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Abstract—This study proposes a multivariate-based LSTM-Autoencoder (LSTM-AE) model for short-term photovoltaic power 

generation prediction. The LSTM-based encoder-decoder structure effectively learns multivariate relationships and time series 

dependencies between significant environmental and power-related variables. Input variables include DC voltage, DC current, DC 

power, ambient temperature, solar radiation, and environmental factors, and they are preprocessed through scaling to increase learning 

efficiency. The encoder compresses multivariate time series data to the latent space, and the decoder restores the corresponding 

sequence to learn the complex time series patterns of the data. The normalization technique was applied to the algorithm to prevent 

overfitting and improve the model's generalization performance. The prediction accuracy evaluation was made through mean absolute 

percentage error (MAPE), mean square root error (RMSE), mean absolute error (MAE), and coefficient of determination (R²). As a 

result of the experiment, the proposed LSTM-AE model outperformed the existing model in capturing nonlinear and long-term 

dependence. The results of this study suggest that the LSTM-AE architecture can contribute to the development of renewable energy 

prediction fields, contributing to the development of more accurate and reliable photovoltaic prediction systems. 
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I. INTRODUCTION

Forecasting is applied prominently in various areas such as 

finance, transportation, and the environment by grasping 

future outcomes and supporting rational decision-making. 

Forecasting goes beyond predicting the future and performs 
key functions such as supporting strategic decisions, 

improving efficiency, and managing risk. The higher the 

accuracy and reliability of predictions, the better the quality 

of decision-making, creating continuous value across society 

and industry. Compared to current forecasting techniques 

based on statistics and regression, deep learning-based 

prediction technology has led to rapid development, learning 

vast amounts of data to recognize complex patterns, and based 

on this, it has excellent predictive performance. 

Environmental interest is increasing worldwide, and many 

companies are adopting eco-friendly management policies 
such as ESG (Environmental Social Coverage). The use of 

renewable energy has become an essential factor to 

implement eco-friendly management policies [1], [2], [3], [4], 

[5]. Renewable energy can be obtained from nature through 

solar and wind power. Since it is a pollution-free energy that 

does not emit carbon in the energy production process, and 

there is no fear of depletion, many studies have been 

conducted worldwide. Solar power generation has a simple 

structure, so it has been frequently used because it is easy to 

maintain, and installation cost is relatively low. Solar power 

generation can hold a longer lifespan than other renewable 

energy sources after installation, so electricity can be 

produced at no added cost. However, when establishing a 
power consumption plan, solar power generation can be 

limited to the output. The output limit means that the power 

generation output is intentionally limited to maintain the 

safety and stability of the power grid when there is much 

power caused by intermittent renewable energy such as solar 

power generation. Several factors may exist for the output 

limitation of renewable energy, such as the power grid's 

capacity, an imbalance between supply and demand, a power 

quality problem, or a technical limitation of the power grid. 

Statistics-based prediction algorithms and deep learning-

based algorithms exist as methodologies for prediction. 

Among statistical-based prediction algorithms, regression 
analysis is a technique that models and analyzes the 

relationship between two or more variables. Time series data 
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have characteristics such as a trend of increasing or decreasing 

over time, seasonality, a pattern that repeats in a specific cycle, 

and autocorrelation, in which data from the previous time 

affect the current data. Regression analysis is mainly used to 

understand and predict the relationship between the 

dependent variable and one or more independent variables [6], 

[7], [8], [9], [10]. 

Regression analysis techniques using time series data 

include simple regression, multiple regression, and ARIMA 

(AutoRegressive Integrated Moving Average) model. Simple 
regression is a method of linearly modeling the relationship 

between time and observed values, but there is a limit to 

sufficiently reflecting the complex characteristics of time 

series data. In contrast, multiple regression is a method of 

predicting the current value through several independent 

variables, and the amount of solar power can be predicted 

more accurately by including various environmental variables 

such as insolation, temperature, and humidity. It is more 

advantageous regarding prediction accuracy because it can 

reflect various variables than simple regression. 

The ARIMA model predicts by reflecting time series data's 
irregularity, trend, and seasonality. This model combines the 

concepts of autoregressive (AR), difference (I), removes data 

abnormality, and moving average (MA), which reflects past 

errors. When the seasonality pattern is clear, the SARIMA 

(Seasonal ARIMA) model that expands it is mainly used [11], 

[12], [13], [14]. 

The main goal of time series data prediction is to predict future 

time point values based on past data distribution. Deep learning 

is widely used for time series data prediction as it performs 

strongly for complex pattern recognition and prediction problems. 

Long Short-Term Memory (LSTM) improves the long-term 
dependence problem of recurrent neural networks (RNNs), 

effectively modeling the time dependence of time series data. 

RNNs have strength in processing time order information but 

have limitations in learning long-term dependence, and to solve 

this problem, LSTM supplements the long-term dependence 

problem by introducing cell state and several gate mechanisms 

[15], [16], [17]. 

Autoencoders aim to compress and restore data and are 

mainly used for dimensionality reduction and feature 

extraction. General autoencoders are a type of neural network 

with the same input and output, and unlike supervised 

learning, they do not require labeling. They can be classified 
as part of unsupervised learning or self-supervised learning. 

Autoencoders are designed with the intention of bottlenecks 

to learn how to compress data in low dimensions, and 

depending on the purpose and data characteristics, various 

variations such as Basic Autoencoders, sparse autoencoders, 

variational autoencoders, and denoising autoencoders have 

been studied [18], [19]. 

In this paper, the LSTM-AE model was used to predict the 

variability more accurately and the output change in advance 

for the wide use of renewable energy to respond appropriately. 

The photovoltaic power generation data has multivariate 
variables. LSTM can be calculated by accepting these 

multivariate variables at once. LSTM also predicts power 

generation by reflecting the meteorological pattern and 

learning the temporal pattern and long-term dependence of 

time series data. These LSTM cells structurally form an 

autoencoder (AE) structure and predict power generation 

through dimensional reduction and restoration. 

II. MATERIALS AND METHOD 

A. Data Collection of Solar Power Generation 

Photovoltaic power generation is performed through 

photovoltaic panels, which convert light energy into electrical 

energy and use it. Photovoltaic panels generate power by 
photoelectric effects, which absorb photons and generate 

electric fields between semiconductors to form electric 

currents. Variables that affect photovoltaic power generation 

can be affected by various external factors such as weather, 

geography, time, and the state of the panel, so it is necessary 

to respond to variables over time [20], [21], [22]. Photovoltaic 

power generation data should also be measured by 

considering a time series, and predictions that feel the effects 

of measured photovoltaic power generation data and external 

environmental variables should be performed simultaneously. 

Environmental variables can change the amount of insolation 
reaching the photovoltaic panel and the efficiency of the panel, 

and classification and integration of variables are required for 

accurate photovoltaic power generation prediction. The data 

measurable on the panel is extracted based on the date and 

time, as well as power-based data such as DCV, DCA, DCP, 

and ACP, as well as data due to environmental factors such as 

Horizontal Solar Radiation, Vertical Solar Radiation, Module 

Temperature, and Outside Temperature. In particular, the 

amount of horizontal and vertical solar radiation in solar 

power generation is a significant environmental variable that 

directly affects solar power generation depending on the 

location, direction, inclination angle, and intensity of 
insolation. 

Horizontal Solar Radiation and Vertical Solar Radiation 

are factors that have an essential influence on solar power 

generation efficiency. These two values directly affect the 

amount of power generated depending on the location, 

direction, inclination angle, and intensity of the insolation of 

the solar panel. The amount of horizontal insulation 

significantly affects the main output of a horizontal solar 

panel system fixed to the ground in general. It is an essential 

variable in predicting the amount of power in an area where a 

horizontal panel system is mainly installed. On the other hand, 
the amount of vertical insulation primarily affects the output 

of inclined panels or panels installed on the wall of a building. 

These vertical panel systems are often used in building 

integrated photovoltaic (BIPV) and are designed to increase 

solar utilization in urban environments. As such, the amount 

of insolation on the horizontal and vertical surfaces must be 

individually considered to optimize solar power generation 

efficiency according to the panel arrangement conditions and 

regional sunlight conditions, enabling more precise prediction 

of power generation. 

Since the amount of insolation on the horizontal and 
vertical surfaces also fluctuates according to the changes in 

the solar altitude and angle over time, it is essential to reflect 

the seasonal pattern and the change in the amount of 

insolation over time when modeling the amount of power. 

Since photovoltaic power generation data is fundamentally 

affected by various external environmental variables, noise, 

missing values, and outliers likely exist in the collected data. 
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When these factors are included in the model, not only the 

prediction performance may deteriorate, but a big problem 

may occur in the reliability of the result, so the preprocessing 

process plays a key role in refining the data and increasing the 

reliability, which can be said to be an essential step in 

improving the accuracy of the power generation prediction 

model. Missing values and outliers can cause significant 

problems when dealing with time series data. Missing values 

mean the case of missing values in a specific time zone, and 

such data may make information missing in the model training 
process be recognized as an incorrect pattern. Outliers are 

abnormal values in which a specific data point deviates from 

a regular pattern and may occur due to malfunctions of data 

collection equipment, environmental factors, or other 

unavoidable reasons. When missing and outliers are included 

in the model training, the model learns patterns different from 

the actual data, which can significantly reduce prediction 

accuracy. 

In this paper, ARIMA (Autoregressive Integrated Moving) 

was used as a model to process missing and outliers in data. 

Pre-processing using the ARIMA model predicts patterns by 
analyzing data trends, seasons, residuals, and missing and 

outliers. It is a statistical technique used primarily in unique 

time series data to maintain data continuity and preserve 

information necessary for model learning by correcting for 

missing and outliers. The ARIMA model is relatively simple, 

and even if a relatively small amount of data is built into a 

model and reflected in the preprocessing, the model's 

operation method can be intuitively reflected, data can be 

refined, and stable data can be produced. 

 

 
Fig. 1  Before and after preprocessing using ARIMA 

 

Fig. 1 shows some of the multivariate photovoltaic data 

before and after preprocessing. ARIMA automatically 
processes data abnormality to ensure normality. 

Abnormalities in time series data mean that the statistical 

characteristics of data are not constant over time. Abnormal 

time series have characteristics that statistical properties such 

as mean, variance, and self-covariance change over time, 

which may lead to data analysis and prediction modeling 

difficulties. Abnormal data in time series data require 

preprocessing to secure normality. The ARIMA model 

performs differences to be used for prediction, and through 

this, a stable time series pattern is formed. 

B. Dimension reduction with LSTM 

Long-short-term memory (LSTM) is a recurrent neural 

network that performs well in learning patterns from 

continuous data, such as time series data. LSTM is designed 

to solve the long-term dependence problem handled by RNNs 

and learns while maintaining important information even on 

long sequences. Unlike RNNs, LSTM includes memory cells 

and gates that control information flow, allowing the 

preservation of long sequences without loss of past data 

information [23], [24], [25], [26], [27]. 

 

 
Fig. 2 LSTM in Autoencoder Structure 

 

As shown in Fig 2, the LSTM layer accepts multivariate 

time series data preprocessed as input values, utilizes them as 
input values, and reduces the dimension so that only primary 

time series information can be extracted as features while 

preserving long sequences without losing information on past 

data. LSTM has an excellent ability to predict current and 

future patterns using past data. It processes weather and power 

generation data through this and performs long-term time-

dependence learning. Solar power generation prediction is 

reflected in the prediction depending on environmental data 

(weather conditions, etc.). LSTM shows excellent 

performance in learning nonlinear relationships, capturing 

complex interactions between photovoltaic power generation 

and weather variables [28], [29], [30]. 
This paper uses LSTM to process multivariate time series 

data simultaneously. Various module data (direct current 

voltage, direct current, alternating current voltage, alternating 

current, direct current power generation, etc.) and 

meteorological data (horizontal, vertical solar radiation, 

module temperature, external temperature, etc.) of the 

photovoltaic power generation system are included. LSTM 

learns complex interactions while processing these data 

simultaneously. The LSTM used in the model has a structure 

consisting of an input gate, an oblivion gate, and an output 

gate and controls the process of selectively remembering or 
deleting information. This gate mechanism is related to how 

data from the previous state is transmitted to the current state, 

which determines how to process the information from the 

past. The LSTM of this structure can maintain important 

information within the time series data and efficiently delete 

information not required in the learning process. 

C. Data Prediction Using Autoencoder Structure 

The autoencoder derives prediction results by predicting the 

context of the data using a model that reconstructs and restores 
the data. In the learning process, the autoencoder optimizes to 
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minimize the difference between the input data and the restored 

data and learns essential features of the input data. 

 

 
Fig. 3  LSTM-AE Structure 

 

Fig 3 shows a data processing process using an LSTM 

model and an autoencoder. Using the LSTM model, the 

encoder part of the autoencoder is reproduced to compress the 

input data to express implicit characteristics. The LSTM 

model predicts and restores data while using the compressed 
feature data again by forming an autoencoder structure, which 

means the autoencoder's decoder. In this paper, dimension 

reduction and restoration were performed using the LSTM of 

two encoders and the LSTM of two decoders. 

III. RESULTS AND DISCUSSION 

A.  Experimental Environment 

In this paper, data collection, including DC Power, AC 

Power, and various environmental variables, was performed 

to predict the amount of solar power, and the correlation 
between these data was analyzed. Data on highly correlated 

power generation were selected and used to learn the 

prediction model. For a more accurate prediction, weather 

information such as temperature, humidity, precipitation, and 

cloudiness provided by the Meteorological Administration 

was collected as time series data and included in the learning 

data. The power generation data collected by the photovoltaic 

power plant is based on the power generation data of the 

inverter measured in the Jeollanam-do area, and through this, 

the prediction algorithm was learned and evaluated. 

A hybrid LSTM (Long Short-Term Memory) and 

Autoencoder model was used as the prediction model. LSTM 
has a structure for processing long-term dependencies that 

may effectively learn complex patterns of time series data. 

Autoencoder has an advantage in extracting and restoring 

features by compressing high-dimensional data 

characteristics. The hybrid model used in this study processes 

input time series data in an encoder-decoder structure. 

It consists of two LSTM layers. The first LSTM layer 

generates the output of all time steps and transfers it to the 

next LSTM layer. The second LSTM layer outputs the 

encoded compression vector to express data in a reduced form, 

which is used as decoder input. The first decoder LSTM layer 
receives the encoder's output as a repetition vector and inputs 

the data, and the second decoder LSTM layer outputs a 

reconstructed sequence. In this process, the input and output 

data sizes are maintained the same. 

 

 

B.  Dataset Type and Environment Variables 

The amount of photovoltaic power generation may vary 

due to various constraints. In the data in this paper, 

environmental variables, excluding the decrease in the 
amount of power generated due to the degradation of the 

photovoltaic module, were calculated. Environmental data 

that directly affects the amount of photovoltaic power 

generation use direct current and alternating current power 

generation data measured by the photovoltaic module and the 

module's temperature, external temperature, and temperature. 

TABLE I 

POWER PLANT SYSTEM POWER DATA SCHEMA 

Column Summary 

PW_DATE Collected DATE 

PW_TIME Collected TIME 
PW_DCV DC Voltage 
PW_DCA DC Ampere 
PW_DCP DC Power 
PW_ACP AC Power 
PW_TOTPOWER Total Power 

 

Table 1 shows the schema for data collected by 

photovoltaic power plants. PW_DATE and PW_TIME store 

temporal information for time series data. PW_DCV, 

PW_DCA, PW_DCP, PW_ACP, and PW_TOTPOWER 

contain power generation data. To secure the reliability of the 

data measurable by the module and the prediction results, 

additional data were obtained through climate statistics that 

the Meteorological Administration can collect. 
 

 
Fig. 4  Autocorrelation Graph 

 

 
Fig. 5  Partial Autocorrelation Graph 
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ARIMA (Autoregressive Integrated Moving Average 

Model) is applied to data used for prediction by performing 

parallax correlation analysis. ARIMA maintains a continuous 

pattern because missing values of time series data can cause 

the time interval of the data to become uneven. While 

precipitation and temperature data among weather data can 

analyze a direct correlation with the amount of solar power 

generated, air volume and cloud volume data are difficult to 

apply directly due to the lack of specific values measured 

daily. Accordingly, the air volume and cloud volume data are 
used to adjust the model's hyperparameters, and more 

sophisticated data collection and learning will be performed 

through future research. 

Two scenarios were observed due to analyzing some of the 

DC power data closely related to the amount of photovoltaic 

power generation. In the period (a) graph, the amount of 

power generation showed a relatively constant range of 

fluctuations, and the tendency of stable power generation 

appeared. On the other hand, in the graph of the period (b), 

the volatility of power generation was more significant, and a 

sharp drop and irregular fluctuation were observed. This can 
be interpreted as a result of being affected by weather 

conditions such as clouds and weather changes. 

ARIMA (Autoregressive Integrated Moving Average 

Model) was applied as the prediction model. To this end, the 

pattern of time series data was identified by performing 

correlation analysis by lag. In addition, since missing values 

in time series data can lead to an imbalance in time intervals, 

the reliability of the prediction was increased by maintaining 

continuous patterns and supplementing missing values 

through the ARIMA model. 

C.  Configure Environment Variable Correlation Analysis 

Results and Data Input  

Based on the prepared data, a correlation analysis was 

conducted using the Pearson correlation coefficient to analyze 

the relationship between data collected from the power plant 

to improve the prediction accuracy. A value with a high 

correlation coefficient with the AC power to be predicted was 

selected as the input value. As a result of the correlation 

analysis, the highest value of AC power and correlation 

coefficient among inverter data is DC power, and the 
converted value of DC power is AC power, so the relationship 

between the two is directly related to the efficiency of the 

inverter. Additionally, the amount of insolation is the highest 

correlation coefficient in the environmental sensor data to 

control the difference in the installation location of the 

inverter and weather variables. 

Pearson correlation coefficient is a method of measuring 

the linear correlation between two variables. The two 

variables do not consider time and calculate the correlation at 

the same time point. The value is expressed as between -1 and 

1; a positive correlation closer to 1 means a negative 
correlation and a closer to 0 means no correlation. 

 

 
Fig. 6  Heatmap for correlation analysis using Pearson correlation coefficients 

of multivariate variables 

 
Fig 6 shows the correlation of each environmental variable 

in a matrix form using the Pearson correlation coefficient. DC 

electricity is converted into AC electricity through an inverter. 

Therefore, the direct power generation (DCP) and AC power 

generation (ACP) values, which are the direct power 

generation values, have almost the exact correlation. The 

Pearson correlation coefficient was used in this paper to 

identify variables closely related to power generation. 

As a result of the correlation analysis, the highest value of 

AC power and correlation coefficient among inverter data is 

DC power, and the converted value of DC power is AC power, 
so the relationship between the two is directly related to the 

efficiency of the inverter. Additionally, the amount of 

insolation is the highest correlation coefficient in the 

environmental sensor data to control the difference in the 

installation location of the inverter and weather variables. 

D.  Experimental Results 

An LSTM-AE hybrid model was constructed, and MAE, 

RMSE, MAPE, and R^2 were used to evaluate the time series 

data prediction performance. After analyzing the correlation 
of the pre-processed data, prediction was performed using 

highly relevant data. 

 
Fig. 7  Prediction Results Graph 1/3 Points 
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Fig. 8  Prediction Results Graph 2/3 Points 

 

 
Fig. 9  Prediction Results Graph 3/3 Points 

 

Figs 7, 8, and 9 show the prediction result. MAPE was 6.28, 

RMSE was 20.65, MAE was 16.45, and silver 0.88. Using the 

learned model, the power generation data of the photovoltaic 

module was analyzed by predicting the power generation data 

and confirming the decrease in the AC power generation 

conversion rate to DC by year. After that, to check the change 

in the monthly prediction result based on the prediction result 

and determine whether the model is overfitting, the period 

with the optimal power generation efficiency was analyzed 

based on the prediction result of the start point and end point. 
Looking at the graph's trend through qualitative evaluation 

shows that the predicted value follows the trend of the actual 

value well. The predicted value is lower than the measured 

value at the maximum point, and the estimated value at the 

minimum point is lower than the predicted value. Additional 

error analysis was performed to accurately grasp the 

relationship between the actual value and the predicted value, 

and the error between the predicted value derived from the 

model and the actual power generation was statistically 

analyzed. 

As the number of operating days increases, the difference 

between the predicted value and the measured value gradually 
increases, and an abnormal phenomenon that increases values 

outside the standard deviation range could be observed. This 

means that the inverter efficiency is slowly decreasing over 

time. To analyze this, it is necessary to diagnose the decrease 

in inverter efficiency using the power generation data 

collected from the inverter of different years and the 

environmental sensor data. In particular, it is also required to 

understand the trend of decreasing the inverter's efficiency 

through regression analysis between DC and AC power 

generation. 

IV. CONCLUSIONS 

This paper predicted the amount of solar power using a 

hybrid model of LSTM (Long Short-Term Memory) and 

Autoencoder to indicate the amount of solar power using deep 

learning. The LSTM used in the hybrid model performs 

excellently in processing sequence data. The entire 

architecture utilizes the structure of the Autoencoder and 

compresses it so that only the data features can be used in the 

encoder part. After that, the data is restored by using two 

LSTMs in the same way in the decoder part, and the seasonal 

performance trend is restored, and the data is predicted. 

For accurate prediction, the ARIMA (Autoregressive 

Integrated Moving Average Model) algorithm was used to 

perform preprocessing to remove outliers and missing values 
in time series data. Through PACF (Partial Autocorrelation 

Function) correlation analysis, data with a high correlation 

with the actual power generation were used as learning data 

for prediction. 

In this paper, we compared the data at each point in time 

by calculating the error between the predicted power 

generation and the actual value derived by the prediction 

model. The exact value, trend, and seasonality are predicted 

similarly, but the power generation is generally lower than the 

actual value. The accuracy was measured at about 94%. A 

study will be conducted through future research to determine 
the diagnosis and deterioration timing of the failure due to the 

occurrence of outliers and missing values in power generation. 
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