
Vol.15 (2025) No. 3 

ISSN: 2088-5334 

AgnosticChaos: A Tool to Assess Software Applications' Reliability 

Odai Hussein Ahmed Al-sayaghi a, Noraini Che Pa a,*, Hafeez Osman a, Ainita Ban a

a Department of Software Engineering and Information System, Faculty of Computer Science and Information Technology, 

University Putra Malaysia, Serdang, Selangor, Malaysia 

Corresponding author: *norainip@upm.edu.my 

Abstract—Data-intensive software applications that process millions of events per second from IoT sensors need to maintain high 

availability to deliver continuous data to consumers. Downtime can have significant impacts on service quality, so many cloud vendors, 

including Microsoft Azure, Amazon Web Services (AWS), and Google Cloud Platform (GCP), provide geo-redundant infrastructure 

to enhance service reliability. However, despite these provisions, it remains crucial to assess the resilience and reliability of software 

applications under varied outage and fault scenarios to ensure that they can handle unexpected disruptions. Chaos engineering offers 

a systematic approach to enhancing this reliability by deliberately introducing controlled failures into systems. This practice enables 

developers to gain insights into an application's response under stress, ultimately fostering a better understanding of its robustness and 

identifying areas for improvement. This research introduces AgnosticChaos, a novel tool designed to integrate with Azure's continuous 

delivery pipelines, enabling the seamless use of multiple cloud vendors and third-party chaos engineering tools. AgnosticChaos provides 

a streamlined environment for testing applications' resilience and reliability prior to deployment in a production environment. To 

evaluate its effectiveness, AgnosticChaos was tested on three open-source microservices: an event producer, event receiver, and event 

retainer. Our findings reveal that AgnosticChaos is not only more efficient and developer-friendly but also offers comparable 

effectiveness to direct use of third-party chaos engineering tools. This study highlights the value of AgnosticChaos as a vital component 

in pre-production workflows, offering a comprehensive and adaptable solution for resilience testing across diverse cloud environments. 
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I. INTRODUCTION

The reliability and resilience of data-intensive software 

applications are crucial for the successful operation of the 

Internet of Things (IoT), as IoT devices generate partitioned 

data, encrypting only sensitive portions [1]. IoT applications 

must efficiently manage and transmit large amounts of data 

from interconnected devices and software that exchange 

information with each other and the cloud [2], [3], [4]. Any 

disruptions in their operation could result in the loss of vital 

data and cause disturbances in the operation of interconnected 

devices and systems.  

Cloud computing and serverless computing have emerged 
as powerful tools for building and deploying scalable 

applications. Cloud computing is an online platform that 

provides access to applications, hardware, and system 

software as services, enabling access to software, data, and 

resources from anywhere. Deployment models are based on 

resource availability and accessibility [4], [5]. Numerous 

cloud providers offer geo-redundancy, duplicating data and 

applications across multiple data centers. Manufacturers can 

also adopt a multi-cloud strategy, leveraging services from 

various providers for redundancy, vendor lock-in mitigation, 

and access to best-in-class services, thereby enabling tailored 
solutions, cost optimization, and flexibility [7]. Investing in 

cloud services entails risks, including security and cost issues, 

as well as concerns about advanced persistent threats targeting 

cloud systems [8]. Additionally, some providers offer 

serverless computing, which has effectively addressed 

numerous concerns and obstacles, including load balancing, 

manageability, and scalability. Users and customers are 

relieved of the burden of dealing with these complexities.  

However, as mentioned in [9], serverless computing comes 

with various challenges and issues. A significant issue 

revolves around the server start-up time for infrequently used 
applications, as it can have a substantial impact on the 

application's performance and Quality of Service (QoS). 

When servers are shut down during idle periods, this can be 

crucial for ensuring the quality of security services [10]. A 

study by [11] highlighted that Cloud-based services, like any 
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other technology, can experience failures or crashes. One 

example of this is the distributed denial-of-service (DDoS) 

attacks that affected Amazon's access to information for an 

extended period in 2009. Additionally, in 2013, there were 

reports of cloud outages for Amazon, Microsoft, and Google.  

Hence, there is a crucial need to continuously assess the 

reliability and resilience of these software applications to 

ensure their proper functioning in such failures [12], [13]. 

Developers use chaos engineering to test a system's resilience 

by intentionally causing failures directly on a production 
system, building confidence in its ability to withstand 

unexpected chaotic conditions that start with known problems 

and aims to uncover unknown ones [14], [15], [16]. Another 

study by [17] explained that evaluating a distributed system is 

necessary to gain confidence in its ability to tolerate chaotic 

production issues. These conditions may range from hardware 

failure to an unexpected surge in client requests to an 

erroneous value in a runtime configuration parameter. 

Through simulating various failure scenarios and observing 

the system's response, organizations can improve their 

understanding of the system's resilience and reliability [18]. 
This paper introduces AgnosticChaos, a prototype tool that 

aims to address this limitation by seamlessly integrating 

Azure Chaos Studio and Chaos Mesh into Azure continuous 

delivery pipelines. This integration streamlines and automates 

the evaluation of software applications in a pre-production 

environment before their deployment to the production stage. 

By proactively introducing controlled failures into the system, 

developers can identify and address potential vulnerabilities 

before they impact production environments. This approach 

helps to build more robust and resilient applications that can 

withstand unexpected disruptions, such as hardware failures, 
network outages, or software bugs. AgnosticChaos strives to 

make chaos engineering more accessible and practical, 

enabling organizations to continuously improve the reliability 

and resilience of their critical software applications.  

The subsequent sections of this paper are structured as 

follows: Section 11 provides an overview of previous research 

studies and methods. Section III outlines our tool and 

discusses resilience and reliability in various aspects by 

evaluating the prototype tool, while Section IV serves as the 

concluding section of the paper.  

II. MATERIALS AND METHOD 

Many researchers have proposed various tools and 

frameworks utilizing chaos engineering to evaluate the 

reliability and resilience of software applications [19]. A 

study by [20] proposed ChaosOrca, a system designed to 

inject chaos engineering failures into a system to evaluate its 

resilience. ChaosOrca controls the scope of chaotic 

experiments by utilizing Linux kernel features such as 

cgroups and namespaces, and interfaces with various 
monitoring tools to enhance observability. The tool introduces 

perturbations by introducing faults or delays in system call 

execution as defined in a resilience experiment. 

Other researchers [21] proposed a chaos engineering 

framework designed based on a review of existing literature 

and a survey of available tools on the market, with part of it 

applied in a Swedish grocery store chain. This helped identify 

opportunities for improvement in the existing systems. In 

[22], a Risk-driven Fault Injection (RDFI) technique is 

proposed that utilizes chaos engineering principles to evaluate 

the security of cloud systems by injecting security faults to 

identify vulnerabilities and improve resilience.  

Another study by [23] noted that chaos engineering can be 

costly and time-consuming to set up, and it often focuses on 

technical rather than business-level evaluation. To address 

these challenges, the authors propose ChaosTwin, a technique 

that leverages chaos engineering to create virtual 

representations of physical systems, known as digital twins. 

ChaosTwin assists service providers in finding cost-effective 
configurations that mitigate the negative consequences of 

unexpected occurrences by injecting faults into digital twins 

and evaluating alternative service configurations and fault 

management strategies from a business perspective. In [24] 

and [25], it is described that Netflix built a system called 

Chaos Automation Platform (CHAP) that conducts chaos 

engineering experiments within its microservice architecture. 

The goal of these experiments is to evaluate the overall 

system's resilience in the event of a service interruption or 

degradation (e.g., increased response latency or errors). 

CHAP utilizes the FIT fault injection approach to inject faults 
at the application level by annotating incoming requests with 

metadata that indicates the call should fail or be delayed. 

Furthermore, regularly performing continuous chaos 

engineering experiments ensures the ongoing relevance of the 

evaluation process. Despite the increased difficulty and 

quality risks involved with dividing development tasks, many 

companies implement continuous delivery (CD), indicating 

that the business balances the drawbacks [26]. Numerous 

research studies emphasize the significance of continuous 

delivery pipelines, as described by [27], a software 

engineering process that enables teams to continuously 
produce valuable software in shorter cycles while ensuring it 

remains releasable at all times. Adapting continuous 

integration allows problems to be identified and fixed as they 

occur, rather than waiting until later stages of the development 

process. As noted by [28] and [29], Continuous Integration 

(CI) and Continuous Delivery (CD) have emerged as 

blessings for conventional application development and 

release management practices. These practices enable the 

continuous provision of high-quality artifacts to customers 

along with ongoing integrated feedback. 

The domain of our research study is to assess data-intensive 

applications that require higher resilience and reliability, 
which becomes even more critical when operational 

consumers use the data to make real-time decisions. There are 

often many challenges and technical issues due to the 

complex nature of such architecture, the software, physical 

components, network configuration, operational methods, 

and data formats [30]. Network computing environments are 

vulnerable to failures and outages due to the unpredictable 

nature of network infrastructure [31]. As mentioned by [32], 

a bottleneck in network bandwidth and communication 

latency is expected to occur during the processing of IoT data 

through distant data centers in the cloud. 
Another challenge mentioned by [33] is that the 

transmission and processing of massive volumes of data in 

cloud computing will increase the burden on the core network 

and limit the pace of data transmission and processing. Data-

intensive applications deployed in the cloud require more 

scalability and redundancy capabilities as compared to 
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internal on-prem setups. While cloud vendors offer scalability 

and high availability because of their ability to replicate 

resources such as edge cloud computing into multiple 

geographical locations, according to [34], one issue with 

replicating resources like edge cloud computing in various 

locations is that it can lead to strong consistency issues due to 

the data nodes being in different places, which can cause 

delays and insufficient bandwidth. 

To highlight the difference between fault injection and 

chaos engineering. In [17], it is mentioned that fault injections 
are more of a testing technique in which the system is tested 

against expected behavior or condition, while chaos 

engineering generates new information or knowledge each 

time it is conducted. When it comes to faults in software, a 

fault, resulting from an abnormal state of a system 

component, can cause an error, leading to the partial or 

complete failure of a system [34]. As mentioned in [35], the 

Fault Tolerant Elastic Resource Management (FT-ERM) 

framework addresses cloud outages by incorporating high 

availability (HA) awareness into servers and virtual machines 

(VMs). It utilizes online monitoring to assess server health, 
creates dedicated High Availability Virtual Networks 

(HAVNs) for users, and employs a Multi-Input and Multi-

Output Evolutionary Neural Network (MIMO-ENN) based 

predictor to forecast VM failures proactively. According to 

[36], faults in software can be categorized into six categories, 

which include: omission, hardware, software, network, 

response, and miscellaneous. 

The research employed a mixed-methods approach, 

combining theoretical analysis and practical implementation. 

Initially, a comprehensive literature review was conducted to 

gain a deep understanding of the challenges and potential 
solutions related to the reliability and resilience of data-

intensive software applications. This review explored the 

challenges caused by IoT-based applications, such as data 

volume, latency, and security risks. It also explored how 

cloud-based solutions, including geo-redundancy, can 

mitigate these challenges. Furthermore, the review examined 

the principles and benefits of chaos engineering as a proactive 

approach to testing system resilience. Finally, the research 

explored how continuous integration and delivery practices 

can be integrated with chaos engineering to automate testing 

and improve deployment frequency. 

Subsequently, a tool, AgnosticChaos, was developed and 

implemented to automate chaos engineering experiments 

within continuous integration and delivery pipelines. This tool 

was designed to integrate with cloud vendor APIs, such as 

Azure Chaos Studio and AWS Fault Injection Simulator, to 
trigger fault injection experiments. The tool interacted with 

continuous integration and delivery pipelines, analyzed 

system responses, and provided insights into the system's 

resilience. A primary application was developed to serve as a 

central hub. This application communicates with various fault 

injection APIs provided by different cloud vendors, enabling 

the injection of faults and simulation of diverse scenarios 

within pre-production environments. Complementing the 

core application, four microservices were developed to 

simulate and process events streamed from an IoT simulator. 

These microservices create a realistic testing environment, 
facilitating the evaluation of IoT applications under various 

fault conditions. A case study was conducted to evaluate the 

tool's effectiveness in real-world scenarios, involving 

developers from multiple industries who assessed the 

reliability and resilience of their applications using the tool.  

The proposed approach centers on DevOps, incorporating 

supplementary stages depicted in green in Fig. 1. These 

additional steps aim to ensure that the application is initially 

deployed in a digital twin environment (pre-production), 

where we can deliberately introduce faults. This ensures that 

the applications deployed in the production environment 
remain undisturbed. As suggested by [23], the utilization of 

digital twins for infrastructure helps mitigate the risks 

associated with conducting chaos engineering experiments in 

a production environment. Following this recommendation, 

we have integrated digital twins into our proposed approach.  

 

 
Fig. 1  DevOps with chaos engineering and digital twin environment 

 

The activity diagram in Fig. 2 describes the DevOps 

process. The process starts when a developer introduces new 

enhancements or bug fixes to an existing system. Following 

the code change, a pull request (PR) is generated to undergo 

code review and simultaneous quality assurance (QA) testing. 

Concurrently, a build validation is conducted to deploy the 

application in a digital twin environment (pre-production). 

This step enables the code reviewer and QA personnel to 

verify whether the newly added code meets the resilience and 

reliability expectations. 
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Fig. 2  AgnosticChaos tool architecture 
 

During this phase, the applications are running, and our 
tool initiates the process by contacting cloud vendors and 

third-party chaos engineering tools to inject faults. 

Subsequently, the logs from the application are gathered and 

presented to the reviewer and QA, ensuring that they are 

informed about the current state of the application's resilience 

and reliability. Based on the system's acceptance criteria, it is 

then their responsibility to approve and deploy the change or 

reject it. 

A. Design and Implementation  

We have created a tool called AgnosticChaos that 

integrates with Azure Chaos Studio and can be extended to 

integrate with other third-party fault injection APIs. 

AgnosticChaos will be used in Azure continuous pipelines to 
inject faults into microservices deployed in Kubernetes. Our 

tool interacts with the Azure Chaos Studio API using an 

Azure Service Principal for authentication. 

Subsequently, fault injection is initiated through 

communication between Azure Chaos Studio and separate 

managed identities associated with each Chaos experiment. 

These managed identities possess the necessary permissions 

to inject faults against AKS and Azure Cosmos DB. Our tool 

was developed using .NET 6, and it is integrated with 

Application Insights. It can be invoked by either developers 

or Azure DevOps agents, ensuring seamless integration with 
other DevOps tools. Fig. 3 illustrates the architecture of the 

tool, including its dependencies and communication. 

 

 

Fig. 3  AgnosticChaos tool architecture 
 

Additionally, the pipeline we have built as a sample will 

collect errors by communicating with the log store API. 

Another task will display these error logs and a link to a 
dashboard that we have built, which shows the CPU and 

memory usage of the pods deployed in Kubernetes, along with 

Infrastructure dependencies such as Event Hub and 

CosmosDB. The environment we have created contains three 
applications: Event Producer, Event Receiver, and Event 

809



 

Retainer. These components are derived from an open-source 

C# solution (https://github.com/denniszielke/resilient-cloud-

apps). We have added YAML pipelines to be able to deploy 

them through Azure DevOps pipelines and we have added 

another application to trigger the event producer which acts 

as an IoT simulator.  

 
Fig. 4  AgnosticChaos development environment architecture in IoT domain 

 

Fig. 4 provides a clear view of the architecture of the 
development environment in IoT. The following faults will be 

injected into the Azure DevOps pipeline using our 

AgnosticChaos tool in the continuous delivery pipeline after 

the application is deployed to pre-production. This step will 

always be part of the process of releasing new bug fixes or 

some features to production. It is worth noting that Azure 

continuous delivery pipelines can be triggered at any time or 

run according to a specific schedule, which further enhances 

the system by ensuring its resilience and reliability 

consistently meet the criteria. 

The following details explain the different faults that will 
be injected into the system and the execution order. 

1) Application Termination: The fault will simulate the 

termination of an application using pod kill, which is provided 

by a library called Chaos Mesh, and Azure Chaos Studio 

already has integration with it. 

2) CPU/Memory Stress: The scope of this fault is to 

increase the utilization of the CPU and memory to a specific 

threshold. We will use both Azure Chaos Studio and Chaos 

Mesh to inject them via our API. 

3) Cloud Data Center Outage: The fault will simulate a 

data center outage for a database (Cosmos DB). This fault 

originates from Azure Chaos Studio and will be invoked by 

our tool. 

III. RESULTS AND DISCUSSION 

A case study was carried out to evaluate our tool and 

approach focusing on three aspects: tool efficiency as 

compared to using chaos engineering tools with integration to 

DevOps; usability, to measure how usable and developer 

friendly is the tool; and tool effectiveness, involving the use 
of various metrics to evaluate resilience and reliability. Table 

1 presents the five developers who evaluated the tool and their 
corresponding levels of experience. It is essential to note that 

the evaluation was conducted separately for each developer, 

utilizing two distinct approaches: the manual approach, where 

the developer manually executed the experiments through the 

Azure portal after deploying the applications in the pre-

production environment, and our proposed approach, which 

is automated within the continuous delivery pipelines. 

TABLE I 

EVALUATORS’ DEVELOPMENT EXPERIENCE 

Participant 
Years of 

Experience 

Experience in Azure 

DevOps 

Developer 1 5 1 

Developer 2 8 4 
Developer 3 12 3 
Developer 4 14 3 
Developer 5 9 1 

A. Efficiency 

To evaluate the efficiency of the AgnosticChaos Tool, two 

experiments were conducted to test the mentioned open-

source application, which comprises three microservices 
applications. The first experiment utilized our tool, which is 

integrated into Azure DevOps pipelines. In the second 

experiment, a manual process was employed, utilizing Azure 

Chaos Studio and Chaos Mesh directly. 

The hypothesis is as follows: 

 ��: μ AgnosticChaos =μ manual 

 ��: μ AgnosticChaos <μ manual 

 μ AgnosticChaos: AgnosticChaos tool. 

 μ manual: The compared Approach (Manual). 

Table 2 presents the data collected from participants to 

measure the time spent using both approaches. 
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TABLE II 

DATA INPUT 

Group A (Manual) in 

minutes 

Group B (AgnosticChaos) in 

minutes 

44 24 
48 23.12 
43 22 
50 22 
88 23 

 
The critical significance level was set at 0.05. After 

analyzing and testing the data, a significant difference was 

observed in the time taken to complete the task using the 

AgnosticChaos tool (Mean = 22.824) compared to the time 

taken using the manual approach with Azure Chaos Studio 

and Chaos Mesh tools (Mean = 54.6). In conclusion, the study 

presented substantial evidence to reject the null hypotheses 

and accept the alternative hypotheses. There is strong proof 

that employing the AgnosticChoas tool enhances efficiency 

as the time spent is less than utilizing the manual approach 

with azure chaos studio and chaos mesh. This analysis was 
conducted to fulfil the requirement of evaluating the proposed 

tool and provide compelling evidence to support the 

acceptance of the alternative hypothesis. 

B. Usability  

To evaluate usability, we used the System Usability Scale 

(SUS), a measure designed to assess the usability of websites, 

tools, or interactive systems. For each question, participants 

are required to select one option from the form. A SUS score 

equal to or greater than 68 is considered above average, while 
scores below this threshold are considered below standard. 

The scores for each question are converted to a new numerical 

value, summed up, and then multiplied by 2.5 

(www.usability.gov). Table 3 shows the results of this 

evaluation for the two groups. 

TABLE III 

SUS DATA RESULTS 

No. 
Group A 

(Manual) 

Group B (Agnostic 

Chaos) 

1 10 85 
2 15 85 
3 20 92.5 
4 52.5 90 
5 45 55 
Percentage 
(%) 

28.50 81.50 

C. Effectiveness 

For our assessment, we employed resilience and reliability 

metrics to gauge the effectiveness of the tool. As a metric, we 

utilized the Mean Time Between Failures (MTBF), which 

represents the expected duration between successive failures 

of a system during its regular operation. MTBF is typically 

determined by calculating the average time between failures 

of a system [37]. On the other hand, we will also use Mean 

Time to Recovery (MTTR), which indicates the expected time 
until a system recovers. The MTBF and MTTR can be 

calculated by applying the equations below, respectively. 

These equations state MTTF and MTTR as the averages of 

uptime and downtime, respectively. Where nf is the total 

number of failures, and the variables DT and UT denote 

service downtime and uptime, respectively. 

 

MTBF= 
∑  �

��	 
��

�
    [38]    (1)    

���� =
∑  �

��	 ���

�
   [39]    (2) 

Upon analyzing the gathered data illustrated in Table 4, we 

observed that both approaches yielded identical results. In 
essence, our tool demonstrated the same level of effectiveness 

as the manual approach, as both methods injected the same 

number of faults using the vendor API, resulting in 

comparable values.  

TABLE IV 

MTTR AND MTBF RESULTS 

No of 

faults 

nf 

Estimated 

Downtime in 

minutes DT 

Estimated 

Uptime in 

Minutes UT 

MTBF in 

minutes 

MTTR in 

minutes 

2 5  24 12 2.5 

2 5 23.12 11.56 2.5 

2 5 22 11  2.5 

2 5 22 11 2.5 

2 5 23 11.5 2.5 

 

The above results demonstrate the efficiency, usability, and 

effectiveness of our proposed tool and approach in the 

continuous delivery process as compared to using the manual 

approach, in which developers directly use chaos engineering 

tools without integrating them into continuous delivery 

pipelines. These results were analyzed quantitatively through 

experimental analysis. We downloaded and evaluated three 
IoT applications (Message creator, message receiver, and 

message retainer) from "GitHub" using our tool, 

AgnosticChaos. These applications were deployed in 

Kubernetes through Azure DevOps pipelines. Our tool played 

a vital role in facilitating communication between Azure 

DevOps and Azure Chaos Studio, functioning as a centralized 

solution that abstracts the developer from using cloud-specific 

fault injection.  

This unification simplifies the process of injecting faults 

and employing chaos engineering in the DevOps workflow, 

making it more efficient and developer-friendly. Although our 
current tool supports only Azure Chaos Studio, it can be 

extended to communicate with other cloud vendors and third-

party chaos engineering tools, offering increased efficiency 

and usability. This will help developers save time and 

continuously gain insights into the resilience and reliability of 

the software applications. The current tool is valuable for 

evaluating the resilience and reliability of software 

applications. However, it is limited to assessing applications 

deployed exclusively in Kubernetes environments, thereby 

excluding the evaluation of locally running applications. 

While Kubernetes is commonly used for production 

environments, developers may also need to assess application 
behavior on local development machines without a local 

Kubernetes instance. This limitation hinders its use in early 

development stages or non-Kubernetes setups. It is essential 

to highlight that our evaluation process involves only five 

developers and three applications. To gain more insights into 

the efficiency, effectiveness, and usability of this approach, it 

would be beneficial to extend the evaluation to include 
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developers from different backgrounds and applications from 

various domains. This would enhance the robustness of the 

findings and provide a more comprehensive understanding of 

the approach's capabilities. 

IV. CONCLUSION 

This research has developed a tool and proposed an 
innovative approach that facilitates the comprehensive 

evaluation of the resilience and reliability of data-intensive 

software applications. By seamlessly integrating chaos 

engineering techniques with multiple cloud vendors and third-

party fault injection APIs, this tool is directly incorporated 

into continuous delivery pipelines, enabling continuous and 

automated testing of application resilience. This integration 

provides developers with an invaluable resource to assess how 

their applications respond to simulated faults, disruptions, and 

outage scenarios before deployment in a production 

environment. The tool not only aids in identifying 
vulnerabilities within the software architecture but also 

enables developers to proactively address potential 

weaknesses, thereby enhancing the system's overall 

robustness. 

Furthermore, this research study lays the groundwork for 

developing an adaptable tool that empowers developers to 

assess the reliability of distributed and geo-redundant 

applications operating across multi-cloud environments. This 

contribution is significant for applications that process high 

volumes of data in real-time, where downtime or failure can 

have significant implications. By ensuring that applications 

are rigorously tested for resilience, this research promotes a 
higher standard of software quality, reliability, and 

robustness, ultimately benefiting both developers and end-

users. The methodologies provided by this study pave the way 

for further advancements in automated resilience testing, 

supporting the continuous improvement of cloud-native and 

data-intensive software applications in an increasingly 

interconnected digital landscape. 

To achieve this, a mixed-methods approach was employed, 

combining theoretical analysis and practical implementation. 

Initially, a comprehensive literature review was conducted to 

gain a deep understanding of the challenges and potential 
solutions related to the reliability and resilience of data-

intensive software applications. Subsequently, a tool, 

AgnosticChaos, was developed and implemented to automate 

chaos engineering experiments within continuous integration 

and delivery pipelines. This tool was designed to integrate 

with cloud vendor APIs, such as Azure Chaos Studio and 

AWS Fault Injection Simulator, to trigger fault injection 

experiments. The tool's architecture was designed to interact 

with continuous integration and delivery pipelines, analyze 

system responses, and provide insights into the system's 

resilience. A case study was conducted to evaluate the tool's 
effectiveness in real-world scenarios, involving developers 

from various industries who assessed the reliability and 

resilience of their applications using the tool. By combining 

these theoretical and practical aspects, the research aimed to 

advance chaos engineering practices and improve the 

reliability and resilience of data-intensive software 

applications. 
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