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Abstract—Soil-Transmitted Helminths (STH) infection remains a significant global health challenge, particularly in regions with 

inadequate sanitation. While precise early detection is crucial, conventional techniques like microscopy require substantial time and 

accuracy. This work rigorously examines recent developments in STH detection utilizing machine learning and deep learning 

techniques. This study pertains to articles published from 2014 until 2024. During the literature selection process utilizing the PRISMA 

Method, 26 pertinent articles were extracted from the Google Scholar, PubMed, IEEE Xplore, and Scopus databases. The findings 

indicated that notably Convolutional Neural Networks (CNN) and U-Net algorithms exhibited markedly superior detection accuracy 

(95-98%) relative to Support Vector Machines (SVM) and Random Forest (RF) (87-92%) respectively. SVM and RF exhibit superior 

speed but diminished accuracy when applied to tiny datasets. Moreover, there exists significant potential to boost model performance 

and address data constraints using transfer learning and data augmentation techniques. This study demonstrates that the integration 

of artificial intelligence with the Internet of Things (IoT) facilitates expedited and more efficient surveillance through real-time detection 

of STH in endemic regions. Moreover, crowdsourcing and self-supervised learning (SSL) have emerged as methods for the acquisition 

of annotated data. Significant recent advancements in machine learning and deep learning technologies forecast expedited, more 

precise, and scalable STH diagnosis in the future. This can be utilized in future global health surveillance, despite limitations such as 

restricted data and computational resources. 
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I. INTRODUCTION

Soil-transmitted helminthiasis (STH) remains a significant 
global health problem, especially in tropical and subtropic 
regions with poor sanitation and limited access to clean water, 
affecting more than 1.5 billion people worldwide, 
predominantly in low- and middle-income countries [1],[2], 
are affected, leading anemia, nutritional disorders, and 
cognitive developmental impediments in children [3],[4],[5]. 

These parasitic infections, caused by intestinal worms like 
Ascaris lumbricoides, Trichuris trichiura, and hookworm, pose 
a significant global health burden, disproportionately affecting 
vulnerable populations, particularly children [6]. Despite 
progress in global control efforts, achieving WHO's Soil-
Transmitted Helminth (STH) elimination targets necessitates 
innovative and enhanced diagnostic approaches [7]. 

Conventional diagnostic methods for Soil-Transmitted 
Helminths (STH), such as the Kato-Katz technique, remain 

widely used but have sensitivity limitations, particularly in 
detecting low-intensity infections. This limitation may lead to 
inaccurate estimates of the actual disease burden, hindering 
effective control efforts [8]. Traditional diagnostic 
approaches rely on chemicals, posing environmental and 
health risks [9]. Additionally, these methods require time-
consuming procedures, specialized expertise, and fresh fecal 
samples, increasing subjective error risks and limiting 
standardization [10], [11]. These constraints compromise 
result accuracy and efficiency [12].Consequently, developing 
more accurate, efficient, and accessible diagnostic methods is 
imperative. 

Machine learning (ML) and deep learning (DL) have 
transformed various fields, including medicine, by identifying 
complex patterns in previously undetectable data using 
artificial neural networks. In soil-transmitted helminth (STH) 
detection, ML and DL enable automated microscopic image 
analysis, enhancing diagnostic accuracy and efficiency 
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[6],[8],[13],[14], particularly in the resource-constrained 
settings [15],[16]. Furthermore, deep learning algorithms 
demonstrate exceptional accuracy in detecting helminth eggs, 
even at low intensities, surpassing traditional methods 
[17],[18],[19]. The development of AI-powered point-of-care 
diagnostics facilitates rapid and accurate field diagnosis [20]. 
Moreover, integrating multi-modal data using AI techniques 
improves the sensitivity and specificity of STH diagnosis, 
revolutionizing technology-based detection methods [18]. 
Given the advantages of machine learning (ML) and deep 
learning (DL) methods, their use is significantly superior to 
traditional methods in STH detection. 

Artificial intelligence (AI)-based methods, such as digital 
pathology (AI-DP), are more sensitive in detecting soil-
transmitted helminths (STH) infections compared to 
traditional microscopy. One example is the application of AI-
DP based on the Kato-Katz method (KK2.0), which is more 
effective in detecting Ascaris lumbricoides than the 
traditional Kato-Katz method (KK1.0) [21]. Additionally, 
Convolutional Neural Networks (CNN) achieved 92.31% 
accuracy in classifying STH infections, significantly 
outperforming traditional methods in terms of speed and 
reliability [22]. Furthermore, another study showed that deep 
learning (DL) algorithms identified Trichuris spp. eggs with an 
average precision of 98.44% and recall of 80.94%, highlighting 
DL's potential to achieve high detection accuracy [23]. 

However, although AI and DL offer great potential, their 
application in STH diagnostics still faces several challenges. 
Among these are, notably, the lack of quality datasets for 
model training, variations in microscopic image quality, and 
the need for algorithm validation across diverse endemic 
conditions [17], [24]. While many studies have developed 
detection systems for STH using machine learning (ML) and 
deep learning (DL), a comprehensive systematic review 
examining trends, developments, and effectiveness of these 
approaches between 2014-2024 remains absent. This period 
was chosen because it spans rapid growth in medical deep 
learning applications, notably featuring advances in neural 
network architectures and image pre-processing techniques. 

This comprehensive review focuses on identifying 
technology trends, evaluating the effectiveness of various 
approaches, and forecasting emerging trends. Technical 
aspects reviewed include comparisons of neural network 
architectures, preprocessing techniques, data augmentation 
strategies, and validation methods. This review examines 
theoretical foundations and real-world clinical 
implementation, analyzing technical challenges and solutions. 
The results aim to provide a roadmap for developing accurate 
and applicable STH detection systems and serve as a 
reference for optimizing AI technology in parasitological 
diagnosis. 

II. MATERIALS AND METHODS 
This Systematic Literature Review (SLR) follows the 

PRISMA (Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses) 2020 guidelines [25] to ensure 
transparency and quality reporting. These guidelines assist 
authors in preparing systematic review protocols, as 
evidenced by studies showing better reporting in PRISMA-
enabled journals compared to those that do not [26]. This 
study organizes research questions using the PICOC 

framework (Population, Intervention, Comparison, Outcome, 
Context), as outlined in Table 1. 

1) Population: An article investigating Soil-Transmitted 
Helminths (STH) detection using machine learning and deep 
learning technologies. STH microscopic image dataset 

2) Intervention: Machine learning and deep learning 
algorithms are employed for STH detection via microscopy 
image analysis, leveraging neural network architectures, 
classification, and detection algorithms. 

3) Comparison: Assessing the accuracy and reliability of 
various machine learning and deep learning approaches for 
detecting STH 

4) Outcome: Evaluating STH detection accuracy, 
efficiency, and speed. 

5) Context: The research scope includes international 
studies published over the last 10 years. 

TABLE I 
RESEARCH QUESTION 

RQ  Question 

RQ1 What developments have occurred in soil-transmitted 
helmet (STH) detection techniques using machine 
learning and deep learning in recent years? 

RQ2 What ML/DL algorithms are most commonly used, and 
how effective are they? 

RQ3 What algorithms, research focuses, accuracy, precision, 
and recall rates are employed in Machine 
Learning/Deep Learning-based helminthiasis detection? 

RQ4 What are the current trends in Deep Learning 
applications for Soil-Transmitted Helminths detection, 
and what future developments can be anticipated? 

RQ5 What potential synergies exist between Machine 
Learning and emerging technologies like IoT or smart 
sensors for enhanced Soil-Transmitted Helminths 
detection? 

A. Data Search Strategy 
The research commenced with an exhaustive literature 

search utilizing Publish or Perish, aggregating data from 
prominent academic databases (PubMed, IEEE Xplore, 
Scopus). The search strategy employed Boolean operators, 
combining three core concepts: Soil-Transmitted Helminths 
(STH), Artificial Intelligence (AI), and detection 
methodologies. It focused exclusively on English-language 
journal articles and conference proceedings. 

The initial search query combined 'soil-transmitted 
helminth' with ('machine learning' OR 'deep learning') and 
'detection'. To enhance comprehensiveness, synonyms, 
related terms, STH species ('Ascaris lumbricoides', 'Trichuris 
trichiura', 'hookworm'), and AI/ML techniques ('CNN', 
'YOLO', 'U-Net', 'transfer learning') were incorporated. 
Search parameters filtered articles with ≥1 citation, sorting 
results by publication year.  

Search results were exported in BibTeX and CSV formats 
with full metadata. Each search stage was documented, 
including date, results, h-index, and citation counts. Quality 
control measures included cross-validation, peer-review 
verification, methodology evaluation, and reference 
management. This systematic search informs an in-depth 
analysis of AI-based STH detection system development, 
identifying trends, challenges, and opportunities. 
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B. Inclusion and Exclusion Criteria 
Article eligibility was determined based on predetermined 

inclusion and exclusion criteria (Table 2), ensuring selected 
studies aligned with the research objectives 

TABLE II 
INCLUSION AND EXCLUSION CRITERIA OF THE STUDY 

Inclusion Exclusion 

Focus on Soil-Transmitted 
Helminths (STH) detection 

In addition to STH 

detection 
Utilizes Machine Learning, Deep 
Learning, or AI. 

Irrelevant topics. 

Discusses STH detection 
methodologies beyond traditional 
laboratory methods. 

Studies focusing solely 
on traditional laboratory 
methods. 

Journal articles, systematic 
reviews, literature reviews, or 
meta-analyses. 

Non-journal article 
formats (e.g., reports), 
Incomplete article. 

Abstract and keywords alignment, 
at least one citation. 

Abstract and keywords 
mismatch. 

Published within the last 10 years, 
English language. 

Articles older than 10 
years, non-English 
articles. 

III. RESULTS AND DISCUSSION 

Our PRISMA-guided search (2013-2022) yielded 1,036 
articles: Scopus (n=21), PubMed (n=5), IEEE (n=10), and 
Google Scholar (n=1,000) (Figure 1). Title and abstract 
screening reduced the total to 34 articles meeting inclusion 
criteria: Scopus (n=16), Google Scholar (n=10), IEEE Xplore 
(n=5), and PubMed (n=3). Access constraints (paywalls, 
institutional limitations) primarily drove this reduction. Full-
text evaluation and stringent eligibility criteria (population, 
intervention, study design, language) further narrowed the 
dataset to 31 articles. Ultimately, 26 articles underwent full-
text analysis and were included in the final analysis. 

 
Fig. 1 Result of finding articles using PRISMA 

A. Publication Database Trends 

Addressing Research Question 1 (RQ1), Figure 2 presents 
significant variations in published research quality and focus. 
Among 26 analyzed publications, 15% originated from IEEE 
Xplore, 50% from Scopus, 35% from Google Scholar, and 0% 
from PubMed due to zero citations. This distribution 

highlights technical databases (IEEE Xplore and Scopus) 
dominance in Soil-Transmitted Helminths (STH) detection 
research, complemented by Google Scholar's substantial 
contribution. This reflects interdisciplinary involvement from 
engineering, medicine, and public health. 

 
Fig. 2  Results Based on Publication Database 

B. Results Based on Algorithm 

Figure 3 addresses Research Question 2 (RQ2), identifying 
the optimal algorithm among 26 articles as Convolutional 
Neural Networks (CNN), which demonstrated superior 
accuracy and performance in detecting Soil-Transmitted 
Helminths (STH). CNN is frequently employed for image and 
fecal sample processing, outperforming other algorithms in 
pattern recognition and classification. Several studies 
compared various algorithms to determine the most efficient 
model, considering factors like accuracy, processing time and 
generalizability on larger datasets (Table 3). This trend 
indicates increasing adoption of deep learning methods, 
particularly CNN, to tackle data complexity and achieve 
optimal STH detection results. 

 
Fig. 3  Research Trends by Algorithm 

 

Table 3 presents studies utilizing various methods and 
algorithms for STH detection, particularly helminth eggs and 
related diseases, through image processing and machine 
learning technologies. Various methods are employed, 
including deep learning approaches (CNN, YOLO, 
MobileNet) and classical machine learning techniques (SVM, 
k-NN, Random Forest). Each method has unique strengths, 
depending on data types and application requirements. The 
CNN algorithm used for STH egg detection with Whole Slide 
Imaging (WSI) achieves high accuracy (95-98%) and 
excellent recall (96%), making it a popular choice for large-
scale medical image analysis. 

In contrast, color clustering-based methods (k-Means) are 
faster but exhibit lower accuracy and sensitivity to lighting 
conditions, limiting their field applications. Techniques like 
YOLOv5 excel in real-time detection, offering high speed and 
accuracy, making them ideal for practical field-based parasite 
detection applications addressing RQ4. 
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TABLE III 
ALGORITHM, RESEARCH FOCUS, ACCURACY, PRECISION AND RECALL 

No. Ref Algorithm Used Research Focus Detection Accuracy, 

Efficiency, and Speed 

Accuracy, Precision, and 

Recall 

1 [21] CNN, Whole Slide Imaging 
(WSI) 

Automatic detection and quantitation 
of STH eggs using digital images. 

High, can detect objects with 
high efficiency in large datasets. 

Accuracy: 95-98%; 
Precision: 94%; Recall: 96% 

2 [27] k-Means Clustering, color 
analysis (RGB, HSV, LAB, 
YCbCr) 

Rapid segmentation of STH eggs with 
color-based clustering. 

High speed, but accuracy is 
sensitive to lighting quality. 

Accuracy: 85-90%; 
Precision: 80%; Recall: 85% 

3 [28] SVM, k-NN, texture feature 
analysis (GLCM) 

Comparing the accuracy of feature-
based classification. 

Medium efficiency, sensitive to 
selected features. 

Accuracy: 80-88%; 
Precision: 82%; Recall: 78% 

4 [29] MobileNet, lightweight AI Mobile-based diagnostics in resource-
constrained areas. 

High speed and efficiency due to 
lightweight design for mobile 
devices. 

Accuracy: 90-93%; 
Precision: 91%; Recall: 89% 

5 [30] SHAP (SHapley Additive 
exPlanations) 

Interpretability of machine learning 
models for STH detection. 

It does not focus on the speed of 
detection, but on the 
interpretation of the model 
results. 

Depending on the main ML 
model being evaluated. 

6 [31] Neural Networks (Faster R-
CNN) 

Location-based identification through 
neural networks. 

High efficiency for complex 
datasets with many objects. 

Accuracy: 93-96%; 
Precision: 94%; Recall: 92% 

7 [32] YOLO, Faster R-CNN Automated detection of parasite eggs 
in microscopic images. 

Ultra-fast detection with YOLO, 
suitable for real-time 
applications. 

Accuracy: 94-97%; 
Precision: 95%; Recall: 93% 

8 [33] Ensemble Learning, 
Crowdsourcing 

Combined collective annotation and AI 
for model training. 

Speed depends on the quality of 
crowdsourced annotations, 
efficiency increases with more 
data. 

Accuracy: 88-92%; 
Precision: 89%; Recall: 90% 

9 [34] YOLOv5 Real-time parasite egg detection. Fast and efficient for large-scale 
data. 

Accuracy: 95-98%; 
Precision: 96%; Recall: 95% 

10 [35] U-Net Semantic segmentation for intestinal 
parasite detection and classification. 

Moderate speed due to model 
complexity, high efficiency on 
large datasets. 

Accuracy: 92-95%; 
Precision: 93%; Recall: 91% 

11 [17] CNN, digital pathology Digital-based detection of neglected 
tropical diseases. 

High efficiency and accuracy, 
suitable for large-scale 
implementation. 

Accuracy: 93-96%; 
Precision: 94%; Recall: 93% 

12 [36] SVM, k-NN, CNN,  
U-Net 

Comparison of classical ML and DL 
methods for parasitic egg 
segmentation. 

The speed of DL (CNN, U-Net) 
is higher than classic ML. 

Accuracy: 85-95%; 
Precision: 88%; Recall: 86% 

13 [37] CNN Classification of Ascaris lumbricoides 
parasite eggs using deep learning. 

Fast for large datasets, high 
accuracy. 

Accuracy: 92-96%; 
Precision: 94%; Recall: 92% 

14 [38] MobileNet, CNN lightweight Lightweight and efficient mobile 
device-based diagnostics. 

Very high efficiency, designed 
for field implementation. 

Accuracy: 91-94%; 
Precision: 93%; Recall: 90% 

15 [34] YOLOv5 Rapid detection of parasite eggs based 
on deep learning. 

Detection is extremely fast and 
accurate, ideal for real-time 
applications. 

Accuracy: 95-98%; 
Precision: 96%; Recall: 94% 

16 [39] Self-Supervised Learning 
(SSL) with DinoV2-Distilled 
Models 

Parasite classification using unlabeled 
visual representations. 

High efficiency as it does not 
require manual annotation, speed 
depends on ViT architecture. 

Accuracy: 92-97%; 
Precision: 93%; Recall: 94% 

17 [40] Deep Learning (CNN) AI-based detection of hookworm in 
endoscopic capsule images. 

High efficiency on large 
datasets, good speed for complex 
image-based tasks. 

Accuracy: 93-97%; 
Precision: 94%; Recall: 92% 

18 [41] Artificial Neural Network 
(ANN) 

Smartphone application for portable 
microscope-based object detection. 

High efficiency with real-time 
capability using lightweight 
ANN. 

Accuracy: 90-94%; 
Precision: 91%; Recall: 89% 

19 [23] Deep Learning (CNN, 
MobileNet) 

Quantitation of T. trichiura infection 
based on mobile microscopy and 
telemedicine. 

Efficiency is very high as it is 
designed for mobile devices and 
remote platforms. 

Accuracy: 92-96%; 
Precision: 93%; Recall: 92% 

20 [42] Machine Learning (SVM, 
Random Forest) 

Non-invasive detection of Trichuris 
infection using near-infrared 
spectroscopy. 

High speed with focus on 
spectral data analysis, high 
efficiency for field applications. 

Accuracy: 87-92%; 
Precision: 88%; Recall: 85% 

21 [38] Deep Learning (CNN, 
MobileNet) 

Mobile digital microscopy-based 
diagnosis of STH and Schistosoma 
haematobium. 

High efficiency, designed for 
fast and accurate point-of-care 
diagnostics. 

Accuracy: 92-96%; 
Precision: 93%; Recall: 91% 

22 [43] Deep Learning (RNN, CNN) Endoscopy video capsule data 
detection and analysis using AI-based 
software technology. 

Fast for video-based analysis 
with sequential processing by 
RNN. 

Accuracy: 93-97%; 
Precision: 94%; Recall: 93% 

23 [44] Deep Learning (CNN, RNN) A review and meta-analysis of the 
application of deep learning to cordless 
endoscopy capsules for gastrointestinal 
problem detection. 

A comprehensive review of 
various deep learning algorithms 
on capsule endoscopy. 

Accuracy, precision, and 
recall depend on the 
research discussed in the 
review. 

24 [45] Deep Learning (CNN, U-Net) Automatic detection of hookworms in 
endoscopy capsule images using deep 
learning. 

High speed and efficiency in 
processing endoscopic images 
using CNN. 

Accuracy: 92-96%; 
Precision: 93%; Recall: 90% 
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Additionally, employing lighter models like MobileNet for 
mobile parasite detection offers high efficiency, ideal for 
resource-constrained areas, while maintaining satisfactory 
accuracy. Self-supervised learning-based models, such as 
DinoV2, provide efficiency advantages by eliminating 
manual annotation requirements, although detection speed 
relies heavily on architectural design. Regarding 
interpretability, techniques like SHAP (SHapley Additive 
exPlanations) prioritize model decision understanding 
without sacrificing detection speed, despite interpretation 
quality depending on the primary model applied. Ensemble 
and crowdsourcing methods leverage collective annotation 
strengths to enhance model quality, although detection speed 
depends on data quality. Overall, each algorithm in this table 
offers unique advantages in specific application contexts. The 
choice of method depends on specific requirements, such as 
detection speed, accuracy and available resources. This 
diversity reflects the challenges and vast potential of AI and 
machine learning applications in parasite detection within 
healthcare. 

C. Results Based on Geographic Distribution of Authors 

Figure 4 illustrates the geographical distribution of authors 
in the analyzed studies, predominantly from countries with 
high Soil-Transmitted Helminths (STH) prevalence, such as 
Asian, African, and Latin American nations. The United 
States is the primary contributor, followed by the UK and 
Kenya. The graph also shows citation distribution across 
databases and countries, with Scopus data indicating the 
United States contributes the most citations, highlighting the 
significant role of these sources in research dissemination and 
recognition. 

 

 
Fig. 4 Distribution of articles based on author nationality 

 
This research highlights the significance of algorithm 

applications in STH detection, a primary focus of numerous 
studies. Advanced algorithms like machine learning and deep 
learning aim to enhance parasite detection and diagnostic 
accuracy. The broad research scope reflects international 
collaboration among countries facing diverse health 
challenges, indicating that while STH issues are prevalent in 
developing countries, research and technological 
development also occur in advanced nations driving 
methodological innovation and global solutions. 

D. Results Based on Inter-Technological Collaboration 

Potential  

Table 3 indicates several studies utilizing technologies 
such as MobileNet, CNN, and mobile application-based 

systems, which can be integrated with IoT for practical 
applications. This finding addresses Research Question 5 
(RQ5), as evident in studies[29] and [38] which demonstrate 
the effectiveness of lightweight mobile-based diagnosis using 
MobileNet. These devices can be connected to sensors or IoT 
for direct data collection from environmental or fecal 
samples. The research utilizing CNN and MobileNet for 
parasitic detection via cellular microscopy and telemedicine 
[23] can be integrated with IoT through telemedicine devices 
connecting various field sensors, such as microscopic image 
sensors or environmental sensors, for efficient infection 
detection. 

Furthermore, Deep Learning-based video analysis for 
endoscopy, involving capsule endoscopy analysis using CNN 
and RNN [43],[44] respectively, also shows IoT collaboration 
potential. IoT provides continuous sensor data from 
endoscopic or microscopic cameras, analyzing parasites with 
deep learning algorithms. This review highlights the 
significant potential of Machine Learning (ML) and Deep 
Learning (DL) in enhancing Soil-Transmitted Helminths 
(STH) detection, offering higher accuracy and efficiency. 
CNN, YOLO, and MobileNet algorithms effectively analyze 
microscopic parasite egg images, facilitating rapid detection 
in resource-constrained areas [21],[32],[34]. These DL 
models enable real-time automatic detection, ideal for field 
monitoring of STH infections. This innovation allows STH 
detection without complex laboratory equipment, enabling 
on-site automatic detection using connected mobile devices. 

This review highlights the benefits of crowdsourcing and 
self-supervised learning (SSL) in addressing annotated data 
challenges. Crowdsourcing diversifies datasets through 
varied annotations, whereas SSL enables model training with 
unlabeled data, minimizing manual annotation requirements 
[33],[39]. Furthermore, SHAP techniques enhance model 
interpretability, essential in medical contexts for ensuring user 
trust and understanding of automatic detection systems [30]. 
Ultimately, integrating ML, DL, IoT, and other techniques 
yields more efficient, accessible, and rapid STH detection 
systems, facilitating enhanced infection responses across 
diverse locations. 

IV. CONCLUSION 

Research on Soil-Transmitted Helminths (STH) detection 
utilizing Machine Learning (ML) and Deep Learning (DL) 
reveals that these technologies provide highly effective 
solutions for enhancing detection accuracy, speed, and 
efficiency. Algorithms such as CNN, YOLO, and MobileNet 
have demonstrated exceptional accuracy in analyzing 
microscopic parasite egg images, even in resource-limited 
environments. Furthermore, Deep Learning facilitates rapid 
and accurate automatic detection, ideal for real-time STH 
infection monitoring. 

The collaboration between ML, DL, and Internet of Things 
(IoT) holds immense potential for real-time data collection 
expansion. IoT-based systems, such as digitally connected 
microscope sensors, enable continuous STH monitoring, 
reduce laboratory equipment dependence, and facilitate on-
site detection. This opens opportunities for enhancing STH 
detection efficiently and practically, even in resource-
constrained areas 
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Furthermore, crowdsourcing and Self-Supervised Learning 
(SSL) tackle annotated data availability challenges. 
Crowdsourcing diversifies datasets, while SSL enables 
models to learn from unlabeled data, reducing manual 
annotation time and costs. SHAP enhances interpretability, 
ensuring detection results are reliable and understandable for 
medical professionals. Overall, integrating ML, DL, IoT, 
SSL, and crowdsourcing provides rapid, efficient, and 
affordable STH detection solutions, accelerating infection 
response and global health surveillance 
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