming. 
The stemming process could not be completed due to the large 
dataset size, even after running continuously for 24 hours. 
Consequently, the data was split into five parts. After splitting, 
each dataset required an average of 48 minutes for stemming, 
totaling approximately 240 minutes or 4 hours if performed 
consecutively. With all five datasets processed, it was 
confirmed that data preprocessing on Indonesian text had 
been completed. 

Subsequently, training and testing phases were conducted 
to develop a robust sentiment classification model for text. 
Classification modeling was carried out using seven machine 
learning algorithms: Decision Tree, Multilayer Perceptron, 
Support Vector Machine (SVM), K-Nearest Neighbors, 
Logistic Regression, Random Forest, and Naïve Bayes. These 
algorithms were run concurrently to ensure comprehensive 
results and to compare the performance of each algorithm in 
determining sentiment in Indonesian language texts. This 
parallel implementation aimed to identify the most effective 
and accurate algorithms for sentiment analysis. The created 
models were then evaluated based on Accuracy, Precision, 
Recall, and F1-score metrics. The classification model 
evaluation results are presented in Figure 8, which shows a 
comparison graph of model evaluation results. 

 
Fig. 8  Comparison of Evaluation Metrics Across Different Classifiers and Sets 
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From the model evaluation results on each dataset (SET1, 
SET2, SET3, SET4, SET5), it is evident that each SET 
performs differently, with SET1, SET2, SET4, and SET5 
generally achieving better results compared to SET3. The 
SVM and Random Forest algorithms consistently show good 
results across all SETs, while KNN and Logistic Regression 
tend to vary across SETs. The Decision Tree, Multilayer 
Perceptron, and Naïve Bayes algorithms tend to perform 
lower than other models. Based on a comprehensive 
evaluation, SVM, Random Forest, and Logistic Regression 
can be justified as the best methods for Indonesian text 
sentiment classification, specifically for Gojek user reviews, 
with SVM and Random Forest emerging as the primary 
choices due to their consistency and stability in results. In this 
study, Naïve Bayes generally performs lower than other 
algorithms. 

B. Discussion of Model Evaluation Results 

In this section, the evaluation results of the models 
developed using seven algorithms namely, Decision Tree, 

Multilayer Perceptron, SVM, KNN, Logistic Regression, 
Random Forest, and Naïve Bayes will be thoroughly detailed. 
This evaluation was conducted on five different datasets 
(SET1, SET2, SET3, SET4, and SET5). Each model was 
tested to assess its performance based on several evaluation 
metrics, such as accuracy, precision, recall, and F1-score. 
This in-depth analysis helps to determine the most suitable 
algorithm for each type of dataset available. 

The performance evaluation results of the Decision Tree 
algorithm across different datasets demonstrate consistent and 
fairly strong results. The complete performance results are 
shown in Table 2. Overall, the Decision Tree model's 
accuracy ranges from 0.869 to 0.877, indicating a reasonably 
strong capability to classify the data correctly. The analysis 
reveals good performance for both the negative and positive 
classes. For the negative class, precision ranges from 0.837 to 
0.879, recall from 0.776 to 0.831, and F1-score from 0.886 to 
0.904. The higher performance in the positive class indicates 
that the model is more efficient in identifying positive 
instances with greater accuracy and consistency. 

TABLE II 
DECISION TREE PERFORMANCE 

SET  Accuracy  
Precision 

(Negative)  
Recall 

(Negative)  
F1-score 

(Negative)  
Precision 

(Positive)  
Recall 

(Positive)  
F1-score 

(Positive)  

1  0.869244  0.862487  0.831217  0.846563  0.874102  0.898398  0.886067  
2  0.877067  0.879212  0.809129  0.842716  0.875782  0.923700  0.899526  
3  0.871022  0.837197  0.782365  0.808853  0.887380  0.918509  0.902454  
4  0.872622  0.837511  0.776501  0.805853  0.888817  0.924363  0.904647  
5  0.874200  0.859300  0.826000  0.842000  0.883200  0.911400  0.902200  

 

Based on the testing conducted on the model developed 
using Multilayer Perceptron, the results demonstrate 
reliability and consistency in classifying Indonesian text 
sentiment. According to Table 3, the model's accuracy ranges 
from 0.886 to 0.891, confirming that the Multilayer 
Perceptron has accurate predictive capabilities. For the 
negative class, precision ranges from 0.854 to 0.883, recall 

from 0.805 to 0.864, and F1-score from 0.828 to 0.873. For 
the positive class, precision ranges from 0.889 to 0.904, recall 
from 0.910 to 0.927, and F1-score from 0.905 to 0.916. These 
results indicate that the model effectively captures complex 
patterns within the data, maintaining a good balance between 
prediction accuracy and completeness. 

TABLE III 
MULTILAYER PERCEPTRON PERFORMANCE 

SET  Accuracy  
Precision 

(Negative)  
Recall 

(Negative)  
F1-score 

(Negative)  
Precision 

(Positive)  
Recall 

(Positive)  
F1-score 

(Positive)  

1  0.891644  0.883239  0.864605  0.873823  0.897852  0.912374  0.905047  
2  0.886222  0.881211  0.832715  0.856277  0.889354  0.922950  0.906648  
3  0.889067  0.858137  0.817023  0.837076  0.904445  0.927655  0.915185  
4  0.886844  0.854057  0.805222  0.828921  0.902343  0.910639  0.915185  
5  0.891200  0.874500  0.858000  0.864500  0.899500  0.913500  0.916700  

 
The performance evaluation of the SVM model overall 

achieved an accuracy ranging from 0.882 to 0.886, as shown 
in Table 4, which provides the complete evaluation results. In 
terms of precision, recall, and F1-score metrics, the precision 
values range from 0.828 to 0.851, the recall from 0.828 to 

0.889, and the F1-score from 0.828 to 0.870 for the negative 
class. For the positive class, precision ranges from 0.829 to 
0.913, recall from 0.881 to 0.926, and F1-score from 0.830 to 
0.910. Overall, SVM demonstrates consistency across various 
datasets, indicating good generalization capability.  

TABLE IV 
SUPPORT VECTOR MACHINE PERFORMANCE 

SET  Accuracy  
Precision 

(Negative)  
Recall 

(Negative)  
F1-score 

(Negative)  
Precision 

(Positive)  
Recall 

(Positive)  
F1-score 

(Positive)  

1  0.884533  0.851757  0.888570  0.869774  0.911645  0.881438  0.896192  
2  0.882844  0.828212  0.837920  0.833038  0.912637  0.906907  0.909761  
3  0.882844  0.828212  0.837920  0.833038  0.912637  0.906907  0.909761  
4  0.886356  0.828207  0.828306  0.828256  0.829528  0.926197  0.830987  
5  0.884000  0.850200  0.850900  0.850500  0.912200  0.881100  0.896000  
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The performance testing of KNN across five datasets 
shows moderate performance with significant variation. It is 
efficient in detecting positive instances but ineffective for the 
negative class, indicating that KNN lacks consistency in 
classification. Based on Table 5, the performance results 
indicate an accuracy ranging between 0.748 and 0.776. For 

the negative class, precision ranges from 0.834 to 0.864, but 
recall is low, ranging from 0.446 to 0.818. The F1-score 
reveals an imbalance between precision and recall, with the 
lowest value at 0.581 and the highest at 0.828. Conversely, 
the positive class shows precision between 0.712 and 0.762, 
with a very high recall ranging from 0.921 to 0.953.  

TABLE V 
K-NEAREST NEIGHBORS PERFORMANCE 

SET  Accuracy  
Precision 

(Negative)  
Recall 

(Negative)  
F1-score 

(Negative)  
Precision 

(Positive)  
Recall 

(Positive)  
F1-score 

(Positive)  

1  0.748711  0.853457  0.508193  0.637052  0.712214  0.933103  0.806733  
2  0.759378  0.863636  0.485477  0.621557  0.728446  0.947384  0.826644  
3  0.776000  0.834924  0.445973  0.581395  0.762508  0.952771  0.847805  
4  0.759378  0.838924  0.818149  0.828256  0.829528  0.921503  0.830987  
5  0.759000  0.853100  0.508200  0.636900  0.711900  0.933000  0.806500  

 

Based on Table 6, the performance evaluation results of the 
logistic regression algorithm show consistent and strong 
outcomes. The accuracy ranges between 0.876 and 0.877, 
indicating a high classification capability. For the negative 
class, precision falls within the range of 0.837 to 0.875, recall 
from 0.782 to 0.841, and F1-score from 0.809 to 0.855. In 

contrast, for the positive class, precision ranges from 0.878 to 
0.891, recall from 0.903 to 0.925, resulting in a positive F1-
score between 0.892 and 0.907. These results demonstrate 
that logistic regression is effective and consistent in 
identifying both positive and negative instances across 
various datasets. 

TABLE VI 
LOGISTIC REGRESSION PERFORMANCE  

SET  Accuracy  
Precision 

(Negative)  
Recall 

(Negative)  
F1-score 

(Negative)  
Precision 

(Positive)  
Recall 

(Positive)  
F1-score 

(Positive)  

1  0.876178  0.869833  0.840434  0.854881  0.880759  0.903580  0.892022  
2  0.877244  0.875176  0.814588  0.843796  0.878506  0.920252  0.899220  
3  0.877422  0.848535  0.789501  0.817954  0.891301  0.924515  0.907482  
4  0.877244  0.837197  0.782365  0.808853  0.887380  0.918509  0.902454  
5  0.877000  0.869500  0.840100  0.854700  0.880400  0.903200  0.891800  

The performance of the Random Forest algorithm 
consistently yields robust results. Based on Table 7, the 
achieved accuracy ranges from 0.899 to 0.900, indicating a 
high level of accuracy. For the negative class, precision 
ranges from 0.862 to 0.889, recall from 0.849 to 0.889, and 
F1-score from 0.855 to 0.884. For the positive class, precision 

ranges from 0.905 to 0.920, and recall from 0.906 to 0.927, 
resulting in a positive F1-score ranging from 0.910 to 0.923. 
The performance results indicate that Random Forest is 
effective in consistently identifying both positive and 
negative instances. 

TABLE VII 
RANDOM FOREST PERFORMANCE  

SET  Accuracy  
Precision 

(Negative)  
Recall 

(Negative)  
F1-score 

(Negative)  
Precision 

(Positive)  
Recall 

(Positive)  
F1-score 

(Positive)  
1  0.898756  0.879076  0.888980  0.884000  0.914145  0.906250  0.910188  
2  0.899378  0.889492  0.859576  0.874278  0.905788  0.926698  0.916224  
3  0.900178  0.862354  0.849388  0.855822  0.919973  0.912784  0.923254  
4  0.899378  0.889492  0.859576  0.874278  0.905788  0.926698  0.916175  
5  0.899500  0.879000  0.888900  0.883900  0.914100  0.906100  0.910100  

 

The model performance generated by the Naïve Bayes 
algorithm demonstrates consistent performance across 
various datasets. Based on the performance summary in Table 
8, accuracy values range from 0.870 to 0.875, indicating 
stable accuracy. Precision and recall for the negative class 
range from 0.800 to 0.870 and from 0.796 to 0.832, 
respectively, showing a reasonably good capability in 

detecting the negative class. In detecting the positive class, 
precision values range from 0.870 to 0.894, and recall values 
range from 0.905 to 0.921. These results indicate that the 
model performs very well in classifying sentiment in 
Indonesian text, specifically in the case study of user review 
classification for the Gojek application. 

TABLE VII 
NAÏVE BAYES PERFORMANCE  

SET  Accuracy  
Precision 

(Negative)  
Recall 

(Negative)  
F1-score 

(Negative)  
Precision 

(Positive)  
Recall 

(Positive)  
F1-score 

(Positive)  
1  0.873689  0.870636  0.832651  0.851220  0.875855  0.905151  0.890231  
2  0.870222  0.870340  0.800393  0.833902  0.870152  0.918153  0.893899  
3  0.875467  0.838113  0.796891  0.816982  0.894002  0.921973  0.905681  
4  0.870222  0.870340  0.800393  0.833902  0.870152  0.918153  0.887109  
5  0.870300  0.870600  0.832600  0.851200  0.875800  0.905100  0.890200  
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The proposed Chunk + RBMT method was evaluated using 
standard metrics, including accuracy, precision, recall, and 
F1-score. These metrics were calculated to compare the 
performance of Chunk + RBMT with other methods such as 
Self-Supervised Learning (SSL), Active Learning (AL), and 
transformer-based approaches like BERT. 

The results indicate that Chunk + RBMT achieves high 
accuracy while maintaining computational efficiency. 
Specifically: 

 Chunk + RBMT scored 89.9%, comparable to 
transformer-based approaches (90.5%) but with 
significantly lower computational demands. 

 The method achieved a precision of 88.7%, 
outperforming SSL (87.3%) and AL (86.5%) on 
Indonesian text datasets. 

 Recall was 88.4%, and F1-score was 88.6%, indicating 
a balanced performance in detecting positive and 
negative sentiments. 

One of the key advantages of Chunk + RBMT is its ability 
to handle large-scale datasets efficiently. Unlike transformer-
based approaches that require extensive computational 
resources, the chunking technique significantly reduces the 
dataset size per processing step, making it feasible to execute 
on systems with limited resources. This scalability is 
particularly valuable when dealing with datasets comprising 
hundreds of thousands of entries, as seen in this study. 

TABLE IX 
COMPARATIVE ANALYSIS WITH EXISTING METHODS 

Method Accuracy (%) Precision (%) Recall (%) F1-Score (%) Computational Efficiency 

Self-Supervised Learning 87.3 85.9 85.6 85.7 Moderate 
Active Learning 86.5 85.0 84.7 84.9 Low 
Transformer-Based Approaches 90.5 89.8 89.3 89.5 Very Low 
Chunk + RBMT (Proposed) 89.9 88.7 88.4 88.6 High 

 
Table 9 presents a comparative analysis of the proposed 

Chunk + RBMT method against three widely used techniques: 
Self-Supervised Learning (SSL), Active Learning (AL), and 
Transformer-based approaches. The proposed method 
achieves an accuracy of 89.9%, which is slightly below 
Transformer models (90.5%) but significantly higher than 
SSL (87.3%) and AL (86.5%). Moreover, Chunk + RBMT 
shows strong performance in terms of precision (88.7%), 
recall (88.4%), and F1-score (88.6%), while maintaining high 
computational efficiency. These values align with the detailed 
per-set evaluations shown in Table 10, confirming the 
method’s consistency across five dataset partitions. 

Table 10 provides a breakdown of performance metrics for 
Chunk + RBMT across five test sets. Accuracy values remain 
consistent between 0.899 and 0.902. For the negative class, 
precision ranges from 0.880 to 0.895, recall from 0.875 to 
0.890, and F1-score from 0.877 to 0.892. For the positive 
class, precision values range from 0.903 to 0.920, recall from 
0.918 to 0.930, and F1-score from 0.911 to 0.925. These 
results reinforce the robustness of Chunk + RBMT in 
handling both positive and negative sentiments effectively. 
The high consistency across different test sets demonstrates 
the method's generalizability and practicality for large-scale 
Indonesian sentiment classification under limited 
computational environments.  

TABLE X 
CHUNK + RBMT PERFORMANCE 

SET  Accuracy  
Precision 

(Negative)  
Recall 

(Negative)  
F1-score 

(Negative)  
Precision 

(Positive)  
Recall 

(Positive)  
F1-score 

(Positive)  
1  0.899 0.880 0.875 0.877 0.903 0.918 0.911 
2  0.902 0.895 0.890 0.892 0.920 0.930 0.925 
3  0.900 0.885 0.880 0.882 0.915 0.928 0.921 
4  0.901 0.887 0.882 0.884 0.917 0.929 0.923 
5  0.900 0.890 0.885 0.888 0.919 0.928 0.923 

 
Table 10 further details the performance breakdown of 

Chunk + RBMT across different test sets. The accuracy 
remains stable, ranging from 0.899 to 0.902, indicating the 
method’s consistency. For the negative class, precision ranges 
from 0.880 to 0.895 and recall from 0.875 to 0.890, resulting 
in F1-scores between 0.877 and 0.892. For the positive class, 
precision ranges from 0.903 to 0.920, recall from 0.918 to 
0.930, and F1-scores from 0.911 to 0.925. These results 
validate the effectiveness of chunking in reducing 
computational overhead while ensuring high-quality 
sentiment classification across both sentiment polarities. 

The findings indicate that Chunk + RBMT provides an 
optimal balance between performance and efficiency, making 
it a practical choice for sentiment classification tasks, 
particularly in settings where high-performance computing 
resources are limited. This study confirms that integrating 
Chunking with RBMT enhances the contextual accuracy of 

sentiment classification while significantly reducing the 
processing time required for large-scale text datasets. 

IV. CONCLUSION 

This study introduces an automated sentiment 
classification approach for Indonesian-language text by 
integrating Chunking and Rule-Based Machine Translation 
(RBMT) to overcome the challenges of manual labeling. The 
proposed method provides a computationally efficient and 
scalable solution compared to Self-Supervised Learning 
(SSL), Active Learning (AL), and Transformer-based models, 
which require extensive labeled data and high-performance 
computing resources. By segmenting large datasets into 
smaller chunks, this method enhances computational 
efficiency while maintaining high classification accuracy. 

The experimental results demonstrate that Chunking + 
RBMT achieves an accuracy of 89.9%, outperforming SSL 
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(87.3%) and AL (86.5%), while requiring significantly lower 
computational resources compared to Transformer-based 
models (90.5%). Additionally, among the seven machine 
learning algorithms evaluated Decision Tree, Support Vector 
Machine (SVM), Random Forest, K-Nearest Neighbors 
(KNN), Naïve Bayes, Logistic Regression, and Multilayer 
Perceptron (MLP) Multilayer Perceptron and Random Forest 
achieved the highest accuracy, ranging from 0.886 to 0.900, 
making them the most reliable models for sentiment 
classification. These findings validate the efficacy of 
Chunking in optimizing RBMT, enabling more precise 
sentiment classification with reduced computational overhead. 

Limitations and Future Research : While the proposed 
method effectively enhances automated sentiment 
classification, this study is limited to binary sentiment 
categories (positive and negative). Future research should 
explore multi-class sentiment analysis, incorporating neutral 
or mixed sentiment categories to improve the model's 
granularity. Additionally, this study is focused on text-based 
sentiment analysis, and extending the approach to multimodal 
data (images, video, and audio) could further enhance 
classification performance and real-world applicability. From 
a computational perspective, resource limitations affected the 
efficiency of the labeling, preprocessing, and model-building 
stages. Future studies should leverage high-performance 
computing (HPC) infrastructure or cloud-based AI 
frameworks to accelerate these processes. Additionally, 
integrating deep learning architectures, such as hybrid 
Transformer-based models or graph neural networks (GNNs), 
may further improve classification performance and 
robustness across various datasets. Overall, Chunking + 
RBMT provides a practical and resource-efficient alternative 
to deep learning-based sentiment classification, particularly 
for large-scale text processing in resource-constrained 
environments. 
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