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Abstract— Artificial Neural Network had gained a tremendous attention from researchers particularly because of the architecture of 
Artificial Neural Network that laid the foundation as a powerful technique in handling problems such as classification, pattern 
recognition, and data analysis. It is known for its data-driven, self-adaptive, and non-linear capabilities channel that is used in 
processing at high speed and the ability to learn the solution to a problem from a set of examples. Recently, research in Neural 
Network training has become a dynamic area of research, with the Multi-Layer Perceptron (MLP) trained with Back-Propagation 
(BP) was the most popular and been worked on by various researchers. In this study, the performance analysis based on BP training 
algorithms; gradient descent and gradient descent with momentum, both using the sigmoidal and hyperbolic tangent activation 
functions, coupled with pre-processing techniques are executed and compared. The Min-Max, Z-Score, and Decimal Scaling pre-
processing techniques are analyzed. The simulations results generated from some selected benchmark datasets reveal that pre-
processing the data greatly increase the ANN convergence, with Z-Score producing the overall best performance on all datasets. 
 
Keywords— Multi-layer perceptron; back propagation; data pre-processing; gradient descent; classification   
 
 

I. INTRODUCTION 

Recently, Artificial Neural Network (ANN) had gained a 
tremendous attention from researchers in diverse 
applications. Most of the interest in ANN arose from their 
use to perform useful computations. Roughly speaking, these 
computations fall into two categories; natural problems such 
as pattern recognition and optimization problems. In addition, 
ANN is an information-processing paradigm motivated by 
biological nervous systems. Moreover, the human learning 
process may be partially automated with ANNs and can be 
constructing a specific application such as pattern 
recognition or data classification, through a learning process 
[1]. ANNs and their techniques have become popular and 
important for modeling and optimization in many areas of 
science and engineering, and this popularity is largely 
attributed to their ability to exploit the tolerance for 
imprecision and uncertainty in real-world problems, coupled 
with their robustness and parallelism [2]. Moreover, with its 
popularity, Artificial Neural Networks (ANNs) have been 
implemented for a variety of classification and learning tasks 
[3]. Furthermore, the main reason for using ANNs rest solely 
on its several inhibitory properties such as the generalization 
and the capability of learning and generalizing from training 
data, even where the rules are not known a-priori [4].  

There are many kinds of ANN exist. However the main 
architecture of the ANN is constructed from the input layer, 
hidden layer, and the output layer [3]. Hence, over the last 
few years, the ANN methodology has been accepted widely 
to solve problems such as prediction, classification, pattern 
recognition and ANN has become one of the most highly 
parameterized models that have attracted considerable 
attention in recent years [4]. Because of the ability to 
generalize, self-learning and self-organizing ability to adapt, 
ANN has the characteristics that had been looking for by 
researchers and the most important is that it can be trained. 
Furthermore, the best characteristic of ANN is that it can 
absorb experience by learning from the historical data and 
previous project information which can be used in the new 
prediction period. Back-propagation algorithm (BP) and 
feed-forward network are two popular and widely applied in 
ANN estimation technologies [3]. It is known that ANN is 
constituted with active layers and hidden layers, and lots of 
nodes are connected inside each layer. One connection 
between two nodes represents a weight and each node can be 
represented by a special activation function such as tangent 
and sigmoid activation function and among those two 
sigmoid functions is widely used. The most significant 
ability of ANN is that it acquires a self-learning process in 
which it can modify each layer’s weight by training samples. 
The widely used algorithm and can be considered as the 
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traditional method is Back-propagation [3]. The way on how 
all nodes in ANN are constructed are simple and different 
such as Single-Layer Perceptron (SLP) and Multi-Layer 
Perceptron (MLP). However, this paper focuses on a Back-
Propagation algorithm which constructed based on multi-
layer perceptron (MLP) as will be discussed further in the 
sections below. 

The extension of the single-layer feed-forward structure to 
the multilayer feed-forward structure as depicted in Fig. 1. 
As it can be seen, that there are still exist the input layer of 
nodes and the output layer of nodes as in the single-layer 
case. However, between these two layers are one or more 
layers of nodes known as a hidden layer. All these layers of 
nodes are denoted as layer 0 (input layer), layer 1 (first 
hidden layer), layer 2 (second hidden layer), and finally 
layer M (output layer) [3]. 

Until this date, multilayer feed-forward network or also 
known as MLP has become the major and most widely used 
supervised learning neural network architecture [4]. Since 
MLPs utilize computationally intensive training algorithms 
(such as the error back-propagation), then this algorithm can 
easily get stuck in local minima. In addition, this architecture 
has problems in dealing with large amounts of training data, 
while demonstrating poor interpolation properties, when 
using reduced training sets [4]. In addition, attention also 
must be drawn to the use of biases. Basically, neurons can be 
chosen with or without biases. Since the bias gives the 
network extra variable, then it logically translates that the 
networks with biases would be more powerful [4].  
      

 
Fig. 1 Feed Forward Neural Network with one hidden layer and one output 
layer 
 

There are different types of ANNs existing, and their uses 
are very high in many applications. Since the first neural 
model proposed by McCulloch and Pitts [5], there have been 
hundreds of different improved models considered as ANNs. 
The differences between those proposed algorithms might be 
the functions, the accepted values, the topology, the learning 
algorithms, etc. Furthermore, there are many hybrid models 
that had been introduced recently by researchers, where each 
neuron has more properties, but the focus is directed at an 
ANN which learns using the back-propagation algorithm [6], 
[7], [8] for learning the appropriate weights. 

Back-Propagation (BP), the most common and popular 
used neural network learning technique, is one of the most 

effective algorithms accepted by most researcher currently, 
and also the basis of pattern identification of BP neural 
network. BP algorithm used Gradient-based methods also 
known as one of the most commonly used error 
minimization methods used to train back-propagation 
networks. Despite its popularity, the algorithm still facing 
some drawbacks such as the defects of local optimal and 
slow convergence speed [9]. Until then, many research 
aimed at improving the traditional Back-Propagation Neural 
Network (BPNN) since 1986 by introducing some additional 
parameters such as the addition of learning rate, and 
momentum parameters, or use of different activation 
function, etc. Moreover, adequately pre-processing the 
datasets for the neural network before the training the 
network also influences the performances positively [10]-
[14]. 

Therefore, this study includes analysis and discuss the 
performance effect of using data pre-processing techniques 
on back propagation algorithm trained with different 
algorithms and activation functions. The structure of the 
paper is highlighted as follows: Section II describes material 
and method in which focus on the back propagation training 
algorithm and its improvements. Experimental set up which 
constitute the data pre-processing techniques, simulations 
results and analysis are reflected in Section III. The 
concluding part of Section IV summarizes the contributions 
of the study. 

II. MATERIAL AND METHOD 

The back-propagation (BP) algorithm has recently 
emerged as one of the most efficient learning procedures for 
multi-layer networks, and it also is known as one of the most 
common algorithms used in the training of artificial neural 
networks [15]-[19]. The BP learning has become efficient 
with the establishment of its mathematical formula as the 
standard method or process in adjusting weights and biases 
for training an ANN in many domains [20]. The formulation 
of the back-propagation algorithm can be defined as follows: 

By given a set of testing data that was propagated to the 
MLP then its start to calculate the output as follows;  
 

                                  i i ijh f x w= ∑                                     (1) 

 

                                  i i jky f h w= ∑                                   (2) 
 

where h is the hidden node, x is the input need, w is the 
weight, and y is the output node. The BP training algorithm 
is an iterative gradient algorithm designed to minimize the 
mean square error between the actual output of a multilayer 
feed-forward perceptron and the desired output. In this case, 
once the output is calculated then the network will start to 
compute the error, which will be the difference of the 
expected value t and the actual value, and compute the error 
information term δ for both the output and hidden nodes. 

 

           (1 ). .i i i i jkh h h y wδ δ= −                         (3) 

 

                 (1 ). .i i i i jkh h h y wδ δ= −                            (4) 
 

where δj representing the information error of the nodes. 
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Once the information errors for each node were calculated, 
then, the network will back-propagate this error through the 
network by adjusting all of the weights; starts from the 
weights to the output layer and ends at the weights to the 
input layer. 

 

                        . .jk i iw y hηδ∆ =                              (5) 

 

                            . .ij i iw h xηδ∆ =                                      (6) 

 
                          new oldw w w= ∆ +                                 (7) 
 

where η is the learning rate. 
The generally good performance found for the BP 

algorithm is somewhat surprising considering by many 
researchers, and the applications of Artificial Neural 
Network with Back Propagation algorithm have gained 
immense popularity in different areas. Some of these areas 
include but not limited to: voice recognition, face detection, 
control systems, medical, cause and effect analysis, 
engineering, time series prediction, and cryptosystems, etc.  

The Multilayer Perceptron (MLP) training is an iterative 
process the most common method used to train MLP is the 
back-propagation (BP) algorithm for classification. The 
basic process in BP algorithm is that at each epoch the 
calculation of the network outputs patterns in the training set 
the adjustment was made to the network weights according 
to the difference between actual network output and the 
desired output. This BP algorithm has been independently 
derived by several researchers working in different fields, 
and the algorithm has the capacity of organizing the 
representation of the data in the hidden layers with high 
power of generalization [15].  

The BP algorithm implements the gradient descent 
method which is the most venerable, but also one of the least 
effective, classical optimisation strategies.  The process of 
updating the weights can be done using either a batch 
method or an on-line method. For batch training method, 
weight changes are accumulated over an entire presentation 
of the training data (epoch) before being calculated, while 
for on-line training method, the weights were updated after 
the presentation of each training example (instance). Hence, 
until today, Back Propagation Gradient Descent (GD) is 
probably the simplest of all learning algorithms usable for 
training multi-layered neural networks. Even though it is not 
the most efficient algorithm, but it converges fairly reliably. 
Furthermore, the calculation equations were already well 
established. This well-established technique is often 
attributed to Rumelhart, Hinton, and Williams [5].  

The main focus of BP training algorithm is to reduce the 
error function by iteratively adjusting the network weight 
vectors. In training, for each iteration, the weight vectors are 
adjusted one layer at a time from the output level towards 
the network inputs. That is why, in the gradient descent 
version of BP, the change in the network weight vector in 
each layer happens in the direction of the negative gradient 
of the error function with respect to each weight itself. 
Hence, from that process, it can be noted that the 
introduction of learning rate η is multiplied by the negative 

of the gradient to conclude the changes to the weights and 
biases.  

Moreover, another parameter had also played an 
important part in BP training, and it is known as momentum. 
The back-propagation with momentum algorithm (GDM) 
has been largely analysed in the neural network literature 
and even compared with other methods which are often 
trained by the use of gradient descent with momentum. 
Normally, a momentum term is usually included in the 
simulations of connectionist learning algorithms. It is proved 
and well known that such a term greatly improves the speed 
of learning, where the used of momentum can speed up and 
stabilize the training iteration procedure for the gradient 
method. A momentum term is often added to the increment 
formula for the weights, in which the present weight 
updating increment combined the present gradient of the 
error function and the previous weight updating increment.  

 

( ) . . . ( 1)ij j ij ijw r x w rηδ α∆ = + ∆ −                    (8) 
 

where α is the momentum parameter, and r is the of iteration 
The momentum parameter can be an analogy of the mass 

of Newtonian particles that moves through a viscous 
medium in a conservative force field. Therefore, this paper 
identified that the performance of GDM depends on two 
training parameters. One is the parameter learning rate 
which is similar to the simple gradient descent. The other 
one is the parameter momentum which is a constant that 
defines the amount weights changes.  

Even though the BP algorithm has proved satisfactory 
results when applied to many training tasks, but despite 
many successful applications, the BP algorithm has several 
important limitations. Since the BP algorithm uses the 
gradient descent method to update weights, one of the 
limitations of this method is that it is not guaranteed to find 
the global minimum of the error function. The problem of 
improving the learning efficiency and convergence rate of 
the BP algorithm has been investigated by a number of 
researchers. One approach had been proposed to incorporate 
learning rate adaptation methods and apply the Goldstein-
Armijo line search in Back-Propagation algorithms [21]. It 
was found out that the advantages of using these methods are 
because they provide stable learning, robustness to 
oscillations, and improved convergence rate. The 
experiments reveal that the algorithms proposed can ensure 
to reach global convergence (that is avoiding local minima).  

Since the sigmoid derivative which appears in the error 
function of the original BP algorithm has a bell shape, it 
sometimes causes slow learning progress when the output of 
a unit is near ‘0’ or ‘1’. That is why the importance of 
activation function within the back propagation algorithm 
was emphasized in the work done by Sibi et al. [22]. They 
carried out a performance analysis by choosing different 
activation functions, and confirmed that the choice of 
selecting activation functions play a great role in the 
performance of the neural network; other parameters also 
come into play such as training algorithms, network sizing, 
and learning parameters.  

One of the main reasons for the slow convergence of BP 
algorithms is the derivative of the activation function that 
leads to the occurrence of premature saturation of the 
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network output units. It is well known that the activation 
function (also called a transfer function) can be a linear or 
nonlinear function. In addition, the activation function f(.) is 
also known as a squashing function where it keeps the cell’s 
output between certain limits as is the case in the biological 
neuron [21]. On the other hand, the relationship between the 
net inputs and the output is joined and called the activation 
function of the Artificial Neuron. There could be different 
kind of function or relationships that determine the value of 
output that would be produced for given net inputs. 
Furthermore, there are different types of activation functions 
[22], and the Uni-Polar Sigmoidal Function (S-shape 
function) and Hyperbolic Tangent Function.  

However, a sigmoid function is by far the most common 
form of an activation function used in the construction of 
artificial neural networks [15]. The formula of the activation 
function of the Uni-polar sigmoid function is given as 
follows: 

 

                                    
( )

1
( )

1 x
g x

e −=
+

                               (9) 

 

There are many advantages of using this function 
especially in neural networks trained by back-propagation 
algorithms. First of all, this function can be easily 
distinguished, and this can interestingly minimize the 
computation capacity for training. The term sigmoid devoted 
‘S-shaped’, and logistic form of the sigmoid maps where the 
interval (-∞, ∞) onto (0, 1) [18] as seen in Fig. 2. 

In other applications, the other choice of activation 
function is selected such that the output y is in the range 
from -1 to +1 rather than 0 to +1 [22]. Hence, that activation 
function is known as hyperbolic tangent function and can be 
represented diagrammatically in Fig. 2. The equation that 
defined the ratio between the hyperbolic sine and the cosine 
functions or expanded as the ratio of the half difference and 
the half sum of two exponential functions in the points x and 
–x as follows: 
 

                     
sin( )

tanh( )
cosh( )

x x

x x

x e e
x

x e e

−

−
−= =
+

                   (10) 

 

 
Fig. 2 The unipolar sigmoidal function (S-shaped) and the hyperbolic 
tangent function 

 
Among various attempts to enhance the efficiency of BP 

algorithm that has been mentioned before, those using the 
gain value are among the easiest to implement. Shortly after 
the finding on the gain, researchers had paid their attention 
to the parameters that influence the performance of BP 
training is known as gain value. In general, the value of the 
gain parameter, c , which directly influenced the slope of 

the activation function [23]. It was found out that for a large 
gain values (c >>1), the activation function nearly 
approaches a ‘step function’ whereas for a small gain values 
(0 <c<< 1), the output values change from zero to closely 
unity over a large range of the weighted sum of the input 
values and the sigmoid function approximates a ‘linear 
function’ as shown in Fig. 3. 

 
Fig. 3 The effect of gain on sigmoid activation function 

 
It has been recently shown that a BP algorithm using a 

variation of gain in an activation function converges faster 
that the standard BP algorithm. The main reason for such 
improvement on the BP was that the gain value adequately 
causes a change in the momentum and learning rate [23].  

There were many simulation results that showed the use 
of changing gain propels the convergence behaviour and also 
slide the network through local minima. This including in 
the area of pattern recognition, the identification and 
recognition of complex patterns by the adjustment of 
weights experimented upon [24]-[25]. It is proved from the 
experimental results that by using the gain value, it yielded 
high accuracy and better tolerance factor, but may take a 
considerable amount of time. The research was taken into 
next level by Nawi et al. [26] who proposed a cuckoo search 
optimized method for training the back propagation 
algorithm. The simulation results showed that the 
performance of the proposed method proved to be more 
effective based on convergence rate, simplicity, and 
accuracy.  

A. Data Processing Technique  

In data analysis methodology, the role of data pre-
processing shall not be avoided, since all training data may 
consist of noise and outliers and need to be clean before 
training the network. That is why the main process of data 
pre-processing is to remove the irrelevant information and 
extract key features of the data to facilitate a pattern 
recognition problem without throwing away any important 
information. Hence, that is why data pre-processing is a 
significant step in the data mining process. It is known that 
most data gathering methods are not well prepared and 
lightly controlled, resulting in outliers, impossible data 
combinations, and missing values, etc. As a result, analyzing 
data that has not been carefully separated can produce 
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confusing results. Thus, the representation and quality of 
data are first and foremost before running any analysis [27]. 
It is important in data analysis research to consider the 
quality, reliability and availability are some of the factors 
that may lead to a successful data interpretation by a neural 
network. Furthermore, if there is inappropriate information 
present or noisy and unreliable data, then knowledge 
discovery process becomes very difficult during the training 
process.   

It is known to all data analysis researchers that data 
preparation and filtering steps can take a considerable 
amount of processing time but once pre-processing is done, 
the data become more reliable and robust results are 
achieved [28]. Therefore, as part of improving the training 
efficiency of BP algorithm, this study had employed three 
pre-processing techniques namely; Min-Max Normalization 
(Equation 11), Z-Score Normalization (Equation 12), and 
Decimal Scaling Normalization (Equation 13). 
       

( )min
' _ max _ min _ min

max min
p

p p p
p p

d
d new new new

−
= − +

−
(11) 

 
where 

pmax is the maximum value of the attribute, 
pmin is 

the minimum value of the  attribute for (
pnew max_  – 

pnew min_ ) = 0. When (
pmax –

pmin ) = 0, it indicates a 

constant value for that feature in the data. 
 

                             
( )

'
( )

d mean p
d

std p

−=                               (12) 

 

The mean(p) translate to the mean of attribute P, and std(p) 
represents the standard deviation of attribute P.  

                                         '
10m

d
d =                                  (13) 

where m is the smallest integer such that Max(|d’|) < 1.  
 

III.  RESULTS AND DISCUSSION 
 

Experiments had been set up and performed to provide the 
empirical evidence on the comparative study of different 
data pre-processing methods in MLP Back Propagation 
model for classification problems. Two different training 
algorithms and two different activation functions were 
selected. The programming code was developed by using 
MATrix LABoratory (MATLAB) which implements the 
algorithms. Some selected datasets have been retrieved from 
the UCI Machine Learning Repository namely: Iris plant 
data, Balance-Scale data, and Car Evaluation dataset. The 
data partition for training algorithms is split into 70% for the 
training set and 30% for the testing set for all the datasets. 
Whereas, parameters values for η and α which are used with 
standard Gradient Descent (GD) and Gradient Descent with 
Momentum (GDM) with all the datasets are η = 0.1 - 0.7 
(only for GD), and (α and η) = 0.1 – 0.7 (for GDM).  

The performance analyses are performed across 10 trials, 
where the averages of all trials were recorded. The effect of 
having data pre-processing techniques with ANN training 
algorithm is evaluated based on simulations with some 

benchmark datasets. The evaluation of the pre-processing 
techniques coupled with different activation functions by 
using various training algorithms such as GD and GDM. 
Towards the end of the simulations, the target outcome of 
the simulations is to know the ability of each model whether 
they can perform best with three evaluations performance in 
consideration. They performance criteria for the analysis are 
the classification accuracy (ACC) and Mean Squared Error 
(MSE) depicted in Equation (14) and Equation (15).  

In addition, the numbers of Epoch (i.e. the number of 
times of all the training vectors that are used once to update 
the weights) make up the third metrics with values set at 
5000. If the model performs well and reaches the targets, 
then it can then be applied to new data to predict the future. 
 

                                  ( / )*100ACC C A=                         (14) 
 

where (C) represent the corrected class, and (A) the total 

number of instance. 

                                  ( )*1
i iMSE P P

n
= −∑                       (15) 

where Pi is a vector of (n) predictions, Pi
* is the vector of the 

true values, and n is the number of instances.  
The simulation experiments are carried out using 

MATLAB (R2012a) on Petium4 Core i7 CPU, and all 
results after series of experiments are tabulated and 
discussed. 

The pre-processing techniques on training algorithm GD 
and GDM with different activation functions (tansig = 
hyperbolic tangent and logsig = sigmoidal) for MLP have 
been applied on iris dataset, which contains 150 instances, 
partitioned into a training set and testing set, with a 
distribution of 70% and 30% respectively. The network is 
built with one hidden layer; and for GD, the learning rate 
was initially started with 0.1, and increasing by 0.2 until it 
reached a maximum of 0.7. When GDM is concerned, the 
best learning rates are chosen from previous experience, but 
momentum was initially started with 0.1, and increasing by 
0.2 until it reached a maximum of 0.7. The number of 
outputs is 3 nodes each for the training algorithms. 

In Table 1, the data pre-processing techniques 
performance on the network are above the 90% range for 
GD and GDM. The Min-Max-Logsig at 0.1 learning rate, 
Decimal Scaling-Tansig at 0.1, and Decimal Scaling Logsig 
with 0.1 and 0.7 learning rates are below the 90% accuracy 
rate. The results apparently show that with GD, the Z-Score-
Logsig with 0.3 learning rate outperformed the other pre-
processing techniques in terms of accuracy, but the Z-Score-
Tansig with 0.5 learning rate outperformed the other pre-
processing techniques in terms of minimum error. With 
respect to GDM, only Decimal Scaling-Logsig with 
momentum at 0.3, and learning rate at 0.3 produced the 
minimal accuracy. Z-Score-Logsig with 0.3 learning rate and 
0.7 momentum value outperformed the other pre-processing 
techniques in terms of accuracy, but the Z-Score-Tansig with 
0.5 learning rate and 0.5 momentum value outperformed the 
other pre-processing techniques in terms of minimum error. 
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TABLE I 
  CLASSIFICATION PERFORMANCES FOR IRIS DATASET 

 

Pre-processing 
techniques- Activation 

functions 

 
Learning 

 Rate 
(η) 

GD  
Momentum (α) 

(η=0.3, 0.5) 

 
GDM 

ACC  
(%) 

MSE 
(%) 

ACC 
(%) 

MSE 
(%) 

 
 

Min-Max - Tansig 

0.1 
0.3 
0.5 
0.7 

95.38 
96.22 
96.78 
94.80 

0.027 
0.019 
0.016 
0.015 

0.1 
0.3 
0.5 
0.7 

97.80 
95.16 
97.23 
95.73 

0.018 
0.017 
0.018 
0.016 

 
Min-Max -  Logsig 

0.1 
0.3 
0.5 
0.7 

89.24 
95.86 
96.03 
95.68 

0.113 
0.073 
0.059 
0.067 

0.1 
0.3 
0.5 
0.7 

95.43 
95.87 
95.66 
95.37 

0.033 
0.094 
0.045 
0.023 

Decimal Scaling – Tansig 0.1 
0.3 
0.5 
0.7 

87.69 
95.61 
96.68 
96.57 

0.059 
0.029 
0.029 
0.022 

0.1 
0.3 
0.5 
0.7 

95.26 
96.05 
94.96 
94.72 

0.024 
0.023 
0.024 
0.024 

Decimal Scaling – Logsig 0.1 
0.3 
0.5 
0.7 

86.53 
94.31 
93.04 
89.08 

0.118 
0.076 
0.049 
0.086 

0.1 
0.3 
0.5 
0.7 

92.37 
88.31 
91.37 
93.18 

0.087 
0.088 
0.096 
0.095 

 
Z-Score - Tansig 

0.1 
0.3 
0.5 
0.7 

96.47 
96.41 
97.59 
96.60 

0.013 
0.012 
0.011 
0.012 

0.1 
0.3 
0.5 
0.7 

96.82 
96.59 
95.96 
97.86 

0.012 
0.011 
0.010 
0.012 

 
Z-Score - Logsig 

0.1 
0.3 
0.5 
0.7 

97.33 
97.76 
96.72 
92.79 

0.054 
0.028 
0.021 
0.044 

0.1 
0.3 
0.5 
0.7 

96.91 
97.14 
95.41 
97.99 

0.019 
0.035 
0.032 
0.025 

 
 
The results obtained from the classification accuracy 

based on balance-scale dataset varied proportionally to pre-
processing techniques, as shown in Table 2. However, for all 
pre-processing techniques on training algorithm (GD) with 
different activation functions (tansig and logsig), 0.5 
learning rate gave the highest possible accuracy but Z-Score-
Logsig with the highest accuracy. The Z-Score-Tansig with 
0.5 learning rate outperformed the other pre-processing 
techniques in terms of minimum error. On GDM training 
algorithm, Z-Score-Tansig with momentum at 0.5 and 
learning rate of 0.5 accounted for the highest accuracy. 
Consequently, Z-Score-Tansig also gave the lowest error of 
0.037% at momentum rate of 0.7. 

The performance results as revealed in Table 3 for car 
evaluation data illustrates that the pre-processing techniques 

with training algorithms; GD and GDM performed 
excellently well with accuracy rates from 95% upwards. 
Based on GD, the Z-Score-Logsig resulted in the highest rate 
of 96.69% at a learning rate of 0.5. Also, the MSE results are 
at their lowest minimum, and Z-Score-Tansig generated the 
minimum error of 0.059% at 0.7 learning rate. On the 
performance with GDM which made use of learning rates of 
0.1 and 0.5 respectively, Decimal Scaling-Tansig with 
accuracy rate of 96.61% outperformed the other pre-
processing techniques at learning rate of 0.1 and momentum 
of 0.3, and minimum error percentage of 0.060% at 0.1 and 
0.3 learning rates respectively coupled with momentum of 
0.5 for Z-Score-Tansig. 
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TABLE II 

CLASSIFICATION PERFORMANCES FOR BALANCE SCALE DATASET 
 

Pre-processing 
techniques- Activation 

functions 

 
Learning  

Rate 
(η) 

 
GD 

 
Momentum (α) 

(η= 0.5) 

 
GDM 

ACC  
(%) 

MSE 
(%) 

ACC 
(%) 

MSE 
(%) 

 
Min-Max – Tansig 

0.1 
0.3 
0.5 
0.7 

91.16 
89.88 
93.84 
93.75 

0.068 
0.061 
0.053 
0.055 

0.1 
0.3 
0.5 
0.7 

90.52 
91.76 
92.63 
92.55 

0.054 
0.057 
0.057 
0.049 

 
Min-Max -  Logsig 

0.1 
0.3 
0.5 
0.7 

83.19 
93.30 
94.74 
94.47 

0.108 
0.060 
0.053 
0.049 

0.1 
0.3 
0.5 
0.7 

94.18 
94.59 
94.45 
94.85 

0.053 
0.053 
0.053 
0.052 

 
Decimal Scaling – Tansig 

0.1 
0.3 
0.5 
0.7 

85.23 
89.80 
92.76 
92.41 

0.094 
0.072 
0.059 
0.063 

0.1 
0.3 
0.5 
0.7 

92.84 
91.76 
91.63 
90.33 

0.067 
0.061 
0.069 
0.068 

 
Decimal Scaling – Logsig 

0.1 
0.3 
0.5 
0.7 

82.98 
87.62 
91.02 
89.69 

0.117 
0.083 
0.068 
0.057 

0.1 
0.3 
0.5 
0.7 

85.84 
92.89 
90.01 
87.77 

0.086 
0.067 
0.083 
0.080 

 
Z-Score – Tansig 

0.1 
0.3 
0.5 
0.7 

93.61 
92.84 
94.26 
93.85 

0.049 
0.047 
0.039 
0.044 

0.1 
0.3 
0.5 
0.7 

92.84 
94.70 
95.41 
93.33 

0.044 
0.039 
0.038 
0.037 

 
Z-Score - Logsig 

0.1 
0.3 
0.5 
0.7 

94.19 
95.06 
95.58 
95.48 

0.059 
0.047 
0.043 
0.046 

0.1 
0.3 
0.5 
0.7 

94.98 
95.39 
94.81 
95.38 

0.042 
0.047 
0.046 
0.047 

 
       

TABLE III 
 CLASSIFICATION PERFORMANCES FOR CAR EVALUATION DATASET 

 

Pre-processing 
techniques- Activation 

functions 

 
Learning 

Rate 
(η) 

 
GD  

Momentum (α) 
(η= 0.1,0.5) 

 
GDM 

ACC  
(%) 

MSE 
(%) 

ACC 
% 

MSE 
% 

 
 

Min-Max - Tansig 

0.1 
0.3 
0.5 
0.7 

95.88 
96.38 
96.64 
96.57 

0.185 
0.071 
0.067 
0.066 

0.1 
0.3 
0.5 
0.7 

96.35 
96.07 
96.11 
96.06 

0.063 
0.066 
0.065 
0.066 

 
Min-Max -  Logsig 

0.1 
0.3 
0.5 
0.7 

96.43 
96.24 
96.22 
96.16 

0.121 
0.094 
0.086 
0.084 

0.1 
0.3 
0.5 
0.7 

96.13 
96.18 
96.35 
95.95 

0.109 
0.123 
0.118 
0.118 

 
Decimal Scaling – 

Tansig 

0.1 
0.3 
0.5 
0.7 

96.16 
96.24 
96.31 
96.14 

0.095 
0.086 
0.082 
0.149 

0.1 
0.3 
0.5 
0.7 

96.26 
96.61 
96.46 
96.40 

0.095 
0.102 
0.091 
0.089 

 
Decimal Scaling – 

Logsig 

0.1 
0.3 
0.5 
0.7 

96.17 
96.29 
96.31 
95.64 

0.119 
0.107 
0.099 
0.106 

0.1 
0.3 
0.5 
0.7 

96.11 
96.25 
96.32 
95.92 

0.195 
0.106 
0.107 
0.111 

 
Z-Score - Tansig 

0.1 
0.3 
0.5 
0.7 

96.30 
96.15 
96.29 
96.21 

0.073 
0.064 
0.061 
0.059 

0.1 
0.3 
0.5 
0.7 

96.35 
96.25 
95.86 
96.33 

0.060 
0.060 
0.061 
0.062 

 
Z-Score - Logsig 

0.1 
0.3 
0.5 
0.7 

96.01 
96.36 
96.69 
96.02 

0.084 
0.075 
0.069 
0.074 

0.1 
0.3 
0.5 
0.7 

96.32 
96.31 
96.36 
96.23 

0.077 
0.069 
0.077 
0.070 
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IV.  CONCLUSION 

Motivated by the re-occurrence of the Back Propagation 
(BP) neural network sticking to local optimal, convergence 
speed, and the increase in computational cost associated with 
its learning process, this study explored the influence of data 
pre-processing at alleviating the BP shortcomings. Taking 
advantage of the Min-Max, Decimal Scaling, and Z-Score 
pre-processing techniques, coupled with the gradient descent 
and gradient descent with momentum training algorithms 
and activations functions; uni-polar sigmoidal and 
hyperbolic tangent, the performances of BP neural network 
are greatly improved with minimum errors. The 
experimental results align with the projected goal of this 
study. For all the datasets at different learning rates and 
momentum, the pre-processing techniques increased the 
accuracy of the BP classifier with Z-Score outperforming the 
other techniques. Also, the computational cost diminishes 
which ultimately increase performance. Hence, it can be 
concluded that adequately pre-processing that data optimizes 
the overall efficiency of the neural network. 
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