

Vol.7 (2017) No. 3

ISSN: 2088-5334

The Effect of Pre-Processing Techniques and Optimal Parameters
selection on Back Propagation Neural Networks

Nazri Mohd Nawi#, Ameer Saleh Hussein#, Noor Azah Samsudin#, Norhamreeza Abdul Hamid#, Mohd
Amin Mohd Yunus#, Mohd Firdaus Ab Aziz#

#Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, 86400, Johor, Malaysia
 E-mail: nazri@uthm.edu.my

Abstract— Artificial Neural Network had gained a tremendous attention from researchers particularly because of the architecture of
Artificial Neural Network that laid the foundation as a powerful technique in handling problems such as classification, pattern
recognition, and data analysis. It is known for its data-driven, self-adaptive, and non-linear capabilities channel that is used in
processing at high speed and the ability to learn the solution to a problem from a set of examples. Recently, research in Neural
Network training has become a dynamic area of research, with the Multi-Layer Perceptron (MLP) trained with Back-Propagation
(BP) was the most popular and been worked on by various researchers. In this study, the performance analysis based on BP training
algorithms; gradient descent and gradient descent with momentum, both using the sigmoidal and hyperbolic tangent activation
functions, coupled with pre-processing techniques are executed and compared. The Min-Max, Z-Score, and Decimal Scaling pre-
processing techniques are analyzed. The simulations results generated from some selected benchmark datasets reveal that pre-
processing the data greatly increase the ANN convergence, with Z-Score producing the overall best performance on all datasets.

Keywords— Multi-layer perceptron; back propagation; data pre-processing; gradient descent; classification

I. INTRODUCTION

Recently, Artificial Neural Network (ANN) had gained a
tremendous attention from researchers in diverse
applications. Most of the interest in ANN arose from their
use to perform useful computations. Roughly speaking, these
computations fall into two categories; natural problems such
as pattern recognition and optimization problems. In addition,
ANN is an information-processing paradigm motivated by
biological nervous systems. Moreover, the human learning
process may be partially automated with ANNs and can be
constructing a specific application such as pattern
recognition or data classification, through a learning process
[1]. ANNs and their techniques have become popular and
important for modeling and optimization in many areas of
science and engineering, and this popularity is largely
attributed to their ability to exploit the tolerance for
imprecision and uncertainty in real-world problems, coupled
with their robustness and parallelism [2]. Moreover, with its
popularity, Artificial Neural Networks (ANNs) have been
implemented for a variety of classification and learning tasks
[3]. Furthermore, the main reason for using ANNs rest solely
on its several inhibitory properties such as the generalization
and the capability of learning and generalizing from training
data, even where the rules are not known a-priori [4].

There are many kinds of ANN exist. However the main
architecture of the ANN is constructed from the input layer,
hidden layer, and the output layer [3]. Hence, over the last
few years, the ANN methodology has been accepted widely
to solve problems such as prediction, classification, pattern
recognition and ANN has become one of the most highly
parameterized models that have attracted considerable
attention in recent years [4]. Because of the ability to
generalize, self-learning and self-organizing ability to adapt,
ANN has the characteristics that had been looking for by
researchers and the most important is that it can be trained.
Furthermore, the best characteristic of ANN is that it can
absorb experience by learning from the historical data and
previous project information which can be used in the new
prediction period. Back-propagation algorithm (BP) and
feed-forward network are two popular and widely applied in
ANN estimation technologies [3]. It is known that ANN is
constituted with active layers and hidden layers, and lots of
nodes are connected inside each layer. One connection
between two nodes represents a weight and each node can be
represented by a special activation function such as tangent
and sigmoid activation function and among those two
sigmoid functions is widely used. The most significant
ability of ANN is that it acquires a self-learning process in
which it can modify each layer’s weight by training samples.
The widely used algorithm and can be considered as the

770

traditional method is Back-propagation [3]. The way on how
all nodes in ANN are constructed are simple and different
such as Single-Layer Perceptron (SLP) and Multi-Layer
Perceptron (MLP). However, this paper focuses on a Back-
Propagation algorithm which constructed based on multi-
layer perceptron (MLP) as will be discussed further in the
sections below.

The extension of the single-layer feed-forward structure to
the multilayer feed-forward structure as depicted in Fig. 1.
As it can be seen, that there are still exist the input layer of
nodes and the output layer of nodes as in the single-layer
case. However, between these two layers are one or more
layers of nodes known as a hidden layer. All these layers of
nodes are denoted as layer 0 (input layer), layer 1 (first
hidden layer), layer 2 (second hidden layer), and finally
layer M (output layer) [3].

Until this date, multilayer feed-forward network or also
known as MLP has become the major and most widely used
supervised learning neural network architecture [4]. Since
MLPs utilize computationally intensive training algorithms
(such as the error back-propagation), then this algorithm can
easily get stuck in local minima. In addition, this architecture
has problems in dealing with large amounts of training data,
while demonstrating poor interpolation properties, when
using reduced training sets [4]. In addition, attention also
must be drawn to the use of biases. Basically, neurons can be
chosen with or without biases. Since the bias gives the
network extra variable, then it logically translates that the
networks with biases would be more powerful [4].

Fig. 1 Feed Forward Neural Network with one hidden layer and one output
layer

There are different types of ANNs existing, and their uses
are very high in many applications. Since the first neural
model proposed by McCulloch and Pitts [5], there have been
hundreds of different improved models considered as ANNs.
The differences between those proposed algorithms might be
the functions, the accepted values, the topology, the learning
algorithms, etc. Furthermore, there are many hybrid models
that had been introduced recently by researchers, where each
neuron has more properties, but the focus is directed at an
ANN which learns using the back-propagation algorithm [6],
[7], [8] for learning the appropriate weights.

Back-Propagation (BP), the most common and popular
used neural network learning technique, is one of the most

effective algorithms accepted by most researcher currently,
and also the basis of pattern identification of BP neural
network. BP algorithm used Gradient-based methods also
known as one of the most commonly used error
minimization methods used to train back-propagation
networks. Despite its popularity, the algorithm still facing
some drawbacks such as the defects of local optimal and
slow convergence speed [9]. Until then, many research
aimed at improving the traditional Back-Propagation Neural
Network (BPNN) since 1986 by introducing some additional
parameters such as the addition of learning rate, and
momentum parameters, or use of different activation
function, etc. Moreover, adequately pre-processing the
datasets for the neural network before the training the
network also influences the performances positively [10]-
[14].

Therefore, this study includes analysis and discuss the
performance effect of using data pre-processing techniques
on back propagation algorithm trained with different
algorithms and activation functions. The structure of the
paper is highlighted as follows: Section II describes material
and method in which focus on the back propagation training
algorithm and its improvements. Experimental set up which
constitute the data pre-processing techniques, simulations
results and analysis are reflected in Section III. The
concluding part of Section IV summarizes the contributions
of the study.

II. MATERIAL AND METHOD

The back-propagation (BP) algorithm has recently
emerged as one of the most efficient learning procedures for
multi-layer networks, and it also is known as one of the most
common algorithms used in the training of artificial neural
networks [15]-[19]. The BP learning has become efficient
with the establishment of its mathematical formula as the
standard method or process in adjusting weights and biases
for training an ANN in many domains [20]. The formulation
of the back-propagation algorithm can be defined as follows:

By given a set of testing data that was propagated to the
MLP then its start to calculate the output as follows;

 i i ijh f x w= ∑ (1)

 i i jky f h w= ∑ (2)

where h is the hidden node, x is the input need, w is the
weight, and y is the output node. The BP training algorithm
is an iterative gradient algorithm designed to minimize the
mean square error between the actual output of a multilayer
feed-forward perceptron and the desired output. In this case,
once the output is calculated then the network will start to
compute the error, which will be the difference of the
expected value t and the actual value, and compute the error
information term δ for both the output and hidden nodes.

 (1). .i i i i jkh h h y wδ δ= − (3)

 (1). .i i i i jkh h h y wδ δ= − (4)

where δj representing the information error of the nodes.

771

Once the information errors for each node were calculated,
then, the network will back-propagate this error through the
network by adjusting all of the weights; starts from the
weights to the output layer and ends at the weights to the
input layer.

 . .jk i iw y hηδ∆ = (5)

 . .ij i iw h xηδ∆ = (6)

 new oldw w w= ∆ + (7)

where η is the learning rate.
The generally good performance found for the BP

algorithm is somewhat surprising considering by many
researchers, and the applications of Artificial Neural
Network with Back Propagation algorithm have gained
immense popularity in different areas. Some of these areas
include but not limited to: voice recognition, face detection,
control systems, medical, cause and effect analysis,
engineering, time series prediction, and cryptosystems, etc.

The Multilayer Perceptron (MLP) training is an iterative
process the most common method used to train MLP is the
back-propagation (BP) algorithm for classification. The
basic process in BP algorithm is that at each epoch the
calculation of the network outputs patterns in the training set
the adjustment was made to the network weights according
to the difference between actual network output and the
desired output. This BP algorithm has been independently
derived by several researchers working in different fields,
and the algorithm has the capacity of organizing the
representation of the data in the hidden layers with high
power of generalization [15].

The BP algorithm implements the gradient descent
method which is the most venerable, but also one of the least
effective, classical optimisation strategies. The process of
updating the weights can be done using either a batch
method or an on-line method. For batch training method,
weight changes are accumulated over an entire presentation
of the training data (epoch) before being calculated, while
for on-line training method, the weights were updated after
the presentation of each training example (instance). Hence,
until today, Back Propagation Gradient Descent (GD) is
probably the simplest of all learning algorithms usable for
training multi-layered neural networks. Even though it is not
the most efficient algorithm, but it converges fairly reliably.
Furthermore, the calculation equations were already well
established. This well-established technique is often
attributed to Rumelhart, Hinton, and Williams [5].

The main focus of BP training algorithm is to reduce the
error function by iteratively adjusting the network weight
vectors. In training, for each iteration, the weight vectors are
adjusted one layer at a time from the output level towards
the network inputs. That is why, in the gradient descent
version of BP, the change in the network weight vector in
each layer happens in the direction of the negative gradient
of the error function with respect to each weight itself.
Hence, from that process, it can be noted that the
introduction of learning rate η is multiplied by the negative

of the gradient to conclude the changes to the weights and
biases.

Moreover, another parameter had also played an
important part in BP training, and it is known as momentum.
The back-propagation with momentum algorithm (GDM)
has been largely analysed in the neural network literature
and even compared with other methods which are often
trained by the use of gradient descent with momentum.
Normally, a momentum term is usually included in the
simulations of connectionist learning algorithms. It is proved
and well known that such a term greatly improves the speed
of learning, where the used of momentum can speed up and
stabilize the training iteration procedure for the gradient
method. A momentum term is often added to the increment
formula for the weights, in which the present weight
updating increment combined the present gradient of the
error function and the previous weight updating increment.

() . . . (1)ij j ij ijw r x w rηδ α∆ = + ∆ − (8)

where α is the momentum parameter, and r is the of iteration
The momentum parameter can be an analogy of the mass

of Newtonian particles that moves through a viscous
medium in a conservative force field. Therefore, this paper
identified that the performance of GDM depends on two
training parameters. One is the parameter learning rate
which is similar to the simple gradient descent. The other
one is the parameter momentum which is a constant that
defines the amount weights changes.

Even though the BP algorithm has proved satisfactory
results when applied to many training tasks, but despite
many successful applications, the BP algorithm has several
important limitations. Since the BP algorithm uses the
gradient descent method to update weights, one of the
limitations of this method is that it is not guaranteed to find
the global minimum of the error function. The problem of
improving the learning efficiency and convergence rate of
the BP algorithm has been investigated by a number of
researchers. One approach had been proposed to incorporate
learning rate adaptation methods and apply the Goldstein-
Armijo line search in Back-Propagation algorithms [21]. It
was found out that the advantages of using these methods are
because they provide stable learning, robustness to
oscillations, and improved convergence rate. The
experiments reveal that the algorithms proposed can ensure
to reach global convergence (that is avoiding local minima).

Since the sigmoid derivative which appears in the error
function of the original BP algorithm has a bell shape, it
sometimes causes slow learning progress when the output of
a unit is near ‘0’ or ‘1’. That is why the importance of
activation function within the back propagation algorithm
was emphasized in the work done by Sibi et al. [22]. They
carried out a performance analysis by choosing different
activation functions, and confirmed that the choice of
selecting activation functions play a great role in the
performance of the neural network; other parameters also
come into play such as training algorithms, network sizing,
and learning parameters.

One of the main reasons for the slow convergence of BP
algorithms is the derivative of the activation function that
leads to the occurrence of premature saturation of the

772

network output units. It is well known that the activation
function (also called a transfer function) can be a linear or
nonlinear function. In addition, the activation function f(.) is
also known as a squashing function where it keeps the cell’s
output between certain limits as is the case in the biological
neuron [21]. On the other hand, the relationship between the
net inputs and the output is joined and called the activation
function of the Artificial Neuron. There could be different
kind of function or relationships that determine the value of
output that would be produced for given net inputs.
Furthermore, there are different types of activation functions
[22], and the Uni-Polar Sigmoidal Function (S-shape
function) and Hyperbolic Tangent Function.

However, a sigmoid function is by far the most common
form of an activation function used in the construction of
artificial neural networks [15]. The formula of the activation
function of the Uni-polar sigmoid function is given as
follows:

()

1
()

1 x
g x

e −=
+

 (9)

There are many advantages of using this function
especially in neural networks trained by back-propagation
algorithms. First of all, this function can be easily
distinguished, and this can interestingly minimize the
computation capacity for training. The term sigmoid devoted
‘S-shaped’, and logistic form of the sigmoid maps where the
interval (-∞, ∞) onto (0, 1) [18] as seen in Fig. 2.

In other applications, the other choice of activation
function is selected such that the output y is in the range
from -1 to +1 rather than 0 to +1 [22]. Hence, that activation
function is known as hyperbolic tangent function and can be
represented diagrammatically in Fig. 2. The equation that
defined the ratio between the hyperbolic sine and the cosine
functions or expanded as the ratio of the half difference and
the half sum of two exponential functions in the points x and
–x as follows:

sin()

tanh()
cosh()

x x

x x

x e e
x

x e e

−

−
−= =
+

 (10)

Fig. 2 The unipolar sigmoidal function (S-shaped) and the hyperbolic
tangent function

Among various attempts to enhance the efficiency of BP

algorithm that has been mentioned before, those using the
gain value are among the easiest to implement. Shortly after
the finding on the gain, researchers had paid their attention
to the parameters that influence the performance of BP
training is known as gain value. In general, the value of the
gain parameter, c , which directly influenced the slope of

the activation function [23]. It was found out that for a large
gain values (c >>1), the activation function nearly
approaches a ‘step function’ whereas for a small gain values
(0 <c<< 1), the output values change from zero to closely
unity over a large range of the weighted sum of the input
values and the sigmoid function approximates a ‘linear
function’ as shown in Fig. 3.

Fig. 3 The effect of gain on sigmoid activation function

It has been recently shown that a BP algorithm using a

variation of gain in an activation function converges faster
that the standard BP algorithm. The main reason for such
improvement on the BP was that the gain value adequately
causes a change in the momentum and learning rate [23].

There were many simulation results that showed the use
of changing gain propels the convergence behaviour and also
slide the network through local minima. This including in
the area of pattern recognition, the identification and
recognition of complex patterns by the adjustment of
weights experimented upon [24]-[25]. It is proved from the
experimental results that by using the gain value, it yielded
high accuracy and better tolerance factor, but may take a
considerable amount of time. The research was taken into
next level by Nawi et al. [26] who proposed a cuckoo search
optimized method for training the back propagation
algorithm. The simulation results showed that the
performance of the proposed method proved to be more
effective based on convergence rate, simplicity, and
accuracy.

A. Data Processing Technique

In data analysis methodology, the role of data pre-
processing shall not be avoided, since all training data may
consist of noise and outliers and need to be clean before
training the network. That is why the main process of data
pre-processing is to remove the irrelevant information and
extract key features of the data to facilitate a pattern
recognition problem without throwing away any important
information. Hence, that is why data pre-processing is a
significant step in the data mining process. It is known that
most data gathering methods are not well prepared and
lightly controlled, resulting in outliers, impossible data
combinations, and missing values, etc. As a result, analyzing
data that has not been carefully separated can produce

773

confusing results. Thus, the representation and quality of
data are first and foremost before running any analysis [27].
It is important in data analysis research to consider the
quality, reliability and availability are some of the factors
that may lead to a successful data interpretation by a neural
network. Furthermore, if there is inappropriate information
present or noisy and unreliable data, then knowledge
discovery process becomes very difficult during the training
process.

It is known to all data analysis researchers that data
preparation and filtering steps can take a considerable
amount of processing time but once pre-processing is done,
the data become more reliable and robust results are
achieved [28]. Therefore, as part of improving the training
efficiency of BP algorithm, this study had employed three
pre-processing techniques namely; Min-Max Normalization
(Equation 11), Z-Score Normalization (Equation 12), and
Decimal Scaling Normalization (Equation 13).

()min
' _ max _ min _ min

max min
p

p p p
p p

d
d new new new

−
= − +

−
(11)

where

pmax is the maximum value of the attribute,
pmin is

the minimum value of the attribute for (
pnew max_ –

pnew min_) = 0. When (
pmax –

pmin) = 0, it indicates a

constant value for that feature in the data.

()

'
()

d mean p
d

std p

−= (12)

The mean(p) translate to the mean of attribute P, and std(p)
represents the standard deviation of attribute P.

 '
10m

d
d = (13)

where m is the smallest integer such that Max(|d’|) < 1.

III. RESULTS AND DISCUSSION

Experiments had been set up and performed to provide the
empirical evidence on the comparative study of different
data pre-processing methods in MLP Back Propagation
model for classification problems. Two different training
algorithms and two different activation functions were
selected. The programming code was developed by using
MATrix LABoratory (MATLAB) which implements the
algorithms. Some selected datasets have been retrieved from
the UCI Machine Learning Repository namely: Iris plant
data, Balance-Scale data, and Car Evaluation dataset. The
data partition for training algorithms is split into 70% for the
training set and 30% for the testing set for all the datasets.
Whereas, parameters values for η and α which are used with
standard Gradient Descent (GD) and Gradient Descent with
Momentum (GDM) with all the datasets are η = 0.1 - 0.7
(only for GD), and (α and η) = 0.1 – 0.7 (for GDM).

The performance analyses are performed across 10 trials,
where the averages of all trials were recorded. The effect of
having data pre-processing techniques with ANN training
algorithm is evaluated based on simulations with some

benchmark datasets. The evaluation of the pre-processing
techniques coupled with different activation functions by
using various training algorithms such as GD and GDM.
Towards the end of the simulations, the target outcome of
the simulations is to know the ability of each model whether
they can perform best with three evaluations performance in
consideration. They performance criteria for the analysis are
the classification accuracy (ACC) and Mean Squared Error
(MSE) depicted in Equation (14) and Equation (15).

In addition, the numbers of Epoch (i.e. the number of
times of all the training vectors that are used once to update
the weights) make up the third metrics with values set at
5000. If the model performs well and reaches the targets,
then it can then be applied to new data to predict the future.

 (/)*100ACC C A= (14)

where (C) represent the corrected class, and (A) the total

number of instance.

 ()*1
i iMSE P P

n
= −∑ (15)

where Pi is a vector of (n) predictions, Pi
* is the vector of the

true values, and n is the number of instances.
The simulation experiments are carried out using

MATLAB (R2012a) on Petium4 Core i7 CPU, and all
results after series of experiments are tabulated and
discussed.

The pre-processing techniques on training algorithm GD
and GDM with different activation functions (tansig =
hyperbolic tangent and logsig = sigmoidal) for MLP have
been applied on iris dataset, which contains 150 instances,
partitioned into a training set and testing set, with a
distribution of 70% and 30% respectively. The network is
built with one hidden layer; and for GD, the learning rate
was initially started with 0.1, and increasing by 0.2 until it
reached a maximum of 0.7. When GDM is concerned, the
best learning rates are chosen from previous experience, but
momentum was initially started with 0.1, and increasing by
0.2 until it reached a maximum of 0.7. The number of
outputs is 3 nodes each for the training algorithms.

In Table 1, the data pre-processing techniques
performance on the network are above the 90% range for
GD and GDM. The Min-Max-Logsig at 0.1 learning rate,
Decimal Scaling-Tansig at 0.1, and Decimal Scaling Logsig
with 0.1 and 0.7 learning rates are below the 90% accuracy
rate. The results apparently show that with GD, the Z-Score-
Logsig with 0.3 learning rate outperformed the other pre-
processing techniques in terms of accuracy, but the Z-Score-
Tansig with 0.5 learning rate outperformed the other pre-
processing techniques in terms of minimum error. With
respect to GDM, only Decimal Scaling-Logsig with
momentum at 0.3, and learning rate at 0.3 produced the
minimal accuracy. Z-Score-Logsig with 0.3 learning rate and
0.7 momentum value outperformed the other pre-processing
techniques in terms of accuracy, but the Z-Score-Tansig with
0.5 learning rate and 0.5 momentum value outperformed the
other pre-processing techniques in terms of minimum error.

774

TABLE I
 CLASSIFICATION PERFORMANCES FOR IRIS DATASET

Pre-processing
techniques- Activation

functions

Learning

 Rate
(η)

GD
Momentum (α)

(η=0.3, 0.5)

GDM

ACC
(%)

MSE
(%)

ACC
(%)

MSE
(%)

Min-Max - Tansig

0.1
0.3
0.5
0.7

95.38
96.22
96.78
94.80

0.027
0.019
0.016
0.015

0.1
0.3
0.5
0.7

97.80
95.16
97.23
95.73

0.018
0.017
0.018
0.016

Min-Max - Logsig

0.1
0.3
0.5
0.7

89.24
95.86
96.03
95.68

0.113
0.073
0.059
0.067

0.1
0.3
0.5
0.7

95.43
95.87
95.66
95.37

0.033
0.094
0.045
0.023

Decimal Scaling – Tansig 0.1
0.3
0.5
0.7

87.69
95.61
96.68
96.57

0.059
0.029
0.029
0.022

0.1
0.3
0.5
0.7

95.26
96.05
94.96
94.72

0.024
0.023
0.024
0.024

Decimal Scaling – Logsig 0.1
0.3
0.5
0.7

86.53
94.31
93.04
89.08

0.118
0.076
0.049
0.086

0.1
0.3
0.5
0.7

92.37
88.31
91.37
93.18

0.087
0.088
0.096
0.095

Z-Score - Tansig

0.1
0.3
0.5
0.7

96.47
96.41
97.59
96.60

0.013
0.012
0.011
0.012

0.1
0.3
0.5
0.7

96.82
96.59
95.96
97.86

0.012
0.011
0.010
0.012

Z-Score - Logsig

0.1
0.3
0.5
0.7

97.33
97.76
96.72
92.79

0.054
0.028
0.021
0.044

0.1
0.3
0.5
0.7

96.91
97.14
95.41
97.99

0.019
0.035
0.032
0.025

The results obtained from the classification accuracy

based on balance-scale dataset varied proportionally to pre-
processing techniques, as shown in Table 2. However, for all
pre-processing techniques on training algorithm (GD) with
different activation functions (tansig and logsig), 0.5
learning rate gave the highest possible accuracy but Z-Score-
Logsig with the highest accuracy. The Z-Score-Tansig with
0.5 learning rate outperformed the other pre-processing
techniques in terms of minimum error. On GDM training
algorithm, Z-Score-Tansig with momentum at 0.5 and
learning rate of 0.5 accounted for the highest accuracy.
Consequently, Z-Score-Tansig also gave the lowest error of
0.037% at momentum rate of 0.7.

The performance results as revealed in Table 3 for car
evaluation data illustrates that the pre-processing techniques

with training algorithms; GD and GDM performed
excellently well with accuracy rates from 95% upwards.
Based on GD, the Z-Score-Logsig resulted in the highest rate
of 96.69% at a learning rate of 0.5. Also, the MSE results are
at their lowest minimum, and Z-Score-Tansig generated the
minimum error of 0.059% at 0.7 learning rate. On the
performance with GDM which made use of learning rates of
0.1 and 0.5 respectively, Decimal Scaling-Tansig with
accuracy rate of 96.61% outperformed the other pre-
processing techniques at learning rate of 0.1 and momentum
of 0.3, and minimum error percentage of 0.060% at 0.1 and
0.3 learning rates respectively coupled with momentum of
0.5 for Z-Score-Tansig.

775

TABLE II

CLASSIFICATION PERFORMANCES FOR BALANCE SCALE DATASET

Pre-processing
techniques- Activation

functions

Learning

Rate
(η)

GD

Momentum (α)

(η= 0.5)

GDM

ACC
(%)

MSE
(%)

ACC
(%)

MSE
(%)

Min-Max – Tansig

0.1
0.3
0.5
0.7

91.16
89.88
93.84
93.75

0.068
0.061
0.053
0.055

0.1
0.3
0.5
0.7

90.52
91.76
92.63
92.55

0.054
0.057
0.057
0.049

Min-Max - Logsig

0.1
0.3
0.5
0.7

83.19
93.30
94.74
94.47

0.108
0.060
0.053
0.049

0.1
0.3
0.5
0.7

94.18
94.59
94.45
94.85

0.053
0.053
0.053
0.052

Decimal Scaling – Tansig

0.1
0.3
0.5
0.7

85.23
89.80
92.76
92.41

0.094
0.072
0.059
0.063

0.1
0.3
0.5
0.7

92.84
91.76
91.63
90.33

0.067
0.061
0.069
0.068

Decimal Scaling – Logsig

0.1
0.3
0.5
0.7

82.98
87.62
91.02
89.69

0.117
0.083
0.068
0.057

0.1
0.3
0.5
0.7

85.84
92.89
90.01
87.77

0.086
0.067
0.083
0.080

Z-Score – Tansig

0.1
0.3
0.5
0.7

93.61
92.84
94.26
93.85

0.049
0.047
0.039
0.044

0.1
0.3
0.5
0.7

92.84
94.70
95.41
93.33

0.044
0.039
0.038
0.037

Z-Score - Logsig

0.1
0.3
0.5
0.7

94.19
95.06
95.58
95.48

0.059
0.047
0.043
0.046

0.1
0.3
0.5
0.7

94.98
95.39
94.81
95.38

0.042
0.047
0.046
0.047

TABLE III
 CLASSIFICATION PERFORMANCES FOR CAR EVALUATION DATASET

Pre-processing
techniques- Activation

functions

Learning

Rate
(η)

GD

Momentum (α)
(η= 0.1,0.5)

GDM

ACC
(%)

MSE
(%)

ACC
%

MSE
%

Min-Max - Tansig

0.1
0.3
0.5
0.7

95.88
96.38
96.64
96.57

0.185
0.071
0.067
0.066

0.1
0.3
0.5
0.7

96.35
96.07
96.11
96.06

0.063
0.066
0.065
0.066

Min-Max - Logsig

0.1
0.3
0.5
0.7

96.43
96.24
96.22
96.16

0.121
0.094
0.086
0.084

0.1
0.3
0.5
0.7

96.13
96.18
96.35
95.95

0.109
0.123
0.118
0.118

Decimal Scaling –

Tansig

0.1
0.3
0.5
0.7

96.16
96.24
96.31
96.14

0.095
0.086
0.082
0.149

0.1
0.3
0.5
0.7

96.26
96.61
96.46
96.40

0.095
0.102
0.091
0.089

Decimal Scaling –

Logsig

0.1
0.3
0.5
0.7

96.17
96.29
96.31
95.64

0.119
0.107
0.099
0.106

0.1
0.3
0.5
0.7

96.11
96.25
96.32
95.92

0.195
0.106
0.107
0.111

Z-Score - Tansig

0.1
0.3
0.5
0.7

96.30
96.15
96.29
96.21

0.073
0.064
0.061
0.059

0.1
0.3
0.5
0.7

96.35
96.25
95.86
96.33

0.060
0.060
0.061
0.062

Z-Score - Logsig

0.1
0.3
0.5
0.7

96.01
96.36
96.69
96.02

0.084
0.075
0.069
0.074

0.1
0.3
0.5
0.7

96.32
96.31
96.36
96.23

0.077
0.069
0.077
0.070

776

IV. CONCLUSION

Motivated by the re-occurrence of the Back Propagation
(BP) neural network sticking to local optimal, convergence
speed, and the increase in computational cost associated with
its learning process, this study explored the influence of data
pre-processing at alleviating the BP shortcomings. Taking
advantage of the Min-Max, Decimal Scaling, and Z-Score
pre-processing techniques, coupled with the gradient descent
and gradient descent with momentum training algorithms
and activations functions; uni-polar sigmoidal and
hyperbolic tangent, the performances of BP neural network
are greatly improved with minimum errors. The
experimental results align with the projected goal of this
study. For all the datasets at different learning rates and
momentum, the pre-processing techniques increased the
accuracy of the BP classifier with Z-Score outperforming the
other techniques. Also, the computational cost diminishes
which ultimately increase performance. Hence, it can be
concluded that adequately pre-processing that data optimizes
the overall efficiency of the neural network.

ACKNOWLEDGMENT

The authors would like to thank Universiti Tun Hussein
Onn Malaysia (UTHM) Ministry of Higher Education
(MOHE) Malaysia for financially supporting this Research
under Trans-displinary Research Grant Scheme (TRGS) vote
no. T003. This research also supported by GATES IT
Solution Sdn. Bhd under its publication scheme.

 REFERENCES
[1] Mokhlessi, O., Rad, H.M., Mehrshad, N.: Utilization of 4 types of

Artificial Neural Network on the diagnosis of valve-physiological
heart disease from heart sounds. Biomedical Engineering (ICBME),
2010 17th Iranian Conference of. pp. 1–4 (2010)

[2] Nicoletti, G.M.: Artificial neural networks (ANN) as simulators and
emulators-an analytical overview. Intelligent Processing and
Manufacturing of Materials, 1999. IPMM’99. Proceedings of the
Second International Conference on. pp. 713–721 (1999)

[3] Bhuiyan, M.Z.A.: An algorithm for determining neural network
architecture using differential evolution. Business Intelligence and
Financial Engineering, 2009. BIFE’09. International Conference on.
pp. 3–7 (2009)

[4] Penedo, M.G., Carreira, M.J., Mosquera, A., Cabello, D.: Computer-
aided diagnosis: a neural-network-based approach to lung nodule
detection. Med. Imaging, IEEE Trans. 17, 872–880 (1998)

[5] McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent
in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)

[6] Psichogios, D.C., Ungar, L.H.: A hybrid neural network-first
principles approach to process modeling. AIChE J. 38, 1499–1511
(1992)

[7] Choon Sen Seah, Shahreen Kasim, Mohd Saberi Mohamad: Specific
Tuning Parameter for Directed Random Walk Algorithm Cancer
Classification. International Journal on Advanced Science,
Engineering and Information Technology, Vol. 7 (2017) No. 1, pages:
176-182

[8] Moaath Shatnawi, Mohammad Faidzul Nasrudin, Shahnorbanun
Sahran: A new initialization technique in polar coordinates for
Particle Swarm Optimization and Polar PSO. International Journal on
Advanced Science, Engineering and Information Technology, Vol. 7
(2017) No. 1, pages: 242-249

[9] Si-Jun, T.: System Optimal Design Approach using Knowledge-
Based Genetic Neural Networks. J. Appl. Sci. 14, 82–88 (2014)

[10] Nawi, N.M., Atomi, W.H., Rehman, M.Z.: The Effect of Data Pre-
processing on Optimized Training of Artificial Neural Networks.
Procedia Technol. 11, 32–39 (2013)

[11] Filimon, D.-M., Albu, A.: Skin diseases diagnosis using artificial
neural networks. Applied Computational Intelligence and Informatics
(SACI), 2014 IEEE 9th International Symposium on. pp. 189–194
(2014)

[12] Li, H., Yang, D., Chen, F., Zhou, Y., Xiu, Z.: Application of
Artificial Neural Networks in Predicting Abrasion Resistance of
Solution Polymerized Styrene-Butadiene Rubber Based Composites.
arXiv Prepr. arXiv1405.5550. (2014)

[13] Isa, I.S., Saad, Z., Omar, S., Osman, M.K., Ahmad, K.A., Sakim,
H.A.M.: Suitable MLP network activation functions for breast cancer
and thyroid disease detection. Computational Intelligence, Modelling
and Simulation (CIMSiM), 2010 Second International Conference on.
pp. 39–44 (2010)

[14] Dan, Z.: Improving the accuracy in software effort estimation: Using
artificial neural network model based on particle swarm optimization.
Service Operations and Logistics, and Informatics (SOLI), 2013
IEEE International Conference on. pp. 180–185 (2013)

[15] Günther, F., Fritsch, S.: neuralnet: Training of neural networks. R J.
2, 30–38 (2010)

[16] Basu, J.K., Bhattacharyya, D., Kim, T.: Use of artificial neural
network in pattern recognition. Int. J. Softw. Eng. its Appl. 4, (2010)

[17] Ghazali, R., Hussain, A.J., Al-Jumeily, D., Lisboa, P.: Time series
prediction using dynamic ridge polynomial neural networks.
Developments in eSystems Engineering (DESE), 2009 Second
International Conference on. pp. 354–363 (2009)

[18] Badri, L.: Development of Neural Networks for Noise Reduction. Int.
Arab J. Inf. Technol. 7, 289–294 (2010)

[19] Lahmiri, S.: A comparative study of backpropagation algorithms in
financial prediction. Int. J. Comput. Sci. Eng. Appl. 1, (2011)

[20] Nawi, N.M., Khan, A., Rehman, M.Z.: A New Levenberg Marquardt
Based Back Propagation Algorithm Trained with Cuckoo Search.
Procedia Technol. 11, 18–23 (2013)

[21] Magoulas, G.D., Vrahatis, M.N., Androulakis, G.S.: Improving the
convergence of the backpropagation algorithm using learning rate
adaptation methods. Neural Comput. 11, 1769–1796 (1999)

[22] Sibi, M.P., Ma, Z., Jasperse, C.P.: Enantioselective addition of
nitrones to activated cyclopropanes. J. Am. Chem. Soc. 127, 5764–
5765 (2005)

[23] Hamid, N.A., Nawi, N.M., Ghazali, R., Salleh, M.N.M.:
Improvements of Back Propagation Algorithm Performance by
Adaptively Changing Gain, Momentum and Learning Rate. Int. J.
New Comput. Archit. their Appl. 1, 866–878 (2011)

[24] Kaur, A., Monga, H., Kaur, M.: Performance Evaluation of Reusable
Software Components. Int. J. Emerg. Technol. Adv. Eng. 2, (2012)

[25] Seung, S.: Multilayer perceptrons and backpropagation learning.
9.641 Lect. 1–6 (2002)

[26] Rehman, M.Z., Nawi, N.M.: The effect of adaptive momentum in
improving the accuracy of gradient descent back propagation
algorithm on classification problems. Communications in Computer
and Information Science 179 Part 1, 454-459, (2011)

[27] Sibi, P., Jones, S.A., Siddarth, P.: Analysis Of Different Activation
Functions Using Back Propagation Neural Networks. J. Theor. Appl.
Inf. Technol. 47, 1344–1348 (2013)

[28] Xie, Z.: A non-linear approximation of the sigmoid function based on
FPGA. Advanced Computational Intelligence (ICACI), 2012 IEEE
Fifth International Conference on. pp. 221–223 (2012)

777

