
Vol.15 (2025) No. 3

ISSN: 2088-5334

AgnosticChaos: A Tool to Assess Software Applications' Reliability

Odai Hussein Ahmed Al-sayaghi a, Noraini Che Pa a,*, Hafeez Osman a, Ainita Ban a

a Department of Software Engineering and Information System, Faculty of Computer Science and Information Technology,

University Putra Malaysia, Serdang, Selangor, Malaysia

Corresponding author: *norainip@upm.edu.my

Abstract—Data-intensive software applications that process millions of events per second from IoT sensors need to maintain high

availability to deliver continuous data to consumers. Downtime can have significant impacts on service quality, so many cloud vendors,

including Microsoft Azure, Amazon Web Services (AWS), and Google Cloud Platform (GCP), provide geo-redundant infrastructure

to enhance service reliability. However, despite these provisions, it remains crucial to assess the resilience and reliability of software

applications under varied outage and fault scenarios to ensure that they can handle unexpected disruptions. Chaos engineering offers

a systematic approach to enhancing this reliability by deliberately introducing controlled failures into systems. This practice enables

developers to gain insights into an application's response under stress, ultimately fostering a better understanding of its robustness and

identifying areas for improvement. This research introduces AgnosticChaos, a novel tool designed to integrate with Azure's continuous

delivery pipelines, enabling the seamless use of multiple cloud vendors and third-party chaos engineering tools. AgnosticChaos provides

a streamlined environment for testing applications' resilience and reliability prior to deployment in a production environment. To

evaluate its effectiveness, AgnosticChaos was tested on three open-source microservices: an event producer, event receiver, and event

retainer. Our findings reveal that AgnosticChaos is not only more efficient and developer-friendly but also offers comparable

effectiveness to direct use of third-party chaos engineering tools. This study highlights the value of AgnosticChaos as a vital component

in pre-production workflows, offering a comprehensive and adaptable solution for resilience testing across diverse cloud environments.

Keywords— IoT; chaos engineering; continuous delivery; reliability.

Manuscript received 24 Dec. 2024; revised 13 Jan. 2025; accepted 17 Feb. 2025. Date of publication 30 Jun. 2025.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

The reliability and resilience of data-intensive software

applications are crucial for the successful operation of the

Internet of Things (IoT), as IoT devices generate partitioned

data, encrypting only sensitive portions [1]. IoT applications

must efficiently manage and transmit large amounts of data

from interconnected devices and software that exchange

information with each other and the cloud [2], [3], [4]. Any

disruptions in their operation could result in the loss of vital

data and cause disturbances in the operation of interconnected

devices and systems.

Cloud computing and serverless computing have emerged
as powerful tools for building and deploying scalable

applications. Cloud computing is an online platform that

provides access to applications, hardware, and system

software as services, enabling access to software, data, and

resources from anywhere. Deployment models are based on

resource availability and accessibility [4], [5]. Numerous

cloud providers offer geo-redundancy, duplicating data and

applications across multiple data centers. Manufacturers can

also adopt a multi-cloud strategy, leveraging services from

various providers for redundancy, vendor lock-in mitigation,

and access to best-in-class services, thereby enabling tailored
solutions, cost optimization, and flexibility [7]. Investing in

cloud services entails risks, including security and cost issues,

as well as concerns about advanced persistent threats targeting

cloud systems [8]. Additionally, some providers offer

serverless computing, which has effectively addressed

numerous concerns and obstacles, including load balancing,

manageability, and scalability. Users and customers are

relieved of the burden of dealing with these complexities.

However, as mentioned in [9], serverless computing comes

with various challenges and issues. A significant issue

revolves around the server start-up time for infrequently used
applications, as it can have a substantial impact on the

application's performance and Quality of Service (QoS).

When servers are shut down during idle periods, this can be

crucial for ensuring the quality of security services [10]. A

study by [11] highlighted that Cloud-based services, like any

806

other technology, can experience failures or crashes. One

example of this is the distributed denial-of-service (DDoS)

attacks that affected Amazon's access to information for an

extended period in 2009. Additionally, in 2013, there were

reports of cloud outages for Amazon, Microsoft, and Google.

Hence, there is a crucial need to continuously assess the

reliability and resilience of these software applications to

ensure their proper functioning in such failures [12], [13].

Developers use chaos engineering to test a system's resilience

by intentionally causing failures directly on a production
system, building confidence in its ability to withstand

unexpected chaotic conditions that start with known problems

and aims to uncover unknown ones [14], [15], [16]. Another

study by [17] explained that evaluating a distributed system is

necessary to gain confidence in its ability to tolerate chaotic

production issues. These conditions may range from hardware

failure to an unexpected surge in client requests to an

erroneous value in a runtime configuration parameter.

Through simulating various failure scenarios and observing

the system's response, organizations can improve their

understanding of the system's resilience and reliability [18].
This paper introduces AgnosticChaos, a prototype tool that

aims to address this limitation by seamlessly integrating

Azure Chaos Studio and Chaos Mesh into Azure continuous

delivery pipelines. This integration streamlines and automates

the evaluation of software applications in a pre-production

environment before their deployment to the production stage.

By proactively introducing controlled failures into the system,

developers can identify and address potential vulnerabilities

before they impact production environments. This approach

helps to build more robust and resilient applications that can

withstand unexpected disruptions, such as hardware failures,
network outages, or software bugs. AgnosticChaos strives to

make chaos engineering more accessible and practical,

enabling organizations to continuously improve the reliability

and resilience of their critical software applications.

The subsequent sections of this paper are structured as

follows: Section 11 provides an overview of previous research

studies and methods. Section III outlines our tool and

discusses resilience and reliability in various aspects by

evaluating the prototype tool, while Section IV serves as the

concluding section of the paper.

II. MATERIALS AND METHOD

Many researchers have proposed various tools and

frameworks utilizing chaos engineering to evaluate the

reliability and resilience of software applications [19]. A

study by [20] proposed ChaosOrca, a system designed to

inject chaos engineering failures into a system to evaluate its

resilience. ChaosOrca controls the scope of chaotic

experiments by utilizing Linux kernel features such as

cgroups and namespaces, and interfaces with various
monitoring tools to enhance observability. The tool introduces

perturbations by introducing faults or delays in system call

execution as defined in a resilience experiment.

Other researchers [21] proposed a chaos engineering

framework designed based on a review of existing literature

and a survey of available tools on the market, with part of it

applied in a Swedish grocery store chain. This helped identify

opportunities for improvement in the existing systems. In

[22], a Risk-driven Fault Injection (RDFI) technique is

proposed that utilizes chaos engineering principles to evaluate

the security of cloud systems by injecting security faults to

identify vulnerabilities and improve resilience.

Another study by [23] noted that chaos engineering can be

costly and time-consuming to set up, and it often focuses on

technical rather than business-level evaluation. To address

these challenges, the authors propose ChaosTwin, a technique

that leverages chaos engineering to create virtual

representations of physical systems, known as digital twins.

ChaosTwin assists service providers in finding cost-effective
configurations that mitigate the negative consequences of

unexpected occurrences by injecting faults into digital twins

and evaluating alternative service configurations and fault

management strategies from a business perspective. In [24]

and [25], it is described that Netflix built a system called

Chaos Automation Platform (CHAP) that conducts chaos

engineering experiments within its microservice architecture.

The goal of these experiments is to evaluate the overall

system's resilience in the event of a service interruption or

degradation (e.g., increased response latency or errors).

CHAP utilizes the FIT fault injection approach to inject faults
at the application level by annotating incoming requests with

metadata that indicates the call should fail or be delayed.

Furthermore, regularly performing continuous chaos

engineering experiments ensures the ongoing relevance of the

evaluation process. Despite the increased difficulty and

quality risks involved with dividing development tasks, many

companies implement continuous delivery (CD), indicating

that the business balances the drawbacks [26]. Numerous

research studies emphasize the significance of continuous

delivery pipelines, as described by [27], a software

engineering process that enables teams to continuously
produce valuable software in shorter cycles while ensuring it

remains releasable at all times. Adapting continuous

integration allows problems to be identified and fixed as they

occur, rather than waiting until later stages of the development

process. As noted by [28] and [29], Continuous Integration

(CI) and Continuous Delivery (CD) have emerged as

blessings for conventional application development and

release management practices. These practices enable the

continuous provision of high-quality artifacts to customers

along with ongoing integrated feedback.

The domain of our research study is to assess data-intensive

applications that require higher resilience and reliability,
which becomes even more critical when operational

consumers use the data to make real-time decisions. There are

often many challenges and technical issues due to the

complex nature of such architecture, the software, physical

components, network configuration, operational methods,

and data formats [30]. Network computing environments are

vulnerable to failures and outages due to the unpredictable

nature of network infrastructure [31]. As mentioned by [32],

a bottleneck in network bandwidth and communication

latency is expected to occur during the processing of IoT data

through distant data centers in the cloud.
Another challenge mentioned by [33] is that the

transmission and processing of massive volumes of data in

cloud computing will increase the burden on the core network

and limit the pace of data transmission and processing. Data-

intensive applications deployed in the cloud require more

scalability and redundancy capabilities as compared to

807

internal on-prem setups. While cloud vendors offer scalability

and high availability because of their ability to replicate

resources such as edge cloud computing into multiple

geographical locations, according to [34], one issue with

replicating resources like edge cloud computing in various

locations is that it can lead to strong consistency issues due to

the data nodes being in different places, which can cause

delays and insufficient bandwidth.

To highlight the difference between fault injection and

chaos engineering. In [17], it is mentioned that fault injections
are more of a testing technique in which the system is tested

against expected behavior or condition, while chaos

engineering generates new information or knowledge each

time it is conducted. When it comes to faults in software, a

fault, resulting from an abnormal state of a system

component, can cause an error, leading to the partial or

complete failure of a system [34]. As mentioned in [35], the

Fault Tolerant Elastic Resource Management (FT-ERM)

framework addresses cloud outages by incorporating high

availability (HA) awareness into servers and virtual machines

(VMs). It utilizes online monitoring to assess server health,
creates dedicated High Availability Virtual Networks

(HAVNs) for users, and employs a Multi-Input and Multi-

Output Evolutionary Neural Network (MIMO-ENN) based

predictor to forecast VM failures proactively. According to

[36], faults in software can be categorized into six categories,

which include: omission, hardware, software, network,

response, and miscellaneous.

The research employed a mixed-methods approach,

combining theoretical analysis and practical implementation.

Initially, a comprehensive literature review was conducted to

gain a deep understanding of the challenges and potential
solutions related to the reliability and resilience of data-

intensive software applications. This review explored the

challenges caused by IoT-based applications, such as data

volume, latency, and security risks. It also explored how

cloud-based solutions, including geo-redundancy, can

mitigate these challenges. Furthermore, the review examined

the principles and benefits of chaos engineering as a proactive

approach to testing system resilience. Finally, the research

explored how continuous integration and delivery practices

can be integrated with chaos engineering to automate testing

and improve deployment frequency.

Subsequently, a tool, AgnosticChaos, was developed and

implemented to automate chaos engineering experiments

within continuous integration and delivery pipelines. This tool

was designed to integrate with cloud vendor APIs, such as

Azure Chaos Studio and AWS Fault Injection Simulator, to
trigger fault injection experiments. The tool interacted with

continuous integration and delivery pipelines, analyzed

system responses, and provided insights into the system's

resilience. A primary application was developed to serve as a

central hub. This application communicates with various fault

injection APIs provided by different cloud vendors, enabling

the injection of faults and simulation of diverse scenarios

within pre-production environments. Complementing the

core application, four microservices were developed to

simulate and process events streamed from an IoT simulator.

These microservices create a realistic testing environment,
facilitating the evaluation of IoT applications under various

fault conditions. A case study was conducted to evaluate the

tool's effectiveness in real-world scenarios, involving

developers from multiple industries who assessed the

reliability and resilience of their applications using the tool.

The proposed approach centers on DevOps, incorporating

supplementary stages depicted in green in Fig. 1. These

additional steps aim to ensure that the application is initially

deployed in a digital twin environment (pre-production),

where we can deliberately introduce faults. This ensures that

the applications deployed in the production environment
remain undisturbed. As suggested by [23], the utilization of

digital twins for infrastructure helps mitigate the risks

associated with conducting chaos engineering experiments in

a production environment. Following this recommendation,

we have integrated digital twins into our proposed approach.

Fig. 1 DevOps with chaos engineering and digital twin environment

The activity diagram in Fig. 2 describes the DevOps

process. The process starts when a developer introduces new

enhancements or bug fixes to an existing system. Following

the code change, a pull request (PR) is generated to undergo

code review and simultaneous quality assurance (QA) testing.

Concurrently, a build validation is conducted to deploy the

application in a digital twin environment (pre-production).

This step enables the code reviewer and QA personnel to

verify whether the newly added code meets the resilience and

reliability expectations.

808

Fig. 2 AgnosticChaos tool architecture

During this phase, the applications are running, and our
tool initiates the process by contacting cloud vendors and

third-party chaos engineering tools to inject faults.

Subsequently, the logs from the application are gathered and

presented to the reviewer and QA, ensuring that they are

informed about the current state of the application's resilience

and reliability. Based on the system's acceptance criteria, it is

then their responsibility to approve and deploy the change or

reject it.

A. Design and Implementation

We have created a tool called AgnosticChaos that

integrates with Azure Chaos Studio and can be extended to

integrate with other third-party fault injection APIs.

AgnosticChaos will be used in Azure continuous pipelines to
inject faults into microservices deployed in Kubernetes. Our

tool interacts with the Azure Chaos Studio API using an

Azure Service Principal for authentication.

Subsequently, fault injection is initiated through

communication between Azure Chaos Studio and separate

managed identities associated with each Chaos experiment.

These managed identities possess the necessary permissions

to inject faults against AKS and Azure Cosmos DB. Our tool

was developed using .NET 6, and it is integrated with

Application Insights. It can be invoked by either developers

or Azure DevOps agents, ensuring seamless integration with
other DevOps tools. Fig. 3 illustrates the architecture of the

tool, including its dependencies and communication.

Fig. 3 AgnosticChaos tool architecture

Additionally, the pipeline we have built as a sample will

collect errors by communicating with the log store API.

Another task will display these error logs and a link to a
dashboard that we have built, which shows the CPU and

memory usage of the pods deployed in Kubernetes, along with

Infrastructure dependencies such as Event Hub and

CosmosDB. The environment we have created contains three
applications: Event Producer, Event Receiver, and Event

809

Retainer. These components are derived from an open-source

C# solution (https://github.com/denniszielke/resilient-cloud-

apps). We have added YAML pipelines to be able to deploy

them through Azure DevOps pipelines and we have added

another application to trigger the event producer which acts

as an IoT simulator.

Fig. 4 AgnosticChaos development environment architecture in IoT domain

Fig. 4 provides a clear view of the architecture of the
development environment in IoT. The following faults will be

injected into the Azure DevOps pipeline using our

AgnosticChaos tool in the continuous delivery pipeline after

the application is deployed to pre-production. This step will

always be part of the process of releasing new bug fixes or

some features to production. It is worth noting that Azure

continuous delivery pipelines can be triggered at any time or

run according to a specific schedule, which further enhances

the system by ensuring its resilience and reliability

consistently meet the criteria.

The following details explain the different faults that will
be injected into the system and the execution order.

1) Application Termination: The fault will simulate the

termination of an application using pod kill, which is provided

by a library called Chaos Mesh, and Azure Chaos Studio

already has integration with it.

2) CPU/Memory Stress: The scope of this fault is to

increase the utilization of the CPU and memory to a specific

threshold. We will use both Azure Chaos Studio and Chaos

Mesh to inject them via our API.

3) Cloud Data Center Outage: The fault will simulate a

data center outage for a database (Cosmos DB). This fault

originates from Azure Chaos Studio and will be invoked by

our tool.

III. RESULTS AND DISCUSSION

A case study was carried out to evaluate our tool and

approach focusing on three aspects: tool efficiency as

compared to using chaos engineering tools with integration to

DevOps; usability, to measure how usable and developer

friendly is the tool; and tool effectiveness, involving the use
of various metrics to evaluate resilience and reliability. Table

1 presents the five developers who evaluated the tool and their
corresponding levels of experience. It is essential to note that

the evaluation was conducted separately for each developer,

utilizing two distinct approaches: the manual approach, where

the developer manually executed the experiments through the

Azure portal after deploying the applications in the pre-

production environment, and our proposed approach, which

is automated within the continuous delivery pipelines.

TABLE I

EVALUATORS’ DEVELOPMENT EXPERIENCE

Participant
Years of

Experience

Experience in Azure

DevOps

Developer 1 5 1

Developer 2 8 4
Developer 3 12 3
Developer 4 14 3
Developer 5 9 1

A. Efficiency

To evaluate the efficiency of the AgnosticChaos Tool, two

experiments were conducted to test the mentioned open-

source application, which comprises three microservices
applications. The first experiment utilized our tool, which is

integrated into Azure DevOps pipelines. In the second

experiment, a manual process was employed, utilizing Azure

Chaos Studio and Chaos Mesh directly.

The hypothesis is as follows:

 ��: μ AgnosticChaos =μ manual

 ��: μ AgnosticChaos <μ manual

 μ AgnosticChaos: AgnosticChaos tool.

 μ manual: The compared Approach (Manual).

Table 2 presents the data collected from participants to

measure the time spent using both approaches.

810

TABLE II

DATA INPUT

Group A (Manual) in

minutes

Group B (AgnosticChaos) in

minutes

44 24
48 23.12
43 22
50 22
88 23

The critical significance level was set at 0.05. After

analyzing and testing the data, a significant difference was

observed in the time taken to complete the task using the

AgnosticChaos tool (Mean = 22.824) compared to the time

taken using the manual approach with Azure Chaos Studio

and Chaos Mesh tools (Mean = 54.6). In conclusion, the study

presented substantial evidence to reject the null hypotheses

and accept the alternative hypotheses. There is strong proof

that employing the AgnosticChoas tool enhances efficiency

as the time spent is less than utilizing the manual approach

with azure chaos studio and chaos mesh. This analysis was
conducted to fulfil the requirement of evaluating the proposed

tool and provide compelling evidence to support the

acceptance of the alternative hypothesis.

B. Usability

To evaluate usability, we used the System Usability Scale

(SUS), a measure designed to assess the usability of websites,

tools, or interactive systems. For each question, participants

are required to select one option from the form. A SUS score

equal to or greater than 68 is considered above average, while
scores below this threshold are considered below standard.

The scores for each question are converted to a new numerical

value, summed up, and then multiplied by 2.5

(www.usability.gov). Table 3 shows the results of this

evaluation for the two groups.

TABLE III

SUS DATA RESULTS

No.
Group A

(Manual)

Group B (Agnostic

Chaos)

1 10 85
2 15 85
3 20 92.5
4 52.5 90
5 45 55
Percentage
(%)

28.50 81.50

C. Effectiveness

For our assessment, we employed resilience and reliability

metrics to gauge the effectiveness of the tool. As a metric, we

utilized the Mean Time Between Failures (MTBF), which

represents the expected duration between successive failures

of a system during its regular operation. MTBF is typically

determined by calculating the average time between failures

of a system [37]. On the other hand, we will also use Mean

Time to Recovery (MTTR), which indicates the expected time
until a system recovers. The MTBF and MTTR can be

calculated by applying the equations below, respectively.

These equations state MTTF and MTTR as the averages of

uptime and downtime, respectively. Where nf is the total

number of failures, and the variables DT and UT denote

service downtime and uptime, respectively.

MTBF=
∑ �

��	
��

�
 [38] (1)

���� =
∑ �

��	 ���

�
 [39] (2)

Upon analyzing the gathered data illustrated in Table 4, we

observed that both approaches yielded identical results. In
essence, our tool demonstrated the same level of effectiveness

as the manual approach, as both methods injected the same

number of faults using the vendor API, resulting in

comparable values.

TABLE IV

MTTR AND MTBF RESULTS

No of

faults

nf

Estimated

Downtime in

minutes DT

Estimated

Uptime in

Minutes UT

MTBF in

minutes

MTTR in

minutes

2 5 24 12 2.5

2 5 23.12 11.56 2.5

2 5 22 11 2.5

2 5 22 11 2.5

2 5 23 11.5 2.5

The above results demonstrate the efficiency, usability, and

effectiveness of our proposed tool and approach in the

continuous delivery process as compared to using the manual

approach, in which developers directly use chaos engineering

tools without integrating them into continuous delivery

pipelines. These results were analyzed quantitatively through

experimental analysis. We downloaded and evaluated three
IoT applications (Message creator, message receiver, and

message retainer) from "GitHub" using our tool,

AgnosticChaos. These applications were deployed in

Kubernetes through Azure DevOps pipelines. Our tool played

a vital role in facilitating communication between Azure

DevOps and Azure Chaos Studio, functioning as a centralized

solution that abstracts the developer from using cloud-specific

fault injection.

This unification simplifies the process of injecting faults

and employing chaos engineering in the DevOps workflow,

making it more efficient and developer-friendly. Although our
current tool supports only Azure Chaos Studio, it can be

extended to communicate with other cloud vendors and third-

party chaos engineering tools, offering increased efficiency

and usability. This will help developers save time and

continuously gain insights into the resilience and reliability of

the software applications. The current tool is valuable for

evaluating the resilience and reliability of software

applications. However, it is limited to assessing applications

deployed exclusively in Kubernetes environments, thereby

excluding the evaluation of locally running applications.

While Kubernetes is commonly used for production

environments, developers may also need to assess application
behavior on local development machines without a local

Kubernetes instance. This limitation hinders its use in early

development stages or non-Kubernetes setups. It is essential

to highlight that our evaluation process involves only five

developers and three applications. To gain more insights into

the efficiency, effectiveness, and usability of this approach, it

would be beneficial to extend the evaluation to include

811

developers from different backgrounds and applications from

various domains. This would enhance the robustness of the

findings and provide a more comprehensive understanding of

the approach's capabilities.

IV. CONCLUSION

This research has developed a tool and proposed an
innovative approach that facilitates the comprehensive

evaluation of the resilience and reliability of data-intensive

software applications. By seamlessly integrating chaos

engineering techniques with multiple cloud vendors and third-

party fault injection APIs, this tool is directly incorporated

into continuous delivery pipelines, enabling continuous and

automated testing of application resilience. This integration

provides developers with an invaluable resource to assess how

their applications respond to simulated faults, disruptions, and

outage scenarios before deployment in a production

environment. The tool not only aids in identifying
vulnerabilities within the software architecture but also

enables developers to proactively address potential

weaknesses, thereby enhancing the system's overall

robustness.

Furthermore, this research study lays the groundwork for

developing an adaptable tool that empowers developers to

assess the reliability of distributed and geo-redundant

applications operating across multi-cloud environments. This

contribution is significant for applications that process high

volumes of data in real-time, where downtime or failure can

have significant implications. By ensuring that applications

are rigorously tested for resilience, this research promotes a
higher standard of software quality, reliability, and

robustness, ultimately benefiting both developers and end-

users. The methodologies provided by this study pave the way

for further advancements in automated resilience testing,

supporting the continuous improvement of cloud-native and

data-intensive software applications in an increasingly

interconnected digital landscape.

To achieve this, a mixed-methods approach was employed,

combining theoretical analysis and practical implementation.

Initially, a comprehensive literature review was conducted to

gain a deep understanding of the challenges and potential
solutions related to the reliability and resilience of data-

intensive software applications. Subsequently, a tool,

AgnosticChaos, was developed and implemented to automate

chaos engineering experiments within continuous integration

and delivery pipelines. This tool was designed to integrate

with cloud vendor APIs, such as Azure Chaos Studio and

AWS Fault Injection Simulator, to trigger fault injection

experiments. The tool's architecture was designed to interact

with continuous integration and delivery pipelines, analyze

system responses, and provide insights into the system's

resilience. A case study was conducted to evaluate the tool's
effectiveness in real-world scenarios, involving developers

from various industries who assessed the reliability and

resilience of their applications using the tool. By combining

these theoretical and practical aspects, the research aimed to

advance chaos engineering practices and improve the

reliability and resilience of data-intensive software

applications.

ACKNOWLEDGMENT

This research was supported by the Faculty of Computer

Science and Information Technology, Universiti Putra

Malaysia.

REFERENCES

[1] R. Gupta et al., "An IoT-centric data protection method for preserving

security and privacy in cloud," IEEE Syst. J., vol. 17, no. 2, pp. 2445-

2454, Jun. 2023, doi: 10.1109/jsyst.2022.3218894.\

[2] H. A. A. Hassan and M. Zolfy, "Exploring lightweight deep learning

techniques for intrusion detection systems in IoT networks: A

survey," J. Electr. Syst., pp. 1944-1958, 2024, doi: 10.52783/jes.2292.

[3] M. Kokila and K. Srinivasa Reddy, "Authentication, access control

and scalability models in Internet of Things security-A

review," Cybersecur. Appl., vol. 3, pp. 1-18, 2025,

doi:10.1016/j.csa.2024.100057.

[4] S. Pal, A. Dorri, and R. Jurdak, "Blockchain for IoT access control:

Recent trends and future research directions," J. Netw. Comput. Appl.,

vol. 203, pp. 1-19, 2022, doi: 10.1016/j.jnca.2022.103371.

[5] C. M. Mohammed and S. R. M. Zeebaree, "Sufficient comparison

among cloud computing services: IaaS, PaaS, and SaaS: A

review," Int. J. Sci. Bus., vol. 5, no. 2, pp. 17-30, 2021.

[6] G. Saini and N. Kaur, "Information leakage techniques in cloud

computing: A review," in Proc. ICTACS, Tashkent, Uzbekistan, 2022,

pp. 327-334, doi: 10.1109/ictacs56270.2022.9988405.

[7] U. S. Umar and M. E. Rana, "Cloud revolution in manufacturing:

Exploring benefits, applications, and challenges in the era of digital

transformation," in Proc. ICETSIS, Manama, Bahrain, 2024, pp. 1890-

1897, doi: 10.1109/icetsis61505.2024.10459473.

[8] R. Islam et al., "The future of cloud computing: Benefits and

challenges," Int. J. Commun. Netw. Syst. Sci., vol. 16, no. 4, pp. 53-65,

Apr. 2023, doi: 10.4236/ijcns.2023.164004.

[9] S. S. Gill et al., "Transformative effects of IoT, Blockchain and

Artificial Intelligence on cloud computing: Evolution, vision, trends

and open challenges," Internet Things, vol. 8, pp. 1-26, 2019,

doi:10.1016/j.iot.2019.100118.

[10] L. Zhang, J. Ron, B. Baudry, and M. Monperrus, "Chaos engineering

of ethereum blockchain clients," Distrib. Ledger Technol. Res. Pract.,

vol. 2, no. 3, pp. 1-18, 2023, doi: 10.1145/3611649.

[11] A. Tchernykh et al., "Towards understanding uncertainty in cloud

computing with risks of confidentiality, integrity, and availability," J.

Comput. Sci., vol. 36, no. 4, pp. 1-9, 2019,

doi:10.1016/j.jocs.2016.11.011.

[12] M. Akour, M. Alenezi, and O. Alqasem, "Enhancing software fault

detection with deep reinforcement learning: A Q-learning approach,"

in Proc. ACM Int. Conf. Proc. Ser., 2024, pp. 97-101,

doi:10.1145/3651781.3651796.

[13] C. Jiang et al., "A hybrid computing framework for risk-oriented

reliability analysis in dynamic PSA context: A case study," Qual.

Reliab. Eng., vol. 39, no. 8, pp. 3445-3471, 2023,

doi:10.1002/qre.3196.

[14] M. Jaival, K. Markaym, and A. Kaplan, "Serverless cloud functions -

Opportunity in chaos," in Proc. CSCI, Las Vegas, NV, USA, 2022, pp.

1330-1335, doi: 10.1109/csci58124.2022.00239.

[15] G. Chen et al., "Big data system testing method based on chaos

engineering," in Proc. ICEIEC, Beijing, China, 2022, pp. 210-215,

doi: 10.1109/iceiec54567.2022.9835072.

[16] S. Sharieh and A. Ferworn, "Securing APIs and chaos engineering,"

in Proc. ESSCA, 2021, pp. 290-294,

doi:10.1109/cns53000.2021.9705049.

[17] A. Basiri et al., "Chaos engineering," IEEE Softw., vol. 33, no. 3, pp.

35-41, May-Jun. 2016, doi: 10.1109/ms.2016.60.

[18] A. A. Z. Ibrahim et al., "Reliability-aware swarm based multi-

objective optimization for controller placement in distributed SDN

architecture," Digit. Commun. Netw., vol. 10, no. 5, pp. 1245-1257,

2024, doi: 10.1016/j.dcan.2023.11.007.

[19] M. Verma et al., "A chaos recommendation tool for reliability testing

in large-scale cloud-native systems," in Proc. COMSNETS, 2024, pp.

270-272, doi: 10.1109/comsnets59351.2024.10427311.

[20] J. Simonsson et al., "Observability and chaos engineering on system

calls for containerized applications in Docker," Future Gener.

Comput. Syst., vol. 122, pp. 117-129, 2021,

doi:10.1016/j.future.2021.04.001.

812

[21] H. Jernberg, P. Runeson, and E. Engström, "Getting started with chaos

engineering - Design of an implementation framework in practice,"

in Proc. ESEM, Bari, Italy, 2020, pp. 1-10,

doi:10.1145/3382494.3421464.

[22] K. A. Torkura et al., "CloudStrike: Chaos engineering for security and

resiliency in cloud infrastructure," IEEE Access, vol. 8, pp. 123044-

123060, 2020, doi: 10.1109/access.2020.3007338.

[23] F. Poltronieri, M. Tortonesi, and C. Stefanelli, "ChaosTwin: A chaos

engineering and digital twin approach for the design of resilient IT

services," in Proc. CNSM, 2021, pp. 234-238,

doi:10.23919/cnsm52442.2021.9615519.

[24] A. Basiri et al., "Automating chaos experiments in production,"

in Proc. ICSE-SEIP, Montreal, QC, Canada, 2019, pp. 31-40,

doi:10.1109/icse-seip.2019.00012.

[25] A. Blohowiak et al., "A platform for automating chaos experiments,"

in Proc. ISSREW, 2016, pp. 5-8, doi: 10.1109/issrew.2016.52.

[26] M. Ohshima and N. Uchihira, "Mechanisms for improving investment

efficiency through continuous delivery in internet services," in Proc.

PICMET, 2023, pp. 1-6, doi:10.23919/picmet59654.2023.10216798.

[27] L. Chen, "Continuous delivery: Huge benefits, but challenges

too," IEEE Softw., vol. 32, no. 2, pp. 50-54, 2015,

doi:10.1109/MS.2015.27.

[28] M. Soni, "End to end automation on cloud with build pipeline: The

case for DevOps in insurance industry, continuous integration,

continuous testing, and continuous delivery," in Proc. CCEM, 2015,

pp. 85-89, doi: 10.1109/ccem.2015.29.

[29] S. Afaneh et al., "Security challenges review in agile and DevOps

practices," in Proc. ICIT, 2023, pp. 102-107,

doi:10.1109/icit58056.2023.10226018.

[30] S. Shawki et al., "Healthcare monitoring system for automatic

database management using mobile application in IoT

environment," Bull. Electr. Eng. Inform., vol. 12, no. 2, pp. 1055-

1068, Apr. 2023, doi: 10.11591/eei.v12i2.4282.

[31] M. S. Almhanna et al., "Customizing the minimum number of replicas

for achieving fault tolerance in a cloud/grid environment," Bull.

Electr. Eng. Inform., vol. 13, no. 1, pp. 396-404, 2024,

doi:10.11591/eei.v13i1.5413.

[32] G. Premsankar, M. Di Francesco, and T. Taleb, "Edge computing for

the Internet of Things: A case study," IEEE Internet Things J., vol. 5,

no. 2, pp. 1275-1284, 2018, doi: 10.1109/jiot.2018.2805263.

[33] L. M. Song, M. Zhang, and Y. Luo, "Effective replica management for

improving reliability and availability in edge-cloud computing

environment," J. Parallel Distrib. Comput., vol. 143, pp. 107-128,

2020, doi: 10.1016/j.jpdc.2020.04.012.

[34] S. Isukapalli and S. N. Srirama, "A systematic survey on fault-tolerant

solutions for distributed data analytics: Taxonomy, comparison, and

future directions," Comput. Sci. Rev., vol. 53, pp. 1-25, Aug. 2024,

doi:10.1016/j.cosrev.2024.100660.

[35] D. Saxena et al., "A fault tolerant elastic resource management

framework toward high availability of cloud services," IEEE Trans.

Netw. Serv. Manag., vol. 19, no. 3, pp. 3048-3061, Sep. 2022,

doi:10.1109/tnsm.2022.3170379.

[36] P. Kumari and P. Kaur, "A survey of fault tolerance in cloud

computing," J. King Saud Univ.-Comput. Inf. Sci., vol. 33, no. 10, pp.

1159-1176, 2021, doi: 10.1016/j.jksuci.2018.09.021.

[37] A. Gupta, V. Chandra, and A. Dixit, "Reliability analysis of a fault-

tolerant full-duplex optical wireless communication

transceiver," IEEE Access, vol. 11, pp. 61298-61312, 2023,

doi:10.1109/access.2023.3287335.

[38] H. Adamu et al., "An approach to failure prediction in a cloud based

environment," in Proc. FiCloud, 2017, pp. 191-197,

doi:10.1109/ficloud.2017.56.

[39] Q. Lin et al., "Predicting node failure in cloud service systems,"

in Proc. ESEC/FSE, 2018, pp. 480-490,

doi:10.1145/3236024.3236060.

813

