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Abstract—The rising energy consumption of artificial intelligence (AI) models has sparked concerns about their environmental impact, 

particularly in high-computation fields like cybersecurity. As machine learning (ML) models become more complex and resource-

intensive, optimizing their energy efficiency and sustainability has become a critical challenge. Bayesian Optimization has emerged as 

an effective approach for hyperparameter tuning, improving both model performance and energy efficiency. This study explores Tree-

structured Parzen Estimators (TPE), a variant of Bayesian Optimization that models hyperparameter distributions using density 

estimation, to optimize the performance and environmental footprint of three widely used ML algorithms—Random Forest (RF), 

Support Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost)—for DDoS attack detection in Software-Defined Networks 

(SDN). Evaluations on two datasets—Dataset 3 (binary classification) and Dataset 4 (multi-class classification)—analyze accuracy, 

precision, recall, and F1-score, alongside energy consumption and carbon emissions measured via the CodeCarbon. Results show that 

RF achieves the highest accuracy across both datasets (99.81%) while reducing carbon emissions by 44.6% after optimization of TPE. 

XGBoost, while slightly less accurate (99.77%), produces the lowest carbon emissions (0.0006 kg CO₂), demonstrating superior energy 

efficiency. SVM, despite a 35% reduction in emissions, remains the least efficient in energy consumption and exhibits lowest accuracy. 

These findings highlight the role of Bayesian Optimization in balancing predictive performance with sustainability. This study 

contributes by demonstrating a quantitative approach to evaluating the trade-off between accuracy and energy efficiency in ML-based 

DDoS attack detection in SDN, offering insights into selecting environmentally sustainable models. 
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I. INTRODUCTION

Software-Defined Networking (SDN) has significantly 

transformed traditional network management by decoupling 

the control plane from the data plane, enabling more agile, 

scalable, and programmable networks. While this innovation 

offers substantial benefits in terms of flexibility and 

automation, it also introduces new security vulnerabilities, 

particularly in the form of Distributed Denial-of-Service 

(DDoS) attacks. DDoS attacks, which aim to overwhelm 

network resources and disrupt services, remain one of the 

most significant threats to SDN infrastructure [1]–[3]. These 

attacks can exploit the centralized nature of SDN control, 

making it particularly vulnerable to large-scale disruptions 
[4]–[6]. As SDN networks become more widely deployed in 

critical infrastructure, ensuring robust protection against such 

attacks has become paramount. 

In recent years, machine learning (ML) algorithms have 

gained prominence for their ability to automate and enhance 

DDoS detection by analyzing patterns in network traffic. 

Various ML techniques, including Support Vector Machine 

(SVM), Random Forest (RF), and Extreme Gradient Boosting 
(XGBoost), have been explored for this purpose due to their 

proficiency in handling large, complex datasets and 

identifying hidden patterns in traffic behavior [7], [8] For 

example, SVM is known for its ability to perform binary 

classification tasks with high accuracy by constructing 

hyperplanes that separate different classes of network traffic 

[7], [9], [10]. On the other hand, Random Forest leverages an 

ensemble of decision trees to classify network traffic, which 

helps mitigate overfitting and enhances the model's 

robustness against varied attack patterns [11]–[13]. XGBoost, 

a gradient boosting algorithm, has become increasingly 

popular due to its efficiency in handling large datasets and its 
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superior predictive performance, particularly in scenarios 

involving imbalanced data like DDoS detection [14]. These 

algorithms have shown promise in improving the accuracy of 

DDoS attack detection, though each exhibits unique strengths 

and weaknesses depending on the specific characteristics of 

the network data. 

While these traditional ML approaches have demonstrated 

promising results, recent advancements in deep learning have 

introduced new possibilities for improving DDoS detection in 

SDN. Deep learning techniques leverage their ability to 
automatically extract hierarchical features from raw network 

traffic, reducing reliance on manual feature engineering. 

Convolutional Neural Networks (CNNs) have been employed 

for traffic classification by capturing spatial dependencies 

within packet sequences [15]–[17], whereas Recurrent Neural 

Networks (RNNs) and Long Short-Term Memory (LSTM) 

networks have proven effective in modeling temporal attack 

patterns [18]–[20]. Additionally, Transformer-based 

architectures, including attention mechanisms and hybrid 

deep learning frameworks, are being explored for their 

scalability and robustness in handling high-dimensional SDN 
traffic data [21], [22]. 

However, as machine learning models continue to be 

adopted in practical applications, the environmental impact of 

these models has come under scrutiny. Training machine 

learning models, especially deep learning models, can be 

computationally intensive and energy-consuming, leading to 

a significant carbon footprint [23]–[25]. In the context of SDN, 

where models are often required to process vast amounts of 

network data in real-time, this concern becomes even more 

pressing. Studies have highlighted the substantial energy 

consumption associated with training these models and the 
need for sustainable AI practices that balance model 

performance with environmental responsibility [23], [26]–

[29]. Reducing the energy consumption of machine learning 

models, particularly during training and hyperparameter 

optimization phases, is a critical step toward making these 

technologies more sustainable [30]–[32]. 

To address these dual challenges of detection accuracy and 

sustainability, this paper proposes the use of Bayesian 

optimization, implemented through the Optuna library [33], 

to optimize the hyperparameters of SVM, Random Forest, and 

XGBoost for DDoS attack detection in SDN networks. 

Bayesian optimization is particularly well-suited for 
optimizing complex, non-convex functions like those 

associated with machine learning models, as it intelligently 

explores the hyperparameter space and converges to optimal 

solutions more efficiently than traditional grid search or 

random search methods [33]. By incorporating Bayesian 

optimization, this study aims to enhance model performance 

while reducing computational cost, thereby mitigating the 

carbon footprint associated with model training. Furthermore, 

the carbon emissions of each algorithm will be measured 

during the training to evaluate their environmental impact, 

providing a holistic view of the trade-offs between model 
performance and sustainability. 

Through this comprehensive analysis, we aim to identify 

the most efficient and sustainable approach for DDoS attack 

detection in SDN, offering valuable insights into how 

machine learning can be deployed more responsibly in real-

world network security applications. This research 

contributes to the growing body of literature that emphasizes 

the importance of energy-efficient AI models, particularly in 

the context of cybersecurity, where both accuracy and 

sustainability are crucial for long-term success. 

II. MATERIALS AND METHODS 

This section describes the materials, tools, and 
methodologies used to conduct the experiments. The study 

utilizes a dataset from previous research, including network 

traffic data relevant for identifying DDoS attacks, and applies 

advanced hyperparameter optimization techniques using 

Optuna. Additionally, the carbon footprint of the models is 

measured during both the training and evaluation to evaluate 

the environmental impact of the machine learning approaches 

used. The following subsections outline the dataset, 

algorithms, optimization procedures, and evaluation metrics 

used in this study. 

A. Dataset 

The dataset used for training and evaluating the machine 

learning models in this study is sourced from a previous 

research paper, which utilized network traffic data captured 

via the sFlow protocol. The dataset consists of four distinct 

datasets generated from real-time DDoS attack traffic and 

benign traffic in a Software-Defined Networking (SDN) 

environment. The traffic is sampled using the sFlow protocol 

to reduce network load and capture relevant features for attack 

detection. The datasets are categorized as follows: 
 Dataset 1 and Dataset 2 contain 6,109 data points each, 

with traffic classified into two classes (normal and 

attack) and three classes (normal, Slowloris attack, and 

Hping3 attack), respectively. 

 Dataset 3 and Dataset 4 contain 400,488 data points, 

categorized into two and three classes, respectively. 

These datasets were preprocessed to handle missing values 

and normalized to ensure consistent scaling of input features. 

For this study, Dataset 3 and Dataset 4 were selected because 

they demonstrated the best performance in terms of 

classification accuracy and the ability to capture the diverse 
nature of DDoS attacks, as shown in the results of the previous 

research [2]. These datasets are more comprehensive and 

contain a greater variety of traffic patterns, making them ideal 

for training machine learning models in real-world SDN 

environments. The data from these datasets were 

preprocessed to handle missing values and normalized to 

ensure consistent scaling of input features. The data was then 

divided into training and testing sets with an 80/20 split, 

ensuring that the models could generalize well on unseen data. 

Each dataset contains various traffic flow characteristics such 

as source IP, destination IP, source port, destination port, IP 

protocol, and packet size, which are crucial for detecting 
DDoS attacks in SDN environments. 

B. Machine Learning Algorithms 

For this experiment, three machine learning models were 

selected to classify DDoS attacks in SDN environments: SVM, 

RF, and XGBoost. These algorithms were chosen due to their 

robustness and proven performance in classification tasks, 

particularly in high-dimensional data, such as network traffic. 

Below is a detailed explanation of each algorithm, along with 
the mathematical formulations used in their operation. 

531



1) Support Vector Machine (SVM): Support Vector 

Machine (SVM) is a supervised learning algorithm used for 

classification tasks, including binary and multi-class 

classification. It works by finding the optimal hyperplane that 

maximizes the margin between two classes [34]. The goal of 

SVM is to find a decision boundary that best separates the 

data points of one class from those of the other class, thus 

ensuring optimal generalization. 

Given a set of training data points 

����, ���, ���, ���, … , ��
, �
�� , where �⃗
 ∈ ℜ�  are the 

feature vectors and �
 ∈  ��1, �1� are the class labels, the 

SVM aims to find a hyperplane defined by Eq. (1) 

 � ⋅ � � � � 0 (1) 

Where � is the normal vector to the hyperplane and � is the 

bias term. 
The objective of SVM is to maximize the margin, defined 

as the distance between the hyperplane and the closest data 

points from both classes (also known as support vectors). This 

margin is given by Eq. (2). 

 Margin � �

|�|
  (2) 

The optimization problem is thus formulated Eq (3) 

 min
�,�

�

�
|�|� (3) 

subject to the constraints �
�� ⋅ �
 � ��  1 for all i�1,2,...,n 

This is a convex optimization problem, which can be 

solved using quadratic programming. In cases where data is 

not linearly separable, SVM uses a kernel trick to map the data 

into a higher-dimensional space where it becomes linearly 

separable. Popular kernels include the Radial Basis Function 

(RBF) kernel. 

2) Random Forest (RF): Random Forest (RF) is an 

ensemble learning method that constructs multiple decision 

trees and aggregates their results to improve classification 

accuracy [35], [36]. Each tree is built using a random subset 

of the training data, and at each node, a random subset of 

features is considered for splitting. This randomization helps 

to reduce overfitting and increases the model's ability to 

generalize. 

Random Forest builds an ensemble of (  decision trees, 

where each tree ()is trained using a random bootstrap sample 

*) of the training data. The algorithm aggregates the results 

from all trees using majority voting for classification tasks. 

Given a new input �, the classification result is determined by 

Eq (4). 

 �+ � �

,
∑ ℎ/���,

/0�  (4) 

where: 

 ℎ/��� is the prediction of the kkk-th tree, 

 ( is the total number of trees. 

Each decision tree in the forest is constructed by 

recursively partitioning the feature space into regions where 

the data points in the same region are as homogeneous as 

possible in terms of the target variable. This is typically done 

by minimizing a criterion such as Gini impurity as in Eq (5) 
or entropy as in Eq (6) at each node. 

 1232�4� � 1 � ∑ 5

�6


0�   (5) 

where 5
 is the proportion of the class 2 in the node 4 and 7 is 

the number of classes. 

 8349:5��4� � � ∑ 5

6

0�   (6) 

where 5
is the probability of class 2 at node 4. 

3) XGBoost (Extreme Gradient Boosting): XGBoost 

(Extreme Gradient Boosting) is an optimized gradient 

boosting algorithm that combines the predictive power of 

boosting with techniques to prevent overfitting. It builds an 

ensemble of decision trees sequentially, where each tree 

corrects the errors made by the previous ones. The model is 
trained by minimizing a loss function, and each subsequent 

tree adds weight to the mistakes of the prior trees [37]. 

The main objective of XGBoost is to minimize the 

following objective function in Eq (7). 

 ℒ�θ� � ∑ =��
 , �>?�


0� � ∑ Ω�A/�6

/0�  (7) 

where: 

 =��
 , �>?�is the loss function that measures the difference 

between the true label �
 and the predicted label �>? , 

 Ω�A/� is a regularization term that penalizes the 

complexity of the model (i.e., the size of the trees) to 

avoid overfitting. 

The regularization term is typically defined as Eq (8) 

 Ω�A/� � γ(/ � �

�
||�/||� (8) 

where: 

 γ controls the complexity of the tree, 

 (/  is the number of leaves in the C-th tree, 

 �/ are the leaf weights. 
The loss function is minimized using gradient descent. For 

each iteration, the model updates the weights of the trees to 

minimize the loss, making the model more accurate by 

correcting the errors of previous trees. XGBoost uses a 

second-order approximation to the loss function, improving 

the computational efficiency and enabling faster training 

compared to traditional gradient boosting methods [38]. This 

results in a significant performance boost, especially for large 

datasets. 

 

 
Fig. 1  Total Carbon Emissions and Energy Consumed for Each Method  

C. Hyperparameter Optimization 

To enhance the performance of each model, Optuna was 

utilized for hyperparameter optimization. It uses a 

probabilistic model to explore the hyperparameter space and 

efficiently identify the best configuration. The following 

hyperparameters were optimized for each algorithm: 

1) SVM: The C, kernel, and gamma parameters were 

optimized using Optuna’s search space, with a focus on the 

532



radial basis function (RBF) kernel, as it showed the best 

results in preliminary experiments. 

2) Random Forest: Hyperparameters such as 

n_estimators, max_features, and max_depth were optimized 

to find the optimal value. 

3) XGBoost: Key parameters like n_estimators, 

learning_rate, and max_depth were tuned to improve 

classification accuracy while controlling overfitting. 

Optuna implements Bayesian Optimization using Tree-

structured Parzen Estimators (TPE). This optimization 
method minimizes the search space while maximizing the 

performance metrics. The optimization process also helps 

reduce computational time and resource usage, contributing 

to lower energy consumption and carbon footprint, which is 

an essential aspect of this study. 

The Tree-structured Parzen Estimators (TPE) method is a 

probabilistic model-based optimization technique used for 

Bayesian Optimization [39]–[41]. It models the distribution 

of objective function values over different hyperparameter 

configurations in a way that allows efficient exploration of the 

search space. The key idea behind TPE is to model the 
hyperparameter distribution separately for "good" and "bad" 

configurations based on the objective function [42]The good 

configurations result in high performance (e.g., high accuracy 

or low error), and the bad configurations result in low 

performance. 

The mathematical foundation of TPE relies on the ratio of 

the densities of good and bad hyperparameters [43], [44]. 

Maximizing this ratio for the next hyperparameter set 

selection is the main goal. The objective is to find the set of 

hyperparameters �  that maximizes the following utility 

function in Eq (9). 

 Utility��� �
GH�I� J θK

GH�I� L θK
 (9) 

where: 

 5��|� J M� is the estimated probability density of the 

hyperparameters given that the performance is greater 

than a threshold θ. 

 5��|� L M�is the estimated probability density of the 

hyperparameters given that the performance is less than 

or equal to M. 
By modeling these distributions for each hyperparameter 

configuration, TPE efficiently searches the hyperparameter 

space and selects configurations that are likely to yield good 

results. 

D. Carbon Footprint Measurement 

The carbon footprint of each model was tracked during the 

training using the CodeCarbon library [45]. CodeCarbon 

calculates energy consumption based on the hardware 

resources (CPU, GPU) used during model training and 
estimates carbon emissions in kilograms of CO₂ equivalent. 

Energy consumption was measured for each training session, 

and total carbon emissions were calculated based on the 

electricity consumed. 

The energy consumed during computation is converted into 

carbon emissions based on the energy grid's carbon intensity. 

Carbon intensity is the amount of CO₂ emitted per unit of 

energy produced (usually measured in g CO₂ per kWh). This 

value varies depending on the location, as different regions 

have different energy mixes (renewable vs. fossil fuels). The 

carbon emissions QCO2 can be calculated as in Eq (10). 

 QCO2 � 8 T carbon intensity (10) 

where: 

 QCO2 is the carbon emissions (in grams of CO₂, g CO₂), 

 E is the energy consumed (in kWh), 

 carbon intensity is the emission factor (in g CO₂ per 

kWh). 

TABLE I 

EVALUATION RESULTS 

  RF RF+TPE SVM SVM+TPE XGB XGB+TPE 

Dataset 3 4 3 4 3 4 3 4 3 4 3 4 
Accuracy 99.81 99.81 99.81 99.81 99.45 99.46 99.47 81.79 99.77 99.76 99.77 99.76 

Precision 99.79 99.83 99.78 99.83 99.21 99.50 99.26 54.43 99.68 99.78 99.70 99.78 
Recall  99.82 99.84 99.83 99.84 99.67 99.55 99.67 66.26 99.86 99.82 99.84 99.82 
F1 99.81 99.84 99.80 99.83 99.44 99.53 99.47 59.03 99.77 99.80 99.77 99.80 

Since carbon emissions are often expressed in kilograms 

(kg) rather than grams, the value of QCO2 can be converted to 
kg by dividing by 1000. The goal of tracking the carbon 

footprint was to evaluate the environmental impact of 

machine learning models during their optimization. This 

allowed for a comparison between the performance of the 

models and their associated environmental costs. The results 

of this comparison are essential for identifying sustainable 

approaches to DDoS detection in SDN networks. 

 
 

Fig. 2  Accuracy Comparison of ML Models 
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III. RESULTS AND DISCUSSION 

This section presents the results of the machine learning 

models used for DDoS attack detection in SDN networks. 

These models were trained using Datasets 3 and 4 from [2]We 

compare their carbon emissions, energy consumption, and 

training duration. Additionally, we analyze the impact of 
Optuna optimization on the models' performance and 

environmental sustainability. 

A. Overview of Experimental Setup 

This study evaluated three machine learning algorithms—

SVM, RF, and XGBoost—for DDoS attack detection in SDN 

networks. These algorithms were selected for their diverse 

capabilities in classification tasks, and they were tested using 

two different datasets: Dataset 3 and Dataset 4. Dataset 3 and 
Dataset 4 contain 400,488 data points, categorized into two 

and three classes, respectively. Dataset 3 classes are Benign 

Traffic (label 0) and DDoS Traffic (label 1), while Dataset 4 

classes are Benign Traffic (label 0), Slowloris attack (label 1), 

and Hping3 [46] attack (label 2) 

The models were evaluated both with and without Optuna 

optimization. Optuna was used to tune the hyperparameters of 

the models, aiming to improve their performance while 

reducing computational costs, including carbon emissions and 

energy consumption. The key performance metrics used to 

assess the models included accuracy, precision, recall, and F1-

score. In addition to these performance metrics, we also 
measured carbon emissions and energy consumption during 

the training of the models to evaluate their environmental 

impact. 

There are different parameters for each algorithm. Each 

parameter combination will be searched for the best parameter 

with GridSearchCV (5 fold validation) and Optuna (60 trials).  

In the Random Forest, the hyperparameter used to find the 

best combination of parameters are as follows: 

 N Estimator: 25,50,75, and 100 

 Max Feature: sqrt, log2, and None 

For Support Vector Machine, the hyperparameters used 

are as follows: 

 Kernel: Linear, RBF, and Polynomial 

 C: 0.1, 0.5, 1, 5, and 10 

For Xtreme Gradient Boosting, the hyperparameters used 

are as follows: 
 N Estimator: 25, 50, 75, and 100 

 Learning Rate: 0.1, 0.5, and 1 

To evaluate the energy consumption and carbon emissions 

during the training phase, we utilized CodeCarbon version 

2.8.1 on a system with the following specifications: Intel® 

Core™ i5-10400 CPU @ 2.90GHz (12 cores), 32 GB RAM, 

and an NVIDIA GeForce GTX 1060 (6GB) GPU. The 

experiments were conducted on Windows 11 (version 

10.0.26100-SP0) with Python 3.12.8 as the runtime 

environment. The carbon footprint measurements were 

obtained using CodeCarbon’s estimation methodology, which 
considers power consumption from both the CPU and GPU 

while accounting for regional carbon intensity in Yogyakarta, 

Indonesia, where the experiments were conducted. 

By conducting these experiments, we aimed to identify the 

most efficient model in terms of both performance and 

environmental sustainability, considering the trade-offs 

between computational resources and detection accuracy. The 

goal of the experiments was twofold: 

 Comparing the performance of SVM, Random Forest, 

and XGBoost with and without Optuna optimization. 

 Evaluating the environmental sustainability of these 
models by measuring their carbon emissions and 

energy consumption during training.  

TABLE II 

EMISSION RESULTS 

  RF RF+TPE SVM SVM+TPE XGB XGB+TPE 

Dataset 3 4 3 4 3 4 3 4 3 4 3 4 
Emission 
(kg CO2) 

0.0065 0.0027 0,0036 0.0023 0.0636 0.1221 0.0407 0.1267 0.0002 0.0006 0.0003 0.0009 

Training 
Duration (s) 

662.94 277.18 373.87 244.68 6503.68 12441.01 4157.41 12932.25 22.54 68.11 30.73 97.36 

Energy 

Used 
(kWh) 

0.0096 0.0040 0.0054 0.0035 0.0941 0.1805 0.0602 0.1874 0.0003 0.0009 0.0004 0.0014 

 

B. Performance Comparison Across Models 

This section compares the performance of RF, SVM, and 

XGBoost models on Dataset 3 and Dataset 4 using four key 

metrics: Accuracy, Precision, Recall, and F1-score. We also 

assess the impact of TPE optimization on model performance. 

Details of each model's performance results can be seen in 

Table I as a reference in the discussion. 

For Dataset 3, RF demonstrated the best performance across 

all metrics, achieving 99.81% accuracy. TPE optimization 

had no significant effect on RF's performance, with the 

optimized model showing the same results. SVM performed 
slightly lower, with 99.45% accuracy. After applying TPE 

optimization, SVM showed a slight improvement in precision 

and recall. XGBoost performed well, with 99.77% accuracy 

for Dataset 3. TPE optimization had minimal impact on 

XGBoost's performance, as it maintained the same score. 

On Dataset 4, RF continued to perform strongly, achieving 
99.81% accuracy. TPE optimization again did not 

significantly affect RF’s performance, with the optimized 

model maintaining the same score on all metrics. SVM 

showed 99.46% accuracy. After applying TPE optimization, 

SVM showed a significant drop in performance, with 81.79% 

accuracy. This indicates that TPE optimization caused a 

substantial decline in SVM's performance on Dataset 4. 

XGBoost initially performed well on Dataset 3, with TPE 

optimization providing slight improvements. On Dataset 4, 

XGBoost showed a noticeable improvement with TPE 

optimization, particularly in recall and precision. 
When comparing Dataset 3 and Dataset 4, as shown in Fig. 

2, RF consistently outperformed the other models in both 
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datasets, with minimal impact from TPE optimization. This 

indicates the robustness of RF in handling different types of 

data. SVM performed well on Dataset 3, but TPE optimization 

led to a significant drop in accuracy (81.79%) and precision 

(54.43%) on Dataset 4, indicating that TPE optimization hurt 

SVM for Dataset 4. This decline in accuracy also means that 

SVM might be less adaptable or sensitive to the variations in 

Dataset 4, possibly due to the inherent complexity of SVM's 

decision boundaries. 

Overall, TPE optimization has not significantly improved 
the XGBoost in performance measurement. RF maintained 

excellent performance across both datasets, while SVM 

showed moderate improvements for Dataset 3 but 

experienced a performance decline in accuracy and precision 

on Dataset 4 after TPE optimization. 

C. Carbon Emissions and Energy Consumption 

In this section, we evaluate the carbon emissions and 

energy consumption during the model training. The results 
highlight the environmental impact of each model's training 

process and the effects of applying TPE optimization on the 

energy usage and carbon footprint. As previously explained, 

this emission calculation can be different for each region. This 

research was conducted in Yogyakarta, Indonesia so that 

carbon emissions were adjusted to the Carbon Intensity data 

in this area. 

Table II shows a linear relationship between carbon 

emissions, energy usage, and training duration. The longer the 

training duration, the more energy consumption will increase, 

and of course, the carbon emissions will increase. Some 

algorithms that apply TPE can reduce training duration 
because they can find optimal hyperparameters more quickly. 

As shown in Fig. 1, SVM is the highest contributor to 

carbon emissions, with a significant total of 0.0636 kg CO2. 

This is primarily due to the computational complexity of the 

SVM algorithm, which requires substantial processing power 

during training. Applying TPE on SVM reduces 35% of the 

carbon emission to 0.0407. However, it still becomes the 

biggest number among the others. On the other hand, RF 

shows much lower carbon emissions, at 0.0065 kg CO2, 

indicating a lower environmental impact than SVM. Similarly, 

applying TPE optimization to RF (RF+TPE) results in 44.6% 
reduced carbon emissions (0.0036 kg CO2), which becomes 

the most efficient decrease due to the optimization. For 

XGBoost, the emissions are even lower, at 0.0002070 kg CO2 

for the base model, and 0.0002701 kg CO2 after applying TPE 

optimization (XGB+TPE), showing a similar trend of 

minimal impact on carbon emissions after the optimization. 

Still in Fig. 1, SVM also consumes the most energy, 

totaling 0.0941 kWh during training. This high energy 

consumption is consistent with the large computational 

requirements for SVM model training. RF and RF+TPE show 

much lower energy consumption, with 0.009649 kWh and 
0.005420 kWh, respectively. The TPE optimization applied to 

RF reduces energy use, which highlights the optimization's 

ability to enhance computational efficiency. 

In short, as seen in Table II, the results indicate that SVM 

has the highest carbon emissions and energy consumption, 

significantly impacting the environment during training. On 

the other hand, RF and XGB models, especially with TPE 

optimization, show lower carbon emissions and energy 

consumption, with RF exhibiting the most notable reduction 

in both metrics after optimization. 

D. Optimization Impact on Performance and Sustainability 

TPE optimization generally reduced RF energy 

consumption and carbon emissions, while maintaining high 

performance metrics. These reductions show that TPE 

optimization can significantly improve the sustainability of 
RF by decreasing its environmental impact while maintaining 

performance. Despite showing performance drops, SVM 

benefited from TPE optimization by reducing carbon 

emissions and energy usage compared to its non-optimized 

version. TPE helps make SVM more efficient, but SVM still 

consumes substantial resources compared to RF and XGBoost. 

This decline suggests that SVM may not be as sensitive to the 

TPE optimization process, or the optimization process did not 

improve SVM's performance for the more complex Dataset 4. 

The results indicate that SVM might benefit from alternative 

optimization methods better suited to its structure. XGBoost 
showed consistently low emissions and energy consumption, 

with TPE optimization further enhancing recall and precision 

without significant environmental impact. TPE optimization 

is most effective for XGBoost and RF in improving both 

performance and sustainability. 

TPE optimization plays a vital role in enhancing the 

performance and sustainability of machine learning models. 

RF and XGBoost showed positive improvements in carbon 

emissions and energy consumption due to TPE optimization, 

making them more efficient models in terms of performance 

and environmental impact. SVM, however, experienced a 

performance decline on Dataset 4 and showed limited gains 
in sustainability despite TPE optimization. This highlights the 

potential for further optimization research and techniques, 

particularly for models like SVM, which may benefit from 

other tuning methods. 

IV. CONCLUSION 

In this study, we compared the performance and 

environmental impact of three machine learning models: RF, 
SVM, and XGBoost, across two datasets (Dataset 3 and 

Dataset 4). The primary objective was to evaluate TPE 

optimization's effectiveness in improving model performance 

and sustainability by reducing carbon emissions and energy 

consumption.  

RF consistently performed well across both datasets, with 

minimal impact from TPE optimization. While TPE did not 

significantly improve RF's performance, it helped reduce 

training time and energy consumption, making RF a highly 

efficient model for both performance and sustainability. 

XGBoost demonstrated high performance with 99.77% 

accuracy and low carbon emissions and energy consumption 
across both datasets. TPE optimization resulted in slight 

improvements in recall and precision, further enhancing the 

efficiency of XGB without negatively affecting its 

environmental footprint. SVM demonstrated the highest 

emissions and energy consumption, particularly on Dataset 4, 

where carbon emissions were significantly higher (0.1221 kg 

CO2 without optimization) than the other models. In terms of 

performance, SVM also has the lowest among the others. 

Therefore, it is not recommended to use SVM in case of 
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DDOS attack detection in SDN networks, or at least it can be 

tried with other datasets or other optimization methods. 

This study suggests that a significant drop in performance 

for SVM on Dataset 4 after TPE optimization indicates that 

SVM may not fully benefit from TPE for certain types of 

datasets. Future research could explore alternative 

optimization techniques or a more tailored hyperparameter 

tuning approach to better suit the needs of SVM, especially 

for complex datasets. While TPE optimization showed some 

positive effects on energy consumption and carbon emissions, 
further studies could focus on comparing TPE with other 

optimization methods, such as Bayesian Optimization or 

Genetic Algorithms, to assess which method provides the 

most significant reduction in both training time and 

environmental impact. 

Although XGBoost and RF showed good results with TPE 

optimization, exploring the effects of TPE on deep learning 

models or ensemble methods could provide new insights into 

the scalability and applicability of TPE optimization across 

different algorithms. Future work should also consider the 

real-world application of these findings in resource-
constrained environments. Research could explore the 

potential for these optimized models to be deployed on edge 

devices or cloud infrastructures, focusing on the trade-off 

between model performance, environmental impact, and 

computational costs. Incorporating Sustainability Metrics into 

Model Selection: The growing importance of sustainable AI 

calls for integrating ecological impact into model selection 

criteria. Future research could propose frameworks that 

combine traditional performance metrics with carbon 

emissions and energy consumption, aiding researchers and 

practitioners in making more environmentally responsible 
decisions when choosing deployment models. 

This study highlights the dual benefits of TPE optimization: 

improving the performance of models like XGBoost and RF 

while reducing their carbon emissions and energy 

consumption. However, the performance of models like SVM 

suggests that the impact of TPE optimization can vary 

significantly across different algorithms and datasets. As 

machine learning models become more widely used, the need 

for sustainable AI practices will only grow, and future 

research should continue to explore methods that enhance 

model performance and environmental responsibility.  
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