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Abstract—The intersection of automation, visualization, and lot sizing, particularly through the Wagner-Whitin algorithm, plays a 

crucial role in optimizing production processes and improving decision-making efficiency. Determining optimal lot sizes in multi-period 

production systems is complex due to fluctuating demand, setup costs, holding costs, and capacity constraints. Effective solutions must 

dynamically address these variables to ensure optimal resource utilization and minimize waste. This study aims to develop an automated 

calculator that streamlines lot-sizing computations by integrating advanced mathematical models, such as the Wagner-Whitin 

algorithm, and innovative data visualization techniques. To design and evaluate this calculator, the study compares its effectiveness 

with traditional methods, such as lot-for-lot, with a focus on enhanced usability and user satisfaction. The study uses historical 

production data, including demand forecasts, setup costs, holding costs, and capacity constraints, to validate the model. The tool 

integrates the Wagner-Whitin algorithm for optimal lot sizing and incorporates sensitivity analysis to assess various scenarios. A 

comparative analysis is performed, testing the automated calculator against conventional methods. Performance metrics, including 

accuracy, calculation speed, scalability, and error reduction, are evaluated in simulated multi-period production environments. The 

results demonstrate that the automated calculator significantly improves calculation accuracy, decision-making, and error reduction 

compared to traditional methods. This research highlights the transformative potential of automated solutions in enhancing 

manufacturing operations. Future studies could expand the tool to address complex constraints, such as supply chain disruptions and 

multi-echelon inventory systems, and incorporate machine learning for improved demand forecasting accuracy and adaptability. 
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I. INTRODUCTION

Lot sizing is the most challenging problem in production 
planning and optimization control [1]. Static approaches, such 
as the Economic Order Quantity (EOQ) model, were widely 
adopted due to their simplicity and straightforward 
application. These methods often fail to account for dynamic 
demand patterns and multi-period planning requirements, 
leading to suboptimal results in complex production 
environments. Complexity is further exacerbated by factors 
such as variable lead times, production disruptions, and 
machine-specific capacity constraints [2]. The determination 
of optimal lot sizes, particularly in multi-period, multi-
product systems, requires sophisticated mathematical 
modeling that integrates dynamic demand patterns, setup 
costs, holding costs, and stringent production capacity 
constraints. Wagner-Whitin dynamic lot-sizing algorithm 
relies on complex recursive relations to minimize the total 

production and inventory costs over a production planning [3]. 
While highly effective, such methods often demand 
significant computational resources and specialized expertise, 
making them inaccessible for many small to medium-sized 
enterprises. To address these gaps, this study introduces a 
more user-friendly and adaptable approach that leverages 
advanced automated tools. This approach aims to streamline 
calculations, improve decision-making precision, and cater to 
a broader range of users, democratizing access to efficient lot-
sizing solutions. Necessitating the use of more advanced 
automated tools that can streamline these calculations and 
provide precise solutions. 

A. Mathematical Processes

Automating complex mathematical processes, production
planning decisions by reducing manual effort, minimizing 
errors, and improving the efficiency of multi-period 
production systems [4]. An improved Wagner-Whitin 
algorithm is a tool to simplify the process of calculating 
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optimal lot sizes in complex manufacturing environments. 
The Wagner-Whitin algorithm systematically evaluates the 
intricate trade-offs between setup and holding costs to derive 
cost-minimizing production strategies [5]. The development 
of this algorithm-based tool is to deliver substantial 
advantages in the industrial sector.  

B. Industrial Sector 

The industrial sector will benefit from optimized 
production processes, as the tool provides precise lot sizing 
recommendations that directly contribute to cost reduction 
and enhanced productivity. For example, pharmaceutical 
companies benefit from its ability to manage inventory levels 
effectively, minimizing waste of perishable goods while 
ensuring compliance with regulatory demands [6]. 
Additionally, manufacturers of consumer goods use the 
algorithm to synchronize their production schedules with 
market demand, thereby enhancing service levels and 
customer satisfaction [7]. 

C. The Integration 

In the current environment, integrating automated 
spreadsheet calculators into workflows enhances operational 
efficiency, improves accuracy, and fosters collaboration 
across teams. Their versatility across various industries makes 
them a vital asset for organizations seeking to optimize 
processes and navigate the complexities of modern data 
management effectively. The principles of the Wagner-
Whitin algorithm provide a framework that is applicable 
across various sectors with complex demand patterns [8]. The 
algorithm's ability to provide a structured, mathematical 
approach to inventory management supports these industries 
in achieving both efficiency and compliance. Through the 
implementation of an automated calculator, general 
manufacturers can achieve better control over inventory 
levels, cost management, and resource utilization, leading to 
more agile and effective operations [9], [10]. 

II. MATERIALS AND METHOD 

Explores existing research related to lot-sizing 
optimization and the development of spreadsheet-based 
applications. It identifies gaps in current studies, highlighting 
the absence of accessible, practical, and cost-effective tools 
for solving lot-sizing problems. To enhance credibility, real-
world data from the automotive industry are explicitly 
incorporated, demonstrating the tool’s applicability beyond 
theoretical or numerical experiments. Additionally, the tool 
has been tested in practical scenarios, validating its 
effectiveness in real-world decision-making processes. The 
discussion concludes by highlighting the study’s novelty and 
scientific contribution, emphasizing its significance in both 
academic and practical contexts. 

A. Review of Lot-Sizing Optimization 

The problem of lot-sizing optimization has been 
extensively studied in the field of inventory management (see 
Fig. 1). Classical methods, such as the Economic Order 
Quantity (EOQ) model, offer simple solutions for static 
demand scenarios. For more dynamic environments, 
algorithms like the Wagner-Whitin method or dynamic 
programming. These algorithms calculate the optimal order 

quantities by balancing holding and setup costs while meeting 
fluctuating demand over time [11]. 

Mixed-integer linear programming (MILP) has been 
widely explored to optimize lot sizes in multi-period 
production systems, providing exact solutions for complex 
decision-making scenarios [12]. More sophisticated methods 
of hybrid genetic algorithms for dynamic lot-sizing in 
stochastic environments, as well as robust optimization 
frameworks for multi-product systems facing uncertainties in 
cost, demand, and lead times [13], [14]. Additionally, 
dynamic programming approaches have been utilized to solve 
joint replenishment problems, while advancements in 
reinforcement learning have been explored to make real-time 
lot-sizing decisions in dynamic and uncertain contexts [15]. 
These innovations highlight the range of methods developed 
to address various aspects of lot-sizing challenges. 

 
Fig. 1  Comparing Lot-Sizing Methods in Inventory Management 

 

Practical implementation of these methods remains limited. 
Most tools that integrate these algorithms are embedded in 
commercial software, which is often expensive and complex 
to operate [16]. For instance, enterprise resource planning 
(ERP) systems or advanced optimization platforms require 
significant financial and technical investment. These 
constraints make them inaccessible for small- and medium-
sized enterprises (SMEs) or individual users seeking practical 
solutions. 

Cost trade-offs in single-item dynamic lot-sizing problems 
have been discussed extensively, but accessible tools to 
leverage these insights for real-world applications are rare. 
The limited availability of open-access tools capable of 
integrating these sophisticated algorithms into widely used 
platforms, such as spreadsheets, creates a significant barrier 
to adoption, particularly for small- and medium-sized 
enterprises or individual practitioners [17]. The lack of free or 
low-cost tools that implement advanced lot-sizing methods 
presents a critical gap. Most available resources either focus 
on theoretical derivations or provide basic heuristic 
approaches, leaving practitioners with limited options for 
optimizing their inventory systems efficiently [18]. 

B. Review of Spreadsheet-Based Applications 

Spreadsheet applications, such as Microsoft Excel, have 
proven highly effective in decision-making across various 
domains. Their accessibility, flexibility, and ease of use make 
them a popular choice for small-scale problem-solving. In 
inventory management, spreadsheets are often employed for 
tasks such as demand forecasting, cost analysis, and simple 
EOQ calculations. The use of spreadsheet-based applications 
for lot-sizing optimization remains relatively underexplored. 
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Spreadsheet tools are often used for basic inventory models, 
such as the Economic Order Quantity (EOQ) or single-period 
problems. This suggests that most spreadsheet applications 
primarily focus on static, deterministic inventory models, 
rather than addressing the complexities of multi-period, 
dynamic lot-sizing scenarios [19].  

Another limitation of existing spreadsheet-based 
applications is the lack of user-friendly interfaces for 
implementing custom optimization models. While 
spreadsheets can theoretically handle complex computations, 
translating advanced algorithms into functional spreadsheet 
models often requires substantial expertise. Many 
spreadsheet-based applications focus on general optimization 
tasks and are not tailored to the specific needs of inventory 
managers or practitioners [20]. This further limits the utility 
of existing applications for real-world inventory challenges. 

The prevalence of commercial solutions and templates that 
are either proprietary or require paid licenses. While some 
open-access templates exist, they often lack the robustness 
and scalability needed to handle complex lot-sizing problems. 
This creates an unmet need for a free, open-access, and 
comprehensive spreadsheet-based application that can 
integrate advanced lot-sizing optimization models while 
remaining simple and intuitive for end-users. 

This research addresses these gaps by developing a cost-
effective, spreadsheet-based tool for dynamic lot-sizing 
optimization. By incorporating advanced algorithms, such as 
the Wagner-Whitin method, and designing an interface that 
strikes a balance between functionality and ease of use, the 
proposed application aims to bridge the gap between 
theoretical optimization models and practical decision-
making tools. This contribution would empower users across 
various industries to optimize their lot-sizing decisions 
without incurring significant financial or technical barriers. 

C. Statement of Novelty and Scientific Contribution 

The novelty of this research lies in the development of a 
cost-effective and user-friendly spreadsheet-based 
application for optimizing lot-sizing decisions. The proposed 
spreadsheet tool addresses this gap by integrating dynamic 
programming algorithms, such as the enhanced Wagner-
Whitin method, directly into a widely accessible platform. 
This approach allows users to achieve optimal lot-sizing 
solutions without relying on specialized software or technical 
expertise, making it a practical alternative for organizations 
with limited resources. 

The scientific contribution of this research is twofold. First, 
it provides an open-access tool that translates advanced 
optimization techniques into a format that is easy to use and 
widely available. By enabling users to balance setup costs, 
holding costs, and demand across multiple periods, the 
application supports informed decision-making while 
minimizing total costs. Second, it advances the practical 
implementation of optimization techniques by offering 
features such as clear visualizations and output reports, 
making it a valuable decision-support tool. This solution 
bridges the gap between academic research and practical 
application, ensuring that theoretical advancements in lot-
sizing optimization can be readily adopted in real-world 
settings without incurring additional financial or technical 
barriers. As such, it represents a novel contribution to both the 

academic community and industry by demonstrating how 
theoretical models can be operationalized into simple, 
accessible, and impactful tools. 

III. RESULTS AND DISCUSSION 

The algorithm's decision-making process relies on two 
critical principles: cost decomposition, where total costs are 
broken down into period-specific components, and cost 
comparison, where all combinations of order timing and 
quantities are evaluated to identify the least-cost solution. The 
Wagner-Whitin algorithm is highly applicable to scenarios 
with fluctuating demand, seasonal trends, or production 
capacity constraints. Fig. 2 below shows the balancing cost 
strategies in algorithmic decision-making. 

 
Fig. 2  Balancing Cost Strategies in Algorithmic Decision-Making 

 
Wagner-Whitin algorithm efficiently manages inventory 

by employing a dynamic programming approach to minimize 
total production and holding costs through careful calculation 
and planning [21]. Future developments, integration of cloud-
based solutions. The integration with larger systems, such as 
Enterprise Resource Planning (ERP) platforms. Designed as 
an exact optimization algorithm with fast computation times, 
it ensures scalability and efficiency, even when dealing with 
large datasets and complex analyses.  

Hybrid algorithms are beneficial in certain contexts, but 
they are suboptimal for real-time operations due to their 
inability to provide optimal results within the required time 
constraints consistently. MILP [22], on the other hand, 
delivers optimal solutions but demands significantly more 
computational resources and processing time, making it less 
feasible for real-time applications. These limitations were 
considered when designing the current system, which is 
specifically tailored to meet the needs of SMEs seeking an 
affordable and efficient Material Requirements Planning 
(MRP) optimization tool (See Fig. 3). 

 
Fig. 3  Optimizing SME's MRP System 
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Future iterations of this system will build upon the modular 
structure, enhancing integration with databases for more 
efficient data accumulation and analysis. This will enable the 
incorporation of machine learning and other advanced 
analytical tools, improving forecasting accuracy and 
optimization reliability. Moreover, real-time data integration 
will allow businesses to respond to fluctuations in demand, 
cost, and other variables more dynamically, enhancing their 
decision-making capabilities [23]. By exploring these 
integration possibilities, this research aims to meet the 
growing demands of the evolving manufacturing and supply 
chain sectors, enhancing decision-making efficiency and 
optimization in both small-scale and enterprise-level 
organizations. 

A. Development of the Model 

The Wagner-Whitin algorithm is a deterministic dynamic 
programming approach to determine the optimal lot-sizing 
strategy over a finite planning horizon, minimizing total costs, 
which include ordering and holding costs. The algorithm 
proceeds in three main steps: Step 1 involves calculating the 
total cost (Oen) for every potential ordering strategy based on 
ordering costs and cumulative holding costs. Step 2 
determines the optimal cost (fn) up to each period by 
evaluating all possible order combinations iteratively and 
selecting the minimum cost. Step 3 translates the selected 
strategy into specific lot sizes (qt), ensuring demand is met for 
each planning period while adhering to the optimized total 
cost. The calculations for each step can be performed 
manually using formulas and validated in spreadsheet 
software, such as Excel, for accuracy and comparison. 

Step 1 Calculate Total Costs ���� ) Wagner-Whitin 
algorithm focuses on minimizing the total cost, which 
includes setup and holding costs [24]. The main formula used 
to determine total costs can be expressed as follows:  

 ����	 ���� ���� � � � ℎ ∑ � ��� �  ���
�
���   (1) 

The total cost for ordering in a given period (��� ) is 
calculated by adding the fixed ordering cost (A) to the holding 
costs (h), which are based on the cumulative demand from the 
period of the order up to the end of the planning horizon. In 
Excel, create cumulative demand using the SUM function 
=SUM(C2:Ct) (Drag to calculate cumulative demand for all 

periods) Calculate O�� in the next column =$B$1 + $B$2 * 
SUM(D2:Dt). The step 1 total cost is shown in Fig. 4. 

 

 

Fig. 4  Step 1 Total Cost 
 

Step 1 involves precise calculations of cumulative demand 
and total costs using Excel formulas. The SUM function 
computes cumulative demand across periods, while cost 

components are integrated using dynamic cell references. 
These formulas enable systematic evaluation of ordering 
scenarios, ensuring accurate determination of the optimal lot 
sizes.  

B. Determine Optimal Cost ��� 

Step 2 identifies the optimal cost (�
�
) for fulfilling demand 

up to each period by analyzing all possible order 
combinations. It aims to find the most cost-effective strategy 
to minimize the total cost by comparing various order 
scenarios. 

  �
�

 = min {O� �  ����  (2) 

The optimal cost is determined by comparing the total cost 

(O�) of ordering in a specific period with the cumulative cost 
(�

�!1
) up to the previous period. The ordering strategy with 

the lowest combined cost is selected as optimal. In Excel 
formula Use the MIN function in Excel to find the lowest cost 
for each period =MIN(E2 + F1) E2 represents the total cost 
for the ordering strategy, and F1 is the optimal cost for the 
previous period. Drag this formula to calculate optimal costs 
for all periods. The step 2 optimal cost is presented in Fig. 5. 
 

 
Fig. 5  Step 2 Optimal Cost 

The application of the formula ensures an optimal balance 
between ordering and holding costs. By utilizing the MINIFS 
function in Excel, the lowest combined cost for each period is 
determined systematically. This approach supports efficient 
production planning and inventory management over multiple 
periods. 

C. Determine Lot Sizes (��) 

Step 3, the optimal ordering strategy is translated into lot 
sizes. This step ensures that the demand for each period is 
fulfilled efficiently based on the chosen order timing and 
quantity. 

 �� � ∑ #�
�
��$  (3) 

Lot sizes are determined by summing up the demand for 
periods covered by a single order. This ensures that the 
ordering strategy satisfies the demand without incurring 
unnecessary holding costs. Use the SUM function in Excel to 
calculate the lot size for each period =SUM(C2:Cn) Here, 
C2:Cn represents the demand values for periods covered by 
the current order. Each step in this process builds upon the 
previous one, culminating in an optimized ordering strategy 
that minimizes total costs while meeting demand 
requirements. Excel can be used to replicate manual 
calculations, ensuring the accuracy of the results and enabling 
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scalability for larger datasets. The Step 3 Lot Sizes is shown 
in Fig. 6 below. 

 

 

Fig. 6  Step 3 Lot Sizes 
 

The application of Excel formulas in Step 3 ensures that the 
lot sizes are calculated accurately to fulfill demand efficiently 
while minimizing total costs. The use of the SUM and FILTER 
functions replicates the manual process of summing demands for 
each order period, aligning with the equation. This approach 
confirms the validity of the formula implementation and supports 
scalability for complex datasets. Lot sizing problem introduced 
by Wagner and Whitin (1958). In this numerical experiment, the 
setup cost (S) is fixed at 5000 for the automotive industry, and 
the holding cost (ht) is set at 1 for each period. The planning 
horizon spans 100 periods, with lead time (Lt) fixed at 1 period. 
The objective is to compare the performance of the Mathematical 
Model and the Wagner-Whitin Algorithm in terms of minimizing 
the total cost, which includes both setup and holding costs, over 
the specified period. The Mathematical Model uses the demand 
(dt) for each period, while the Wagner-Whitin Algorithm works 
by determining the optimal lot size for each period. A binary 
variable (Yt) indicates whether production occurs in period t, 
where Yt equals 1 if production takes place, and 0 otherwise. The 
quantity produced in each period (Xt) and the inventory level at 
the end of each period (It) are also considered. The total cost, 
including setup and holding costs, is calculated for both models, 
and the elapsed time required to solve each model is compared. 
Both models are subjected to non-negativity constraints to ensure 
that inventory and production levels remain non-negative. The 
results of the experiment are summarized by comparing the total 
cost and elapsed time between the two approaches, 
demonstrating the efficiency of each method in optimizing 
inventory management for automotive production over 100 
periods. 

The algorithm begins by initializing the necessary input 
data, including demand for each period, holding costs, and 
ordering costs. These inputs are essential for calculating the 
total cost of inventory management. The next step involves 
calculating the cumulative cost for each possible demand 
combination across the periods from 1 to T. Once the 
cumulative costs are computed, the algorithm determines the 
optimal solution for each period by evaluating various lot-
sizing scenarios that minimize total costs. Following this, the 
optimal ordering schedule is identified based on the minimum 
cost table, which facilitates the selection of the best ordering 
strategy. The algorithm then iterates through each period to 
ensure that the optimal solution is consistent across all periods, 
refining the scheduling decisions. Finally, the algorithm 
stores the minimum cost result for each period, creating a 
comprehensive table that shows the optimal lot sizes and 

associated costs for each period. Once the entire process is 
complete, the optimal ordering schedule is generated, 
providing an efficient solution that minimizes costs while 
meeting demand throughout the planning horizon. The 
cumulative cost for each possible demand calculated is 
presenten in Fig. 7.  

 
Fig. 7  Calculating the cumulative cost for each possible demand 

A. Numerical Experiment 

Demand fluctuation significantly influences inventory 
planning and production scheduling, impacting cost 
efficiency and resource allocation [25]. The observed product 
demand pattern demonstrates significant fluctuations over 52 
periods, characterized by frequent peaks and troughs. This 
variability poses challenges for inventory management and 
production planning, requiring adaptive lot-sizing strategies 
to minimize total costs while ensuring demand fulfillment. 
The data, sourced from an automotive manufacturer, serves as 
a crucial benchmark for evaluating the robustness of 
inventory models under dynamic demand conditions. The 
demand fluctuation 1 is shown below. 

 

Fig. 8  Demand fluctuation 1 

 
These fluctuations necessitate adaptive lot-sizing 

strategies, as inconsistencies in demand may lead to periods 
of overstocking or stockouts. Incorporating demand 
variability into numerical experiments ensures a robust 
evaluation of inventory models, particularly when comparing 
the effectiveness of the Wagner-Whitin Algorithm and 
traditional mathematical models in optimizing total cost and 
computational efficiency. The demand fluctuation 2 is 
provided below. 

 

Fig. 9  Demand fluctuation 2 
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The second product demand pattern exhibits a high degree 
of fluctuation, with frequent peaks and troughs across the 52 
periods. This variability suggests an unpredictable demand 
structure that poses challenges for inventory management and 
production planning. The presence of sharp increases and 
decreases in demand highlights the need for dynamic lot-
sizing techniques that can efficiently adjust to changing 
requirements. In numerical experiments, this fluctuating 
pattern is essential for evaluating the adaptability and 
robustness of inventory models, particularly in minimizing 
total costs while ensuring demand fulfillment. 

The formula used in Excel for implementing the Wagner-
Whitin algorithm includes calculating holding costs by 
multiplying the per-unit holding cost by the demand in each 
period and the number of periods for which inventory is held. 
Ordering costs are treated as a fixed value, applied each time 
an order is placed. The total cost for each combination is then 
derived by summing the ordering cost with the holding costs 
over the selected intervals [26]. This approach enables the 
algorithm to identify the lowest cost across combinations by 
utilizing the MIN function to select the least costly 
combination, resulting in the optimal lot size that minimizes 
overall inventory costs. 

In implementing the Wagner-Whitin Algorithm in Excel, 
several key formulas are used to calculate the optimal lot size 
and total costs [27]. The formulas used are explained in Table 
1 below: 

TABLE I 
FORMULA FOR THE OPTIMAL LOT SIZE AND TOTAL COSTS 

Explanation Excel Formula 

Formula for Calculating 
Holding Costs per Period 

=Inventory * Holding_Cost 

Formula for Calculating 

Ordering Costs 

=Setup_Cost 

Formula for Calculating 
Total Costs for Period 

Combinations 

=Setup_Cost + (Holding_Cost * 
(Inventory_At_End_Period)) 

Formula for Total Cost 
Across All Periods 

=SUM(Total_Inventory_Cost + 
Total_Setup_Cost) 

 
The Wagner-Whitin Algorithm works by analyzing all 

possible order combinations and selecting the one that yields 
the lowest total cost, balancing holding and ordering costs 
[28]. This approach enables cost optimization for demand that 
varies across periods. Using Excel, calculations are performed 
automatically with formulas structured as needed. This study 
compares the Wagner-Whitin Algorithm with a traditional 
mathematical model in terms of total cost and computational 
efficiency. Excel formulas facilitate automatic calculation of 
lot combinations, saving time compared to manual methods, 
and allow for dynamic recalculation when parameters like 
holding or ordering costs change. The use of graphs in Excel 
helps visualize results, making it easier to interpret cost data 
and optimize decision-making. 

The table as shown in Fig. 10 compares the performance of 
the Mathematical Model and the Wagner-Whitin Algorithm, 
focusing on total cost and elapsed time across various 
problem sets. Both models yield nearly identical total costs, 
demonstrating that the Wagner-Whitin Algorithm is as 
effective as the Mathematical Model in optimizing costs 
associated with inventory holding and setup.  

 

Fig. 10  Result of Numerical Experiment 
 

However, the elapsed time for the Wagner-Whitin 
Algorithm remains consistently at 1.50 seconds, indicating 
higher computational demand compared to the Mathematical 
Model, which exhibits more variability in elapsed times, 
ranging from 0.27 to 1.02 seconds. Despite the longer 
computational time, the Wagner-Whitin Algorithm offers 
stable performance, making it a reliable choice for optimizing 
lot-sizing decisions, especially when consistency is 
prioritized. Ultimately, the choice between the two models 
depends on whether computational speed or cost optimization 
is more critical for the specific production environment. 

B. Advantages of Using the Wagner-Whitin Algorithm 

Wagner-Whitin achieved cost savings of up to 232.14% 
compared to the One Time Purchase method and 102.38% 
compared to the Lot for Lot method. This algorithm helps 
prevent unnecessary inventory buildup, which often results in 
high holding costs. It ensures sufficient inventory to meet 
demand in each specific period. Wagner-Whitin effectively 
balances order frequency with holding costs, resulting in an 
efficient ordering schedule. This algorithm is ideal for 
variable demand, enabling companies to optimize costs based 
on changing demand patterns. 

 

 
Fig. 11  The Excel dashboard user interface can be accessed publicly 

 

The Excel dashboard was created to illustrate the optimal 
lot-sizing approach for inventory management using the 
Wagner-Whitin Algorithm (See Fig. 11). Key components of 
the dashboard include columns for demand, order lot size, 
inventory levels, and ordering actions, as well as a cost 
breakdown to show the impact of each order decision (See 
Table 2). 

TABLE II 

KEY COMPONENT 

Inventory Holding Cost 0.5 

Set Up Cost 500 

Lead Time 1 
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The inventory holding cost is set at 0.5 units of currency 
per unit per period. This parameter is critical as it influences 
the decision to delay or expedite orders based on holding cost 
trade-offs. This parameter represents the cost incurred each 
time an order is placed, regardless of order size. The setup 
cost is set at 500 units of currency. Higher setup costs 
generally incentivize fewer orders with larger quantities, 
while lower setup costs might result in more frequent, smaller 
orders. The lead time refers to the time elapsed between 
placing an order and receiving it, and is set to 1 period in this 
study. This parameter affects the timing of orders, as it 
determines how early an order must be placed to meet demand 
in the subsequent period (See Fig. 12). 

 

Fig. 12  The result is after setting the demand in a subsequent period. 

 
The "Demand" column displays the demand levels for each 

period, which vary over time. The "Order Lot Size" column 
reflects the algorithm’s calculated order quantities, 
strategically sized to meet demand in the most cost-efficient 
way. For instance, in period 1, an order size of 650 units is set 
to meet both current and future demands, minimizing setup 
costs. Inventory levels in each period are shown in the 
"Inventory" column. This is the quantity left in stock after 
fulfilling demand, and it declines as demand is met until a new 
order is placed. For instance, in period 5, inventory drops to 
100 units before a replenishment order of 550 units is placed 
in period 6. The "Ordering" column indicates the specific 
periods in which the algorithm advises placing orders. Only 
selected periods involve new orders, reducing the frequency 
of setups and thus lowering setup costs. For example, orders 
are placed in periods 1, 5, 8, 10, and 12, based on optimal cost-
balancing calculations 

C. Optimal Solution 

Using the Wagner-Whitin Algorithm, the total cost is 
divided into Total Inventory Cost (the cost of holding 
inventory over periods) and Total Setup Cost (the cost of 
placing orders). For this scenario, the Total Cost calculated is 
4,200 units. This includes a Total Inventory Cost of 1,700 and 
a Total Setup Cost of 2,500 (See Fig. 13). 

 

Fig. 13  Optimal lot size 
 

The algorithm determines the optimal order sizes for each 
relevant period based on the cost parameters and demand 
patterns. For example, in period 1, a bulk order of 650 units is 

placed to satisfy demand over multiple periods, thereby 
reducing the number of setups and lowering overall costs. The 
dashboard also compares the Wagner-Whitin solution to other 
common inventory strategies, such as One Time Purchase and 
Lot for Lot. The Wagner-Whitin method achieves significant 
cost savings: compared to the One Time Purchase, it saves 
232.14% in total costs, and compared to Lot for Lot, it saves 
102.38%. These comparisons demonstrate the superiority of 
the Wagner-Whitin method in balancing setup and holding 
costs effectively. 

D. Cost Analysis 

The dashboard’s cost analysis shows specific savings 
percentages for each cost component. For example, the 
inventory holding cost is reduced by 691.18% compared to 
the One Time Purchase approach, highlighting the 
effectiveness of placing orders only when necessary. 
Additionally, setup costs are reduced by 80% compared to the 
Lot for Lot method, demonstrating how larger, infrequent 
orders can be beneficial (See Fig. 14).. 

 

Fig. 14  The result of Wagner-Whitin 
 

These results suggest that the Wagner-Whitin model offers 
a highly effective solution for inventory management, 
particularly in scenarios with variable demand patterns. By 
aligning order timing with demand, companies can reduce 
unnecessary costs and improve efficiency. The flexibility of 
the Wagner-Whitin Algorithm allows it to respond to varying 
demand, making it a suitable approach for businesses dealing 
with seasonal or fluctuating demand cycles. The dashboard 
provides inventory managers with a comprehensive view of 
ordering patterns and cost impacts, supporting data-driven 
decisions. The charts in the dashboard allow users to see the 
relationship between order quantities, inventory levels, and 
total costs over time, enhancing the interpretability of the 
results. 

The visual result as shown in Fig. 15 illustrates a 
comparative analysis of total cost, total inventory cost, and 
total setup cost among three different inventory management 
strategies: Wagner-Whitin, One-Time Purchase, and Lot-for-
Lot. The data highlights the percentage differences in cost 
components for each approach, providing insights into their 
efficiency and cost-effectiveness. 

 

 

Fig. 15  Visual result for comparative analysis of total cost 

 
The Wagner-Whitin algorithm demonstrates the lowest 

total cost, as indicated by its minimal inventory and setup 
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costs. This optimization approach effectively balances 
holding and ordering costs, making it the most economical 
choice among the three methods. In contrast, the One-Time 
Purchase strategy shows a significantly higher total cost, 
driven by an excessive inventory cost increase of 691.18%. 
This highlights the inefficiency of purchasing large quantities 
at once without considering holding cost implications. The 
Lot-for-Lot strategy, while avoiding excessive inventory 
costs, incurs a 240% higher setup cost due to frequent 
ordering, which negatively impacts its overall cost-efficiency. 

E. Managerial Insight 

Implementing efficient and affordable production 
processes can significantly enhance the competitiveness of 
Micro, Small, and Medium Enterprises (MSMEs) by reducing 
costs, improving productivity, and enabling scalability. Cost-
effective tools allow MSMEs to minimize expenses, increase 
profit margins, and offer competitively priced products, while 
user-friendly systems streamline workflows, enhance product 
quality, and reduce the need for extensive training. These 
improvements empower MSMEs to expand market access, 
differentiate their brands, and reinvest savings into growth 
opportunities, such as new product lines or market expansions. 
Additionally, adopting accessible production methods fosters 
job creation, boosts local economies, and contributes to the 
overall sustainability of the MSME sector, ensuring these 
businesses can adapt to market changes and maintain 
resilience in a competitive landscape. 

IV. CONCLUSION 

By calculating the optimal order sizes based on demand, 
holding, and setup costs, this approach minimizes total costs 
and achieves efficient inventory turnover. The dashboard 
illustrates the superiority of this model over traditional 
approaches such as One Time Purchase and Lot for Lot, with 
substantial savings in both inventory holding and setup costs. 

Implementing the Wagner-Whitin method offers several 
advantages, including reduced inventory costs, fewer setups, 
and flexibility in adapting to demand fluctuations. These 
benefits are particularly valuable in complex supply chains 
where cost control and responsiveness to demand are essential. 
In summary, this study demonstrates that the Wagner-Whitin 
Algorithm is a practical, data-driven approach that enhances 
inventory management efficiency, ensuring optimal resource 
use and cost minimization. 

The current system is optimized for SMEs, its scalable, 
modular design and integration potential position it for 
broader application in larger enterprises. Future research will 
focus on expanding this system’s capabilities by integrating it 
with ERP solutions and utilizing cutting-edge technologies, 
ensuring that the tool remains relevant and effective in an 
increasingly data-driven, cloud-based business landscape.  
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