
Vol.15 (2025) No. 2

ISSN: 2088-5334

Comparative Study of Machine Learning Algorithms for DDoS Attack

Detection in SDN Networks: A Carbon Emission Analysis with

Hyperparameter Optimization Using Bayesian Optimization

Nadhir Fachrul Rozam a,*, Handaru Jati a, Eko Marpanaji a
a Doctoral Program in Engineering, Faculty of Engineering, Universitas Negeri Yogyakarta, Indonesia

Corresponding author: *nadhirfachrul.2024@student.uny.ac.id

Abstract—The rising energy consumption of artificial intelligence (AI) models has sparked concerns about their environmental impact,

particularly in high-computation fields like cybersecurity. As machine learning (ML) models become more complex and resource-

intensive, optimizing their energy efficiency and sustainability has become a critical challenge. Bayesian Optimization has emerged as

an effective approach for hyperparameter tuning, improving both model performance and energy efficiency. This study explores Tree-

structured Parzen Estimators (TPE), a variant of Bayesian Optimization that models hyperparameter distributions using density

estimation, to optimize the performance and environmental footprint of three widely used ML algorithms—Random Forest (RF),

Support Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost)—for DDoS attack detection in Software-Defined Networks

(SDN). Evaluations on two datasets—Dataset 3 (binary classification) and Dataset 4 (multi-class classification)—analyze accuracy,

precision, recall, and F1-score, alongside energy consumption and carbon emissions measured via the CodeCarbon. Results show that

RF achieves the highest accuracy across both datasets (99.81%) while reducing carbon emissions by 44.6% after optimization of TPE.

XGBoost, while slightly less accurate (99.77%), produces the lowest carbon emissions (0.0006 kg CO₂), demonstrating superior energy

efficiency. SVM, despite a 35% reduction in emissions, remains the least efficient in energy consumption and exhibits lowest accuracy.

These findings highlight the role of Bayesian Optimization in balancing predictive performance with sustainability. This study

contributes by demonstrating a quantitative approach to evaluating the trade-off between accuracy and energy efficiency in ML-based

DDoS attack detection in SDN, offering insights into selecting environmentally sustainable models.

Keywords— Carbon emission; energy consumption; DDoS attack detection; software-defined networks; machine learning; XGBoost.

Manuscript received 18 Dec. 2024; revised 13 Jan. 2025; accepted 16 Mar. 2025. Date of publication 30 Apr. 2025.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Software-Defined Networking (SDN) has significantly

transformed traditional network management by decoupling

the control plane from the data plane, enabling more agile,

scalable, and programmable networks. While this innovation

offers substantial benefits in terms of flexibility and

automation, it also introduces new security vulnerabilities,

particularly in the form of Distributed Denial-of-Service

(DDoS) attacks. DDoS attacks, which aim to overwhelm

network resources and disrupt services, remain one of the

most significant threats to SDN infrastructure [1]–[3]. These

attacks can exploit the centralized nature of SDN control,

making it particularly vulnerable to large-scale disruptions
[4]–[6]. As SDN networks become more widely deployed in

critical infrastructure, ensuring robust protection against such

attacks has become paramount.

In recent years, machine learning (ML) algorithms have

gained prominence for their ability to automate and enhance

DDoS detection by analyzing patterns in network traffic.

Various ML techniques, including Support Vector Machine

(SVM), Random Forest (RF), and Extreme Gradient Boosting
(XGBoost), have been explored for this purpose due to their

proficiency in handling large, complex datasets and

identifying hidden patterns in traffic behavior [7], [8] For

example, SVM is known for its ability to perform binary

classification tasks with high accuracy by constructing

hyperplanes that separate different classes of network traffic

[7], [9], [10]. On the other hand, Random Forest leverages an

ensemble of decision trees to classify network traffic, which

helps mitigate overfitting and enhances the model's

robustness against varied attack patterns [11]–[13]. XGBoost,

a gradient boosting algorithm, has become increasingly

popular due to its efficiency in handling large datasets and its

530

superior predictive performance, particularly in scenarios

involving imbalanced data like DDoS detection [14]. These

algorithms have shown promise in improving the accuracy of

DDoS attack detection, though each exhibits unique strengths

and weaknesses depending on the specific characteristics of

the network data.

While these traditional ML approaches have demonstrated

promising results, recent advancements in deep learning have

introduced new possibilities for improving DDoS detection in

SDN. Deep learning techniques leverage their ability to
automatically extract hierarchical features from raw network

traffic, reducing reliance on manual feature engineering.

Convolutional Neural Networks (CNNs) have been employed

for traffic classification by capturing spatial dependencies

within packet sequences [15]–[17], whereas Recurrent Neural

Networks (RNNs) and Long Short-Term Memory (LSTM)

networks have proven effective in modeling temporal attack

patterns [18]–[20]. Additionally, Transformer-based

architectures, including attention mechanisms and hybrid

deep learning frameworks, are being explored for their

scalability and robustness in handling high-dimensional SDN
traffic data [21], [22].

However, as machine learning models continue to be

adopted in practical applications, the environmental impact of

these models has come under scrutiny. Training machine

learning models, especially deep learning models, can be

computationally intensive and energy-consuming, leading to

a significant carbon footprint [23]–[25]. In the context of SDN,

where models are often required to process vast amounts of

network data in real-time, this concern becomes even more

pressing. Studies have highlighted the substantial energy

consumption associated with training these models and the
need for sustainable AI practices that balance model

performance with environmental responsibility [23], [26]–

[29]. Reducing the energy consumption of machine learning

models, particularly during training and hyperparameter

optimization phases, is a critical step toward making these

technologies more sustainable [30]–[32].

To address these dual challenges of detection accuracy and

sustainability, this paper proposes the use of Bayesian

optimization, implemented through the Optuna library [33],

to optimize the hyperparameters of SVM, Random Forest, and

XGBoost for DDoS attack detection in SDN networks.

Bayesian optimization is particularly well-suited for
optimizing complex, non-convex functions like those

associated with machine learning models, as it intelligently

explores the hyperparameter space and converges to optimal

solutions more efficiently than traditional grid search or

random search methods [33]. By incorporating Bayesian

optimization, this study aims to enhance model performance

while reducing computational cost, thereby mitigating the

carbon footprint associated with model training. Furthermore,

the carbon emissions of each algorithm will be measured

during the training to evaluate their environmental impact,

providing a holistic view of the trade-offs between model
performance and sustainability.

Through this comprehensive analysis, we aim to identify

the most efficient and sustainable approach for DDoS attack

detection in SDN, offering valuable insights into how

machine learning can be deployed more responsibly in real-

world network security applications. This research

contributes to the growing body of literature that emphasizes

the importance of energy-efficient AI models, particularly in

the context of cybersecurity, where both accuracy and

sustainability are crucial for long-term success.

II. MATERIALS AND METHODS

This section describes the materials, tools, and
methodologies used to conduct the experiments. The study

utilizes a dataset from previous research, including network

traffic data relevant for identifying DDoS attacks, and applies

advanced hyperparameter optimization techniques using

Optuna. Additionally, the carbon footprint of the models is

measured during both the training and evaluation to evaluate

the environmental impact of the machine learning approaches

used. The following subsections outline the dataset,

algorithms, optimization procedures, and evaluation metrics

used in this study.

A. Dataset

The dataset used for training and evaluating the machine

learning models in this study is sourced from a previous

research paper, which utilized network traffic data captured

via the sFlow protocol. The dataset consists of four distinct

datasets generated from real-time DDoS attack traffic and

benign traffic in a Software-Defined Networking (SDN)

environment. The traffic is sampled using the sFlow protocol

to reduce network load and capture relevant features for attack

detection. The datasets are categorized as follows:
 Dataset 1 and Dataset 2 contain 6,109 data points each,

with traffic classified into two classes (normal and

attack) and three classes (normal, Slowloris attack, and

Hping3 attack), respectively.

 Dataset 3 and Dataset 4 contain 400,488 data points,

categorized into two and three classes, respectively.

These datasets were preprocessed to handle missing values

and normalized to ensure consistent scaling of input features.

For this study, Dataset 3 and Dataset 4 were selected because

they demonstrated the best performance in terms of

classification accuracy and the ability to capture the diverse
nature of DDoS attacks, as shown in the results of the previous

research [2]. These datasets are more comprehensive and

contain a greater variety of traffic patterns, making them ideal

for training machine learning models in real-world SDN

environments. The data from these datasets were

preprocessed to handle missing values and normalized to

ensure consistent scaling of input features. The data was then

divided into training and testing sets with an 80/20 split,

ensuring that the models could generalize well on unseen data.

Each dataset contains various traffic flow characteristics such

as source IP, destination IP, source port, destination port, IP

protocol, and packet size, which are crucial for detecting
DDoS attacks in SDN environments.

B. Machine Learning Algorithms

For this experiment, three machine learning models were

selected to classify DDoS attacks in SDN environments: SVM,

RF, and XGBoost. These algorithms were chosen due to their

robustness and proven performance in classification tasks,

particularly in high-dimensional data, such as network traffic.

Below is a detailed explanation of each algorithm, along with
the mathematical formulations used in their operation.

531

1) Support Vector Machine (SVM): Support Vector

Machine (SVM) is a supervised learning algorithm used for

classification tasks, including binary and multi-class

classification. It works by finding the optimal hyperplane that

maximizes the margin between two classes [34]. The goal of

SVM is to find a decision boundary that best separates the

data points of one class from those of the other class, thus

ensuring optimal generalization.

Given a set of training data points

����, ���, ���, ���, … , ��
, �
�� , where �⃗ ∈ ℜ� are the

feature vectors and � ∈ ��1, �1� are the class labels, the

SVM aims to find a hyperplane defined by Eq. (1)

 � ⋅ � � � � 0 (1)

Where � is the normal vector to the hyperplane and � is the

bias term.
The objective of SVM is to maximize the margin, defined

as the distance between the hyperplane and the closest data

points from both classes (also known as support vectors). This

margin is given by Eq. (2).

 Margin � �

|�|
 (2)

The optimization problem is thus formulated Eq (3)

 min
�,�

�

�
|�|� (3)

subject to the constraints ��� ⋅ � � �� 1 for all i�1,2,...,n

This is a convex optimization problem, which can be

solved using quadratic programming. In cases where data is

not linearly separable, SVM uses a kernel trick to map the data

into a higher-dimensional space where it becomes linearly

separable. Popular kernels include the Radial Basis Function

(RBF) kernel.

2) Random Forest (RF): Random Forest (RF) is an

ensemble learning method that constructs multiple decision

trees and aggregates their results to improve classification

accuracy [35], [36]. Each tree is built using a random subset

of the training data, and at each node, a random subset of

features is considered for splitting. This randomization helps

to reduce overfitting and increases the model's ability to

generalize.

Random Forest builds an ensemble of (decision trees,

where each tree ()is trained using a random bootstrap sample

*) of the training data. The algorithm aggregates the results

from all trees using majority voting for classification tasks.

Given a new input �, the classification result is determined by

Eq (4).

 �+ � �

,
∑ ℎ/���,

/0� (4)

where:

 ℎ/��� is the prediction of the kkk-th tree,

 (is the total number of trees.

Each decision tree in the forest is constructed by

recursively partitioning the feature space into regions where

the data points in the same region are as homogeneous as

possible in terms of the target variable. This is typically done

by minimizing a criterion such as Gini impurity as in Eq (5)
or entropy as in Eq (6) at each node.

 1232�4� � 1 � ∑ 5
�6

0� (5)

where 5 is the proportion of the class 2 in the node 4 and 7 is

the number of classes.

 8349:5��4� � � ∑ 5
6
0� (6)

where 5is the probability of class 2 at node 4.

3) XGBoost (Extreme Gradient Boosting): XGBoost

(Extreme Gradient Boosting) is an optimized gradient

boosting algorithm that combines the predictive power of

boosting with techniques to prevent overfitting. It builds an

ensemble of decision trees sequentially, where each tree

corrects the errors made by the previous ones. The model is
trained by minimizing a loss function, and each subsequent

tree adds weight to the mistakes of the prior trees [37].

The main objective of XGBoost is to minimize the

following objective function in Eq (7).

 ℒ�θ� � ∑ =�� , �>?�

0� � ∑ Ω�A/�6

/0� (7)

where:

 =�� , �>?�is the loss function that measures the difference

between the true label � and the predicted label �>? ,

 Ω�A/� is a regularization term that penalizes the

complexity of the model (i.e., the size of the trees) to

avoid overfitting.

The regularization term is typically defined as Eq (8)

 Ω�A/� � γ(/ � �

�
||�/||� (8)

where:

 γ controls the complexity of the tree,

 (/ is the number of leaves in the C-th tree,

 �/ are the leaf weights.
The loss function is minimized using gradient descent. For

each iteration, the model updates the weights of the trees to

minimize the loss, making the model more accurate by

correcting the errors of previous trees. XGBoost uses a

second-order approximation to the loss function, improving

the computational efficiency and enabling faster training

compared to traditional gradient boosting methods [38]. This

results in a significant performance boost, especially for large

datasets.

Fig. 1 Total Carbon Emissions and Energy Consumed for Each Method

C. Hyperparameter Optimization

To enhance the performance of each model, Optuna was

utilized for hyperparameter optimization. It uses a

probabilistic model to explore the hyperparameter space and

efficiently identify the best configuration. The following

hyperparameters were optimized for each algorithm:

1) SVM: The C, kernel, and gamma parameters were

optimized using Optuna’s search space, with a focus on the

532

radial basis function (RBF) kernel, as it showed the best

results in preliminary experiments.

2) Random Forest: Hyperparameters such as

n_estimators, max_features, and max_depth were optimized

to find the optimal value.

3) XGBoost: Key parameters like n_estimators,

learning_rate, and max_depth were tuned to improve

classification accuracy while controlling overfitting.

Optuna implements Bayesian Optimization using Tree-

structured Parzen Estimators (TPE). This optimization
method minimizes the search space while maximizing the

performance metrics. The optimization process also helps

reduce computational time and resource usage, contributing

to lower energy consumption and carbon footprint, which is

an essential aspect of this study.

The Tree-structured Parzen Estimators (TPE) method is a

probabilistic model-based optimization technique used for

Bayesian Optimization [39]–[41]. It models the distribution

of objective function values over different hyperparameter

configurations in a way that allows efficient exploration of the

search space. The key idea behind TPE is to model the
hyperparameter distribution separately for "good" and "bad"

configurations based on the objective function [42]The good

configurations result in high performance (e.g., high accuracy

or low error), and the bad configurations result in low

performance.

The mathematical foundation of TPE relies on the ratio of

the densities of good and bad hyperparameters [43], [44].

Maximizing this ratio for the next hyperparameter set

selection is the main goal. The objective is to find the set of

hyperparameters � that maximizes the following utility

function in Eq (9).

 Utility��� �
GH�I� J θK

GH�I� L θK
 (9)

where:

 5��|� J M� is the estimated probability density of the

hyperparameters given that the performance is greater

than a threshold θ.

 5��|� L M�is the estimated probability density of the

hyperparameters given that the performance is less than

or equal to M.
By modeling these distributions for each hyperparameter

configuration, TPE efficiently searches the hyperparameter

space and selects configurations that are likely to yield good

results.

D. Carbon Footprint Measurement

The carbon footprint of each model was tracked during the

training using the CodeCarbon library [45]. CodeCarbon

calculates energy consumption based on the hardware

resources (CPU, GPU) used during model training and
estimates carbon emissions in kilograms of CO₂ equivalent.

Energy consumption was measured for each training session,

and total carbon emissions were calculated based on the

electricity consumed.

The energy consumed during computation is converted into

carbon emissions based on the energy grid's carbon intensity.

Carbon intensity is the amount of CO₂ emitted per unit of

energy produced (usually measured in g CO₂ per kWh). This

value varies depending on the location, as different regions

have different energy mixes (renewable vs. fossil fuels). The

carbon emissions QCO2 can be calculated as in Eq (10).

 QCO2 � 8 T carbon intensity (10)

where:

 QCO2 is the carbon emissions (in grams of CO₂, g CO₂),

 E is the energy consumed (in kWh),

 carbon intensity is the emission factor (in g CO₂ per

kWh).

TABLE I

EVALUATION RESULTS

 RF RF+TPE SVM SVM+TPE XGB XGB+TPE

Dataset 3 4 3 4 3 4 3 4 3 4 3 4
Accuracy 99.81 99.81 99.81 99.81 99.45 99.46 99.47 81.79 99.77 99.76 99.77 99.76

Precision 99.79 99.83 99.78 99.83 99.21 99.50 99.26 54.43 99.68 99.78 99.70 99.78
Recall 99.82 99.84 99.83 99.84 99.67 99.55 99.67 66.26 99.86 99.82 99.84 99.82
F1 99.81 99.84 99.80 99.83 99.44 99.53 99.47 59.03 99.77 99.80 99.77 99.80

Since carbon emissions are often expressed in kilograms

(kg) rather than grams, the value of QCO2 can be converted to
kg by dividing by 1000. The goal of tracking the carbon

footprint was to evaluate the environmental impact of

machine learning models during their optimization. This

allowed for a comparison between the performance of the

models and their associated environmental costs. The results

of this comparison are essential for identifying sustainable

approaches to DDoS detection in SDN networks.

Fig. 2 Accuracy Comparison of ML Models

533

III. RESULTS AND DISCUSSION

This section presents the results of the machine learning

models used for DDoS attack detection in SDN networks.

These models were trained using Datasets 3 and 4 from [2]We

compare their carbon emissions, energy consumption, and

training duration. Additionally, we analyze the impact of
Optuna optimization on the models' performance and

environmental sustainability.

A. Overview of Experimental Setup

This study evaluated three machine learning algorithms—

SVM, RF, and XGBoost—for DDoS attack detection in SDN

networks. These algorithms were selected for their diverse

capabilities in classification tasks, and they were tested using

two different datasets: Dataset 3 and Dataset 4. Dataset 3 and
Dataset 4 contain 400,488 data points, categorized into two

and three classes, respectively. Dataset 3 classes are Benign

Traffic (label 0) and DDoS Traffic (label 1), while Dataset 4

classes are Benign Traffic (label 0), Slowloris attack (label 1),

and Hping3 [46] attack (label 2)

The models were evaluated both with and without Optuna

optimization. Optuna was used to tune the hyperparameters of

the models, aiming to improve their performance while

reducing computational costs, including carbon emissions and

energy consumption. The key performance metrics used to

assess the models included accuracy, precision, recall, and F1-

score. In addition to these performance metrics, we also
measured carbon emissions and energy consumption during

the training of the models to evaluate their environmental

impact.

There are different parameters for each algorithm. Each

parameter combination will be searched for the best parameter

with GridSearchCV (5 fold validation) and Optuna (60 trials).

In the Random Forest, the hyperparameter used to find the

best combination of parameters are as follows:

 N Estimator: 25,50,75, and 100

 Max Feature: sqrt, log2, and None

For Support Vector Machine, the hyperparameters used

are as follows:

 Kernel: Linear, RBF, and Polynomial

 C: 0.1, 0.5, 1, 5, and 10

For Xtreme Gradient Boosting, the hyperparameters used

are as follows:
 N Estimator: 25, 50, 75, and 100

 Learning Rate: 0.1, 0.5, and 1

To evaluate the energy consumption and carbon emissions

during the training phase, we utilized CodeCarbon version

2.8.1 on a system with the following specifications: Intel®

Core™ i5-10400 CPU @ 2.90GHz (12 cores), 32 GB RAM,

and an NVIDIA GeForce GTX 1060 (6GB) GPU. The

experiments were conducted on Windows 11 (version

10.0.26100-SP0) with Python 3.12.8 as the runtime

environment. The carbon footprint measurements were

obtained using CodeCarbon’s estimation methodology, which
considers power consumption from both the CPU and GPU

while accounting for regional carbon intensity in Yogyakarta,

Indonesia, where the experiments were conducted.

By conducting these experiments, we aimed to identify the

most efficient model in terms of both performance and

environmental sustainability, considering the trade-offs

between computational resources and detection accuracy. The

goal of the experiments was twofold:

 Comparing the performance of SVM, Random Forest,

and XGBoost with and without Optuna optimization.

 Evaluating the environmental sustainability of these
models by measuring their carbon emissions and

energy consumption during training.

TABLE II

EMISSION RESULTS

 RF RF+TPE SVM SVM+TPE XGB XGB+TPE

Dataset 3 4 3 4 3 4 3 4 3 4 3 4
Emission
(kg CO2)

0.0065 0.0027 0,0036 0.0023 0.0636 0.1221 0.0407 0.1267 0.0002 0.0006 0.0003 0.0009

Training
Duration (s)

662.94 277.18 373.87 244.68 6503.68 12441.01 4157.41 12932.25 22.54 68.11 30.73 97.36

Energy

Used
(kWh)

0.0096 0.0040 0.0054 0.0035 0.0941 0.1805 0.0602 0.1874 0.0003 0.0009 0.0004 0.0014

B. Performance Comparison Across Models

This section compares the performance of RF, SVM, and

XGBoost models on Dataset 3 and Dataset 4 using four key

metrics: Accuracy, Precision, Recall, and F1-score. We also

assess the impact of TPE optimization on model performance.

Details of each model's performance results can be seen in

Table I as a reference in the discussion.

For Dataset 3, RF demonstrated the best performance across

all metrics, achieving 99.81% accuracy. TPE optimization

had no significant effect on RF's performance, with the

optimized model showing the same results. SVM performed
slightly lower, with 99.45% accuracy. After applying TPE

optimization, SVM showed a slight improvement in precision

and recall. XGBoost performed well, with 99.77% accuracy

for Dataset 3. TPE optimization had minimal impact on

XGBoost's performance, as it maintained the same score.

On Dataset 4, RF continued to perform strongly, achieving
99.81% accuracy. TPE optimization again did not

significantly affect RF’s performance, with the optimized

model maintaining the same score on all metrics. SVM

showed 99.46% accuracy. After applying TPE optimization,

SVM showed a significant drop in performance, with 81.79%

accuracy. This indicates that TPE optimization caused a

substantial decline in SVM's performance on Dataset 4.

XGBoost initially performed well on Dataset 3, with TPE

optimization providing slight improvements. On Dataset 4,

XGBoost showed a noticeable improvement with TPE

optimization, particularly in recall and precision.
When comparing Dataset 3 and Dataset 4, as shown in Fig.

2, RF consistently outperformed the other models in both

534

datasets, with minimal impact from TPE optimization. This

indicates the robustness of RF in handling different types of

data. SVM performed well on Dataset 3, but TPE optimization

led to a significant drop in accuracy (81.79%) and precision

(54.43%) on Dataset 4, indicating that TPE optimization hurt

SVM for Dataset 4. This decline in accuracy also means that

SVM might be less adaptable or sensitive to the variations in

Dataset 4, possibly due to the inherent complexity of SVM's

decision boundaries.

Overall, TPE optimization has not significantly improved
the XGBoost in performance measurement. RF maintained

excellent performance across both datasets, while SVM

showed moderate improvements for Dataset 3 but

experienced a performance decline in accuracy and precision

on Dataset 4 after TPE optimization.

C. Carbon Emissions and Energy Consumption

In this section, we evaluate the carbon emissions and

energy consumption during the model training. The results
highlight the environmental impact of each model's training

process and the effects of applying TPE optimization on the

energy usage and carbon footprint. As previously explained,

this emission calculation can be different for each region. This

research was conducted in Yogyakarta, Indonesia so that

carbon emissions were adjusted to the Carbon Intensity data

in this area.

Table II shows a linear relationship between carbon

emissions, energy usage, and training duration. The longer the

training duration, the more energy consumption will increase,

and of course, the carbon emissions will increase. Some

algorithms that apply TPE can reduce training duration
because they can find optimal hyperparameters more quickly.

As shown in Fig. 1, SVM is the highest contributor to

carbon emissions, with a significant total of 0.0636 kg CO2.

This is primarily due to the computational complexity of the

SVM algorithm, which requires substantial processing power

during training. Applying TPE on SVM reduces 35% of the

carbon emission to 0.0407. However, it still becomes the

biggest number among the others. On the other hand, RF

shows much lower carbon emissions, at 0.0065 kg CO2,

indicating a lower environmental impact than SVM. Similarly,

applying TPE optimization to RF (RF+TPE) results in 44.6%
reduced carbon emissions (0.0036 kg CO2), which becomes

the most efficient decrease due to the optimization. For

XGBoost, the emissions are even lower, at 0.0002070 kg CO2

for the base model, and 0.0002701 kg CO2 after applying TPE

optimization (XGB+TPE), showing a similar trend of

minimal impact on carbon emissions after the optimization.

Still in Fig. 1, SVM also consumes the most energy,

totaling 0.0941 kWh during training. This high energy

consumption is consistent with the large computational

requirements for SVM model training. RF and RF+TPE show

much lower energy consumption, with 0.009649 kWh and
0.005420 kWh, respectively. The TPE optimization applied to

RF reduces energy use, which highlights the optimization's

ability to enhance computational efficiency.

In short, as seen in Table II, the results indicate that SVM

has the highest carbon emissions and energy consumption,

significantly impacting the environment during training. On

the other hand, RF and XGB models, especially with TPE

optimization, show lower carbon emissions and energy

consumption, with RF exhibiting the most notable reduction

in both metrics after optimization.

D. Optimization Impact on Performance and Sustainability

TPE optimization generally reduced RF energy

consumption and carbon emissions, while maintaining high

performance metrics. These reductions show that TPE

optimization can significantly improve the sustainability of
RF by decreasing its environmental impact while maintaining

performance. Despite showing performance drops, SVM

benefited from TPE optimization by reducing carbon

emissions and energy usage compared to its non-optimized

version. TPE helps make SVM more efficient, but SVM still

consumes substantial resources compared to RF and XGBoost.

This decline suggests that SVM may not be as sensitive to the

TPE optimization process, or the optimization process did not

improve SVM's performance for the more complex Dataset 4.

The results indicate that SVM might benefit from alternative

optimization methods better suited to its structure. XGBoost
showed consistently low emissions and energy consumption,

with TPE optimization further enhancing recall and precision

without significant environmental impact. TPE optimization

is most effective for XGBoost and RF in improving both

performance and sustainability.

TPE optimization plays a vital role in enhancing the

performance and sustainability of machine learning models.

RF and XGBoost showed positive improvements in carbon

emissions and energy consumption due to TPE optimization,

making them more efficient models in terms of performance

and environmental impact. SVM, however, experienced a

performance decline on Dataset 4 and showed limited gains
in sustainability despite TPE optimization. This highlights the

potential for further optimization research and techniques,

particularly for models like SVM, which may benefit from

other tuning methods.

IV. CONCLUSION

In this study, we compared the performance and

environmental impact of three machine learning models: RF,
SVM, and XGBoost, across two datasets (Dataset 3 and

Dataset 4). The primary objective was to evaluate TPE

optimization's effectiveness in improving model performance

and sustainability by reducing carbon emissions and energy

consumption.

RF consistently performed well across both datasets, with

minimal impact from TPE optimization. While TPE did not

significantly improve RF's performance, it helped reduce

training time and energy consumption, making RF a highly

efficient model for both performance and sustainability.

XGBoost demonstrated high performance with 99.77%

accuracy and low carbon emissions and energy consumption
across both datasets. TPE optimization resulted in slight

improvements in recall and precision, further enhancing the

efficiency of XGB without negatively affecting its

environmental footprint. SVM demonstrated the highest

emissions and energy consumption, particularly on Dataset 4,

where carbon emissions were significantly higher (0.1221 kg

CO2 without optimization) than the other models. In terms of

performance, SVM also has the lowest among the others.

Therefore, it is not recommended to use SVM in case of

535

DDOS attack detection in SDN networks, or at least it can be

tried with other datasets or other optimization methods.

This study suggests that a significant drop in performance

for SVM on Dataset 4 after TPE optimization indicates that

SVM may not fully benefit from TPE for certain types of

datasets. Future research could explore alternative

optimization techniques or a more tailored hyperparameter

tuning approach to better suit the needs of SVM, especially

for complex datasets. While TPE optimization showed some

positive effects on energy consumption and carbon emissions,
further studies could focus on comparing TPE with other

optimization methods, such as Bayesian Optimization or

Genetic Algorithms, to assess which method provides the

most significant reduction in both training time and

environmental impact.

Although XGBoost and RF showed good results with TPE

optimization, exploring the effects of TPE on deep learning

models or ensemble methods could provide new insights into

the scalability and applicability of TPE optimization across

different algorithms. Future work should also consider the

real-world application of these findings in resource-
constrained environments. Research could explore the

potential for these optimized models to be deployed on edge

devices or cloud infrastructures, focusing on the trade-off

between model performance, environmental impact, and

computational costs. Incorporating Sustainability Metrics into

Model Selection: The growing importance of sustainable AI

calls for integrating ecological impact into model selection

criteria. Future research could propose frameworks that

combine traditional performance metrics with carbon

emissions and energy consumption, aiding researchers and

practitioners in making more environmentally responsible
decisions when choosing deployment models.

This study highlights the dual benefits of TPE optimization:

improving the performance of models like XGBoost and RF

while reducing their carbon emissions and energy

consumption. However, the performance of models like SVM

suggests that the impact of TPE optimization can vary

significantly across different algorithms and datasets. As

machine learning models become more widely used, the need

for sustainable AI practices will only grow, and future

research should continue to explore methods that enhance

model performance and environmental responsibility.

REFERENCES

[1] S. Chattopadhyay, A. K. Sahoo, S. Jasola, and T. Choudhury,

“Detection of DDoS Attacks in SDN Using Machine Learning

Approaches: A Review,” Lect. Notes Networks Syst., vol. 1025, pp.

295–305, 2024, doi: 10.1007/978-981-97-3594-5_24.

[2] N. F. Rozam and M. Riasetiawan, “XGBoost Classifier for DDOS

Attack Detection in Software Defined Network Using sFlow Protocol,”

Int. J. Adv. Sci. Eng. Inf. Technol., vol. 13, no. 2, pp. 718–725, Apr.

2023, doi: 10.18517/ijaseit.13.2.17810.

[3] M. A. Setitra, M. Fan, I. Benkhaddra, and Z. E. A. Bensalem,

“DoS/DDoS attacks in Software Defined Networks: Current situation,

challenges and future directions,” Computer Communications, vol. 222.

Elsevier B.V., pp. 77–96, Jun. 01, 2024,

doi:10.1016/j.comcom.2024.04.035.

[4] Y. Cui et al., “Towards DDoS detection mechanisms in Software-

Defined Networking,” J. Netw. Comput. Appl., vol. 190, no. November

2020, p. 103156, 2021, doi: 10.1016/j.jnca.2021.103156.

[5] N. S. S. Shaji, R. Muthalagu, and P. M. Pawar, “SD-IIDS: intelligent

intrusion detection system for software-defined networks,” Multimed.

Tools Appl., vol. 83, no. 4, pp. 11077–11109, Jan. 2024,

doi:10.1007/s11042-023-15725-y.

[6] N. T. Cam and T. D. Viet, “uitSDD: Protect software defined networks

from distributed denial-of-service using multi machine learning

models,” Cluster Comput., vol. 28, no. 1, p. 11, Feb. 2025,

doi:10.1007/s10586-024-04757-0.

[7] R. Ma, Q. Wang, X. Bu, and X. Chen, “Real-Time Detection of DDoS

Attacks Based on Random Forest in SDN,” Appl. Sci., vol. 13, no. 13,

2023, doi: 10.3390/app13137872.

[8] H. Kheddar, D. W. Dawoud, A. I. Awad, Y. Himeur, and M. K. Khan,

“Reinforcement-Learning-Based Intrusion Detection in Communication

Networks: A Review,” IEEE Commun. Surv. Tutorials, vol. PP, no. 00,

pp. 1–1, 2024, doi:10.1109/comst.2024.3484491.

[9] Y. Wang, X. Wang, M. M. Ariffin, M. Abolfathi, A. Alqhatani, and L.

Almutairi, “Attack detection analysis in software-defined networks

using various machine learning method,” Comput. Electr. Eng., vol.

108, 2023, doi: 10.1016/j.compeleceng.2023.108655.

[10] W. Man, G. Yang, and S. Feng, “Joint Selfattention-SVM DDoS

Attack Detection and Defense Mechanism Based on Self-Attention

Mechanism and SVM Classification for SDN Networks,” IEICE Trans.

Fundam. Electron. Commun. Comput. Sci., vol. E107.A, no. 6, pp.

881–889, 2024, doi: 10.1587/transfun.2023eap1057.

[11] R. Ma, Q. Wang, X. Bu, and X. Chen, “Real-Time Detection of DDoS

Attacks Based on Random Forest in SDN,” Appl. Sci. 2023, Vol. 13,

Page 7872, vol. 13, no. 13, p. 7872, Jul. 2023,

doi:10.3390/app13137872.

[12] A. A. Najar and S. Manohar Naik, “DDoS attack detection using MLP

and Random Forest Algorithms,” Int. J. Inf. Technol., vol. 14, no. 5,

pp. 2317–2327, 2022, doi: 10.1007/s41870-022-01003-x.

[13] H. Nurwarsito and M. F. Nadhif, “DDoS Attack Early Detection and

Mitigation System on SDN using Random Forest Algorithm and Ryu

Framework,” in 2021 8th International Conference on Computer and

Communication Engineering (ICCCE), 2021, pp. 178–183,

doi:10.1109/iccce50029.2021.9467167.

[14] T. Arvind and K. Radhika, “XGBoost Machine Learning Model-Based

DDoS Attack Detection and Mitigation in an SDN Environment,” Int.

J. Eng. Trends Technol., vol. 71, no. 2, pp. 349–361, 2023,

doi:10.14445/22315381/ijett-v71i2p237.

[15] R. Ben Said, Z. Sabir, and I. Askerzade, “CNN-BiLSTM: A Hybrid

Deep Learning Approach for Network Intrusion Detection System in

Software-Defined Networking with Hybrid Feature Selection,” IEEE

Access, vol. 11, pp. 138732–138747, 2023,

doi:10.1109/access.2023.3340142.

[16] A. A. Najar and S. Manohar Naik, “Cyber-Secure SDN: A CNN-Based

Approach for Efficient Detection and Mitigation of DDoS attacks,”

Comput. Secur., vol. 139, 2024, doi:10.1016/j.cose.2024.103716.

[17] O. Polat et al., “Multi-Stage Learning Framework Using

Convolutional Neural Network and Decision Tree-Based

Classification for Detection of DDoS Pandemic Attacks in SDN-Based

SCADA Systems,” Sensors, vol. 24, no. 3, 2024,

doi:10.3390/s24031040.

[18] R. Priyadarshini and R. K. Barik, “A deep learning based intelligent

framework to mitigate DDoS attack in fog environment,” J. King Saud

Univ. - Comput. Inf. Sci., vol. 34, no. 3, pp. 825–831, 2022,

doi:10.1016/j.jksuci.2019.04.010.

[19] N. M. Yungaicela-Naula, C. Vargas-Rosales, J. A. Perez-Diaz, E.

Jacob, and C. Martinez-Cagnazzo, “Physical Assessment of an SDN-

Based Security Framework for DDoS Attack Mitigation: Introducing

the SDN-SlowRate-DDoS Dataset,” IEEE Access, vol. 11, pp. 46820–

46831, 2023, doi: 10.1109/access.2023.3274577.

[20] D. G. Narayan, W. Heena, and K. Amit, “A Collaborative Approach

to Detecting DDoS Attacks in SDN Using Entropy and Deep Learning,”

J. Telecommun. Inf. Technol., no. 3, pp. 79–87, 2024,

doi:10.26636/jtit.2024.3.1609.

[21] H. Wang and W. Li, “DDosTC: A transformer-based network attack

detection hybrid mechanism in SDN,” Sensors, vol. 21, no. 15, 2021,

doi: 10.3390/s21155047.

[22] L. D. Manocchio, S. Layeghy, W. W. Lo, G. K. Kulatilleke, M. Sarhan,

and M. Portmann, “FlowTransformer: A transformer framework for

flow-based network intrusion detection systems,” Expert Syst. Appl., vol.

241, p. 122564, May 2024, doi:10.1016/j.eswa.2023.122564.

[23] D. Patterson et al., “The Carbon Footprint of Machine Learning

Training Will Plateau, Then Shrink,” Computer (Long. Beach. Calif).,

vol. 55, no. 7, pp. 18–28, Jul. 2022, doi: 10.1109/MC.2022.3148714.

[24] Z. Fan, Z. Yan, and S. Wen, “Deep Learning and Artificial Intelligence

in Sustainability: A Review of SDGs, Renewable Energy, and

Environmental Health,” Sustain. 2023, Vol. 15, Page 13493, vol. 15,

no. 18, p. 13493, Sep. 2023, doi: 10.3390/SU151813493.

536

[25] T. Adem, A. Mccrabb, V. Goyal, and V. Bertacco, “Evergreen:

Comprehensive Carbon Model for Performance-Emission Tradeoffs,”

Proc. - 2024 IEEE Int. Symp. Workload Charact. IISWC 2024, pp.

132–143, 2024, doi: 10.1109/IISWC63097.2024.00021.

[26] D. Patterson et al., “Carbon Emissions and Large Neural Network

Training,” pp. 1–22, Apr. 2021, doi: 10.48550/arXiv.2104.10350.

[27] R. Nishant, M. Kennedy, and J. Corbett, “Artificial intelligence for

sustainability: Challenges, opportunities, and a research agenda,” Int.

J. Inf. Manage., vol. 53, no. January, p. 102104, 2020,

doi:10.1016/j.ijinfomgt.2020.102104.

[28] V. Mehra et al., “Impacts of digital technologies and social media

platforms on advocating environmental sustainability in sports sector,”

Discov. Sustain., vol. 6, no. 1, 2025, doi: 10.1007/s43621-025-00932-4.

[29] F. Abdelfattah, K. Dahleez, H. Al Halbusi, and M. Salah, “Strategic

green alliances: Integrating green dynamic capabilities, AI, and

electronic entrepreneurial innovation for sustainability,” Sustain.

Futur., vol. 9, no. January, p. 100433, 2025,

doi:10.1016/j.sftr.2025.100433.

[30] X. Wang et al., “A Novel Energy Saving Algorithm for Network Deep

Learning Tasks,” 2024 6th Int. Conf. Next Gener. Data-Driven

Networks, NGDN 2024, pp. 339–343, 2024,

doi:10.1109/ngdn61651.2024.10744084.

[31] T. S. Reddy and B. M. Beena, “Analysis of Green Computing Models

on AWS Using Machine Learning Algorithms,” 2024 1st Int. Conf.

Women Comput. InCoWoCo 2024 - Proc., pp. 1–6, 2024,

doi:10.1109/InCoWoCo64194.2024.10863061.

[32] S. Sarkar et al., “Carbon Footprint Reduction for Sustainable Data

Centers in Real-Time,” Proc. AAAI Conf. Artif. Intell., vol. 38, no. 20,

pp. 22322–22330, 2024, doi: 10.1609/aaai.v38i20.30238.

[33] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A

Next-generation Hyperparameter Optimization Framework,” Proc.

ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., pp. 2623–2631,

Jul. 2019, doi: 10.1145/3292500.3330701.

[34] Z. Liu, Y. Wang, F. Feng, Y. Liu, Z. Li, and Y. Shan, “A DDoS

Detection Method Based on Feature Engineering and Machine

Learning in Software-Defined Networks,” Sensors, vol. 23, no. 13,

2023, doi: 10.3390/s23136176.

[35] S. Bhadauria, N. Aildasani, J. P. Kushwaha, and H. Gauttam, “DDoS

Attacks Detection using Ensemble Learning,” 2024 15th Int. Conf.

Comput. Commun. Netw. Technol. ICCCNT 2024, pp. 1–6, 2024,

doi:10.1109/icccnt61001.2024.10724315.

[36] W. Zhang, G. Yang, and R. Zhang, “DDoS Attack Detection Based on

Rényi-RF in SDN Environment,” in 2024 IEEE 7th Information

Technology, Networking, Electronic and Automation Control

Conference (ITNEC), Sep. 2024, vol. 46, no. 4, pp. 1365–1369,

doi:10.1109/itnec60942.2024.10733276.

[37] H. A. Alamri and V. Thayananthan, “Bandwidth control mechanism

and extreme gradient boosting algorithm for protecting software-

defined networks against DDoS attacks,” IEEE Access, vol. 8, pp.

194269–194288, 2020, doi: 10.1109/access.2020.3033942.

[38] G. B. N. Rao, A. Kumar, N. Kumar, and P. Raj, “Efficient Intelligent

Network Intrusion Detection for SDN Using XGBoost,” in 2024 15th

International Conference on Computing Communication and

Networking Technologies (ICCCNT), 2024, pp. 1–9,

doi:10.1109/icccnt61001.2024.10723841.

[39] Y. Ozaki, Y. Tanigaki, S. Watanabe, and M. Onishi, “Multiobjective

tree-structured parzen estimator for computationally expensive

optimization problems,” GECCO 2020 - Proc. 2020 Genet. Evol.

Comput. Conf., pp. 533–541, Jun. 2020,

doi:10.1145/3377930.3389817.

[40] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas,

“Taking the human out of the loop: A review of Bayesian optimization,”

Proc. IEEE, vol. 104, no. 1, pp. 148–175, 2016,

doi:10.1109/jproc.2015.2494218.

[41] X. Wang, Y. Jin, S. Schmitt, and M. Olhofer, “Recent Advances in

Bayesian Optimization,” ACM Comput. Surv., vol. 55, no. 13s, Dec.

2023, doi: 10.1145/3582078.

[42] T. T. Khoei, S. Ismail, and N. Kaabouch, “Boosting-based Models

with Tree-structured Parzen Estimator Optimization to Detect

Intrusion Attacks on Smart Grid,” in 2021 IEEE 12th Annual

Ubiquitous Computing, Electronics & Mobile Communication

Conference (UEMCON), 2021, pp. 165–170,

doi:10.1109/uemcon53757.2021.9666607.

[43] S. Watanabe, "Tree-structured Parzen estimator: Understanding its

algorithm components and their roles for better empirical

performance," arXiv, preprint arXiv:2304.11127, 2023. [Online].

Available: https://arxiv.org/abs/2304.11127

[44] J. Li et al., “Water quality soft-sensor prediction in anaerobic process

using deep neural network optimized by Tree-structured Parzen

Estimator,” Front. Environ. Sci. Eng., vol. 17, no. 6, 2023,

doi:10.1007/s11783-023-1667-3.

[45] B. Courty et al., “mlco2/codecarbon: v2.4.1.” Zenodo, May 2024,

doi:10.5281/zenodo.11171501.

[46] A. Mehra and S. Badotra, “A Novel Framework for Prevention against

DDoS Attacks using Software Defined-machine Learning Model,” Int.

J. Performability Eng., vol. 18, no. 8, pp. 580–588, 2022,

doi:10.23940/ijpe.22.08.p6.580588.

537

