
 

 

 

Vol.7 (2017) No. 6 

ISSN: 2088-5334 

Developing a Stochastic Model of Queue Length at a Signalized 
Intersection  

Herman Y Sutarto#, Endra Joelianto*, Tunggul Arief Nugroho# 
# Department of Information Technology, Institute of Technology Harapan Bangsa, Jalan Dipati Ukur no 80-84, Bandung,40132, Indonesia  

 E-mail: hytotok@gmail.com; t.arief.n@gmail.com  

 
*Instrumentation and Control Research Group, Bandung Institute of Technology, Jalan Ganesha 10, Bandung, 40132, Indonesia  

E-mail: ejoel@tf.itb.ac.id (Corresponding author)  

 
 
Abstract— This paper proposes a stochastic hybrid dynamic model of the queue-length at a signalized intersection. The flow rate 
along with traffic light variables are used to define the evolution of the queue-lengths and it evolves as a piecewise linear function, 
being the integral of the difference between arrival and departure rate; these arrival and departure rates are described by stochastic 
AR model with mode-dependent parameters. The mode changes are modeled by a first order 2 or 3-state Markov process. The traffic 
flow rate is described using a mode-dependent first autoregressive (AR) stochastic process. The technique is applied to actual traffic 
flow data from the city of Jakarta, Indonesia and synthetic data from VISSIM traffic simulator. The model thus obtained via EM 
parameter estimation is validated by using the online particle filter. This technique can be useful and practical for periodically 
updating the parameters of hybrid model leading to an adaptive traffic flow state estimator as crucial part for the synthesis of traffic 
light control.  
 
Keywords— Queue length model; stochastic hybrid; particle filter. 
 
 

I. INTRODUCTION 

The increasing economic and social activities lead to an 
increasing number of vehicles in metropolitan areas. As a 
result, it creates over-saturated and highly congested traffic 
conditions at some locations in the urban traffic network 
during the peak periods, or even during a large part of the 
day. The service quality deteriorates drastically for the users 
of the network, increasing the average travel times. 
Increased level of pollution eventually leads to deteriorating 
living conditions in the cities. Provision of new 
infrastructure is not deemed to be a sustainable solution. 
Thus, a more efficient utilization of the existing 
infrastructure, using advanced online controllers, is a crucial 
ingredient towards sustainable urban mobility.  

Alleviating congestion and reducing delay in urban traffic 
networks by implementing feedback control in order to 
optimally utilize the existing infrastructure are one of the 
currently vital issues of traffic researchers and practitioners. 
Many studies have addressed these issues over the last 
decades, and many different types of feedback control have 
been proposed in order to deal with this issue of online 
management and control of large-scale urban network 
[1],[2],[3].  

This paper focuses on the framework of a stochastic 
hybrid model (SHM) for urban traffic. We develop an SHM 
to effectively describe the evolution over time of the queue-
length and arrival/departure flow rates of vehicles in an 
urban traffic network as stochastic processes. Using this 
SHM framework, it is possible to model the queue-length 
evolution at a signalized intersection, describing the 
interaction between traffic light sequences and 
arrival/departure traffic flow in all the intersections. This 
interaction is a combination of event-driven dynamics and 
time-driven dynamics. The event-driven dynamics are 
dictated by the green-red light switches and by the events 
causing some queue lengths to switch from positive to zeros 
or vice versa. The continuous variables describing, for each 
mode of the traffic operations, the arrival and departure flow 
rates can be modeled by a first-order autoregressive (AR) 
model.  

Their broad modeling expressivity has enabled various 
researchers to use stochastic hybrid systems as models in 
various application domains such as system biology, urban 
traffic networks [4],[7],[8], air traffic control [13] and smart 
grids. Paper [4] proposed hybrid models are represented by 
timed, discrete Petri nets. Jump Markov model with the 
autoregressive process of traffic flow, for time update scales 
of the order several red/green cycles of the traffic light, and 
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its parameter estimation is proposed in [7]. Paper [8] 
proposed hidden Markov models (HMM) with Gaussian 
distribution for time update scales of the order 15 minutes. 
Both papers based on   HMM structure which is a broad 
class of doubly stochastic models for nonstationary signals 
that can be inserted into other stochastic models to 
incorporate information from several hierarchical 
knowledge sources. Note that both paper only considers the 
traffic flow model. 

The behavior of the traffic flow in urban networks is 
characterized by stop-and-go phenomena resulting from 
green/red switching at signalized intersections, from 
irregular arrival stream of vehicles, and from complicated 
interactions between conflicting traffic streams, and from 
external disturbances like accidents or incidents that modify 
the traffic carrying capability of the road. In this paper, the 
irregular arrival stream of vehicles is characterized only by 
flow rate as a traffic variable measured in “vehicles per time 
unit”. This is obtained by dividing the measured number of 
vehicles by the duration of the time unit. The time unit can 
be the (possibly variable) duration of the green and red 
phase of traffic light of a signalized intersection. The flow 
rate variables can be modeled by modes dependent AR 
process. These modes represent traffic conditions remaining 
unchanged during a sufficiently long period of time, 
typically many time units. As a consequence, the term mode 
here refers only to the traffic flow with different levels of 
intensity that can be grouped into few categories (in this 
paper we consider only 2 modes for simplifying). 
Classification into 2 or 3 modes refers to the traffic situation 
representing the free-flowing condition and the congestion 
condition.  

II. MATERIAL AND METHOD 

A. Stochastic Hybrid Models: Fluid Flow Approach 

One of the most widely used control approaches is known 
as time-of-day (TOD) signal control. In TOD approach, 
traffic engineers segment the day into a number of time 
intervals in which traffic patterns are relatively consistent 
(such as the AM peak, PM peak, etc.). In other words, if 
traffic conditions are sampled multiple times during the 
same TOD interval, the samples will be very similar. Thus, 
one could state that traffic samples taken during a single 
TOD interval are ”clustered” closely together. In other paper 
by authors [5], the authors have developed a traffic control 
based on this cluster approach and implemented in the 
SUMO open-source traffic simulator. One of the 
weaknesses of this TOD approach is the accuracy of the 
model, during the transition period among clusters, becomes 
deteriorated. Therefore, the performance of the controller 
becomes deteriorated due to inaccuracies in the models. 

This paper introduces a stochastic model in order to 
capture the transition dynamics among clusters (hereafter 
we call modes). The stochastic model considers the traffic 
flow variables at locations along a link road, and at all 
entrance and exit locations of the signalized intersections. 
This traffic flow variable is defined (and can be measured) 
by dividing the number of vehicles crossing a given location 
during each red phase, viz. during each green phase of the 
traffic light. Reliable speed and density data are not 

available in the companies/institutes that cooperate with us 
in this research. Hence, we build models for the flow 
variables only. More specifically, a generic traffic flow is 

defined as the ratio 
)( 1 kk

t
t tt

N
k

k −=
+

α  where 
kt

N  counts 

the number of vehicles that passes the given location in the 
interval ).,[ 1+kk tt  It means that traffic flow is a result of 

averaging over an interval which here is the duration of one 
phase of the signal. A fluid flow model (FFM) is proposed 
as an appropriate model at the time scale of successive 
phases of the traffic lights. This FFM describes the 
evolution over time of the traffic flow at a given location, in 
a given link or at the entrance or exit point of an intersection. 
By a continuous random variable which expresses the 

average rate
kt

α , it is expressed in vehicles per sec, at which 

vehicles pass a location at time tk. This fluidization of traffic 
flow variables avoids working with large integers, 
approximating integer numbers of vehicles by a real number.  

Most of the past work related to traffic signal control 
design is based on the assumption that traffic flow is 
deterministic. Paper [6] proposes FFM with a discrete-event 
max-plus model while an FFM with the stochastic hybrid 
model is proposed in [7]. The FFM in [6] does not consider 
a random variation of the flow rates, whereas the FFM in [7] 
assumes that the evolution of arrival flow rate and departure 
flow rate are well defined by the parameters of the certain 
stochastic processes that have the capability to describe 
varying of intensity flow.  

Note that in the FFM, there is an implicit assumption that 
the vehicles travel approximately at equal distances from 
each other during the interval ),[ 1+kk tt  since the flow rate is 

assumed constant during ),[ 1+kk tt . This is an approximation 

that is only acceptable for sufficiently small values of the 
time increments tk+1-tk (and it may not really be true for the 
duration of a red or green phase of a traffic light), but it 
reduces the computational complexity of our algorithms a 
lot since we do not have to consider individual vehicles. 

This assumption implies that the flow rates 
kt

α are 

approximately constant over the intervals ),[ 1+kk tt .  

Urban traffic networks consist mainly of two types of 
elements: link roads, forming approaches to the signalized 
intersections, and signalized intersections. A model of the 
interaction between the traffic flow along the approaches of 
a signalized intersection and the red/green cycles of the 
traffic lights at that intersection is the basic phenomenon 
determining the evolution of the queue lengths. Capturing 
this propagation of queue lengths into a well-defined 
dynamic model is an important part of the design of a model 
based feedback controller for the traffic lights. The 
operation of a signalized intersection is by defining a set of 
events describing the evolution of the discrete states, 
modeled as an automaton. The overall model of the 
intersection behavior is then a stochastic hybrid model 
(SHM). 
 
B. Queue Length Dynamics 

The flow rates along with traffic light variables (i.e., 
cycle length and phase) are used to define the evolution of 
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the queue-lengths. The queue-length evolves as a piecewise 
linear function, being the integral of the difference between 
arrival and departure rate; these arrival and departure rates 
are described by stochastic autoregressive (AR) model with 
mode-dependent parameters, which remain constant during 
each time interval [tk, tk+1); the mode changes are modeled 
by a first order 2-state Markov process. The overall traffic 
model is thus a jump Markov model. In this section, we 
describe in detail this stochastic hybrid modelling for the 
traffic flow along one particular approach route to a 
signalized intersection, and indicate how this model is 
useful in controlling the operation of a signalized 
intersection since we want to control the signalized 
intersections so as to minimize the average delays which in 
turn depend on the queue length trajectories.  

In this modeling, we assume the following simplification: 
(a) we do not consider the classification of vehicles;(b) we 
ignore the yellow and all red (c) we ignore the problem of 
left turns, and the influence of pedestrian crossings, (d) we 
use observation on traffic flow only. 

A typical signalized intersection and a red/green 
sequence are shown in Fig.1 and Fig.2. The intersection is 
controlled according to two phases. During phase A, the 
traffic signals T1 and T3 have a green light in the interval 

),[ 122 +kk tt  while in phase B during the interval 

),[ )1(212 ++ kk tt , traffic light  T2 and T4 have a green light. In 

both phases, the cycle has two states: green and red (note 
that for simplicity we ignore in this thesis the yellow period; 
we also ignore the complications due to the left turning 
traffic).  The time instants when the traffic signals T1 and T3 
initiates a green period and T2 and T4 begins red period are 
t0,t2,t4….(or t2k with k=0,1,2…). The time instants when the 
traffic signals T1 and T3 initiates a red period and T2 and T4 
begins green period are t1,t3,t5….(or t2k+1 with k=0,1,2…).    

 
Fig. 1 Traffic Signal Sequence 

 

 
 

Fig. 2 Intersection with incoming lanes 

Notation: Subscript i=1,2,3,4 indicates the number of the 
approach lane Li, while the Greek character λ or µ indicates 
that it is an arrival or departure flow. Subscript t indicates 
the real-time, while tk denotes the starting time of red and 
green phases; remember that these flow rates remain 
constant during an interval t ∈ [tk, tk+1) . Example: the 
arrival rate of vehicles in traffic movements L1 and L3 in the 
interval [t2k, t2k+1) are 

kt2,1λ  and 
kt2,3λ  and in the interval 

[t2k+1,t2(k+1)) are 
12,1 +ktλ and 

12,3 +ktλ . The departure rate of 

vehicles in movements L1 and L3 in the interval [t2k, t2k+1) is 

kt2,1µ and 
kt2,3µ .  

Consequently, one can see that t2k+1-t2k = Tg,k and t2k+2-
t2k+1 = Tr,k, where k  is a cycle index. Therefore, Tg,k 
represents the green time and Tr represents the red time in 
traffic signal T1 and T3. A cycle length Ck=C is equal to 
Tg,k+Tr,k, wherein this paper; cycle length is constant.  

Formulation of the queue length trajectories can be 
expressed equivalently as a piecewise affine model. The 
evolution of the queue length, for traffic signal T1 and T3, in 
movements L1 and L3 are obtained by: 





∈
∈−

=
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+
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2212,
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kkti

kktititii

ttti

tttq

dt

dq
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(1)                                                
for i=1,3; k=0,1,2…and 1(.) is the indicator function 

defined as  
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
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=
otherwise
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z
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)(1                                                                                   

 

where _,tiqz =  This indicates that queue-length in 

movement i is bigger than zero. Notation t_ in  _,tiq means 

that we consider the value of the queue length just before 
time t2k+1, something that is well defined because qt is a 
piecewise continuous function, with left-hand limits. The 
relation of the queue length between the time instants t2k and 
t2k+2 are represented by the following equations: 
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for i=1,3 and k=0,1,2…The equation describing the 
relationship of the queue length at traffic movement L2 and 
L4 are obtained in a similar manner and please note that in 
(1) and (2), the arrival and departure flow rates are 
nonnegative values, and the queue-lengths will never 
become negative (but can be equal to 0), thanks to the 
inclusion of 1(qi,t_) in the equations describing the evolution 
of queue lengths. 

Please keep in mind that the proposed approach assumes 
that the uses control schemes with a structure that combines 
non-conflicting streams in successive stages. The structure 
is fixed, meaning that in every cycle the same stages are 
passed. It means that the sequence of a traffic light can be 
adjusted manually. 
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C. Jump Markov Model 

Different from our previous work on traffic control where 
one assumed that traffic flow is deterministic or using TOD 
approach, in this work defines the traffic flow rates as 
stochastic variables. This section describes in detail the 
complete stochastic hybrid model for one signalized 
intersection, also called further on the jump Markov model 
(JMM). In order to express this, we use a mode dependent 

AR model for a generic traffic flow rate 
kt

α (which could 

represent the arrival flow rate 
kt

λ or the departure flow rate 

kt
µ ). Remember that the period of the cycle is noted [t2k 

t2(k+1) ) which consists of green phase and red phase during a 
period of time when the traffic conditions, also called the 
mode s of operation of the traffic, remains unchanged, this 

variable 
kt

α is modelled by a first-order autoregressive (AR) 

model: 
 

kkk ttt ss ηαγβα ++=
+

)()(
1

                               (3)                                                      

(where )(sβ  and )(sγ  are mode-dependent 

parameters to be identified, and ....,2,1, =k
kt

η is an 

independent identically distributed sequence of zero mean 

Gaussian random variables with variance )(2 sσ , with )(2 sσ  

also a mode dependent parameter to be identified).  
In the traffic flow model introduced in this subsection we 

consider 2 or 3 different values for the mode of operation 
{ }2,1∈

kt
s : 

- 1=
kt

s  denotes the desirable mode of operation 

where traffic is flowing freely without too much 
interference between successive vehicle; 

- 2=
kt

s  denotes the congested mode where 

vehicles hinder each other significantly, and the 
system operates inefficiently; 

This paper assumes that the mode process 
kt

s  can be 

modelled by a first-order Markov chain, i.e., at each time kt  

the mode variable is
kt

=
−1

 changes randomly to the value 

js
kt

=  with a transition probability Πij= 

Prob ...),,,|(
321 −−−

==
kkkk tttt ssisjs  which only depends 

on the most recent mode (or Markov state) 
1−kt

s , not on 

states further in the past. Equation (3) with its interpretation 

kt
t αα =)(  for ),[ 1+∈ kk ttt , together with the Markov chain 

model for the mode 
kt

s , and the queueing model of 

equation (1-2) provides us with a complete mathematical 
model of traffic flow. The parameters of this model will be 
estimated in the next section according to the expectation 
maximisation (EM) parameter estimation In total there are 
10 parameters to be estimated for one single approach lane 
L i: (a) for each mode { },2,1∈s  the AR model has 3 

parameters, )(sβ , )(sγ and )(2 sσ ,for total of 6 parameters 

to be estimated; (b) the transition matrix Πij of the Markov 
chain describing the mode process has 2 rows of 2 elements, 

satisfying the normalization condition 
=

∀=Π
2,1

,1
j

ij i , for 

a total of 4 free parameters to be estimated.  
The main advantageous of JMM stochastic approach is 

that the transition matrix does not only determine the 
ergodic probability but also determine how long the mode 
stays. This is something that cannot be provided by 
deterministic model and TOD. The similarity between TOD 
and deterministic model is weak in accuracy especially in 
transitions between clusters/modes. While the difference, 
deterministic approach will be more accurate in the 
evolution of traffic flow within each cluster compared with 
TOD which basically is based on averaging the previous 
daily data. 
 
D. Particle Filtering: State Estimation of Hybrid System 

In this part, we use an expectation-maximization 
technique proposed in our paper [7] to estimate parameters 

{ }Π= ,,,,,, 2
222

2
111 σγβσγβθ of hybrid stochastic 

systems. Please refer to paper [7] for the detailed algorithm 
and based on those parameters, we use particle filter to 
estimate  

)},(),,(),,(,{}{
22121222 ,1,1,1 kkkkkkkk tttttttt sssqx µλλ

++
=  as 

defined by equation (1), (2) and (3). 
A particle filtering (PF) is a Monte Carlo, or simulation 

based, an algorithm for recursive Bayesian Inference. That 
is, it approximates the predict-update cycle, and it is very 
widely used in many applications, including tracking, time-
series forecasting, online parameter learning, etc. Please 
refer paper [12][14] for a detailed description of the PF 
algorithm for the interested reader. 

A number of suggestions have been proposed in order to 
make the standard PF applicable to the state estimation 
problem of hybrid processes: interacting multiple model 
particle filtering (IMMPF) [11] and observation and 
transition-based most likely modes tracking particle filter 
(OTPF) [9].  

In this subsection, we will review the OTPF applied to 
the jump Markov model of section 4. In this case, one needs 
to calculate the probability density function (pdf) of the 

hybrid system )|,(
kkk ttt sxp y , where 

ktx still denotes the 

state of the AR models, while 
kt

s indicates the mode of the 

system at time tk where s=1,2,…,K. In this subsection, we 
focus on the state estimation assuming that AR parameter 
and TPM are known a priori through EM technique, which 
is a standard a requirement in the usual applications of the 
OTPF. 

State estimation based on OTPF calculates the 

conditional pdf of a hybrid system: )|,(
kkk ttt sxp y , 

},,0,{ kjt tjy
k

…==y . Since at each time step the 
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system only follows one mode, it is reasonable to assume 

that it is actually only following the most-likely mode 
kt

ŝ :  

)|()|(

),|()|(

),|()|(),(

kktkkk

kkkkk

kkkkkkkk

ttstt

ttttt

tttttttt

xpsp

sxpsp

sxpspsxp

yy

yy

yyy

⌢

⌢

⌢⌢

=

≈

=
            (4)                                            

Since )|(
kk ttsp y

⌢

is a constant in (4) its effect will be 

absorbed in the normalization constant and will not affect 
the basic PF algorithm.  

 

III.  RESULTS AND DISCUSSION 

A. Traffic Flow Case: Actual Data 

This section focuses on modelling urban traffic flow as 
indicated in (3), by estimating parameter values based on 
the EM algorithm of our paper [7],[8] using the data over a 
time window [0,T] for the experiment layout in city of 
Jakarta (data courtesy of the Newtel Pvt Ltd). The time-
window size is important to define the model that will be 
used for estimating traffic flow. In this section, for this 
purpose, we use the above-described data as input for the 
EM algorithm for 1 day (0 pm–24 am) obtained on 1 
September 2012, from the video cameras installed for the 
operation of the SCATS traffic control system. The data are 
taken from the area of Thamrin street (data courtesy of the 
Newtel Pty Ltd.). The aim of the current experiment is to 
check the practical implementation of our algorithm by: 

a) identifying the parameters 

{ }Π= ,,,,,, 2
222

2
111 σγβσγβθ   of the JMM model (3) 

with 2 modes. Based on the actual data and EM technique 
we find the best estimate value of θ 
={0.1325,0.4736,0.0208,0.0895,0.6829,0.067,










8617.01383.0

2131.07869.0 }. Parameter θ is used to complete the 

jump Markov model of arrival flow. Based on the model, 
we use a particle filter as described in the previous section 
and in [9],[10],[11],[12] to estimate arrival flow. The results 
in the Fig.3 below shows that the measurement data fits 
with estimated traffic flow and it means that the JMM with 
2 modes and estimating a parameter θ can be classified as a 
suitable model of the traffic flow. 

b) identifying the parameters 

{ }Π= ,,,,,,,,, 2
333

2
222

2
111 σγβσγβσγβθ   of the JMM 

model (3) with 3 modes. Based on the actual data and EM 
technique we find the best estimate value of 
θ={0.1621,0.1184,0.0441,0.1065,0.6195,0.0071,0.1431,0.4
897,0.0158,Π},  where 

 

















=∏
878.0122.00

0916.0888.002.0

0373.0626.0  

 
The good fits between the evolution of arrival flow 

measurements and estimation as depicted in Fig.4 show that 
the model JMM with 3 modes and parameters θ  can be a 

good candidate model of traffic flow. By using these 
parameters, we can characterize the JMM model of the 
traffic flow in each of the three modes, and the transition 
probability matrix Π . Since for all estimated values we 
find that |γ| <1, the stationary value Ei(α(t))=βi/(1-γi), where 
i=1,2 and 3. It is clear from the results of parameter 
estimation θ  and the evolution of modes in Fig.4 that the 
EM technique is able to identify the modes. The second and 
third modes have an average value Ei(α(t)) that is almost the 
same but with different values of the variance. Both modes 
can be classified as a congestion mode. A value for the 
variance that is almost doubled is a strong indication that the 
third mode is a congestion mode with higher uncertainty.  
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Fig. 3 Measurement and estimated of arrival flow 

 
By estimating the parameter θ of proposed SHM for the 

traffic flow both for arrival and departure flow over the 
successive cycles of the traffic light, one can define the 
evolution of queue length by using (2). 
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Fig. 4 Evolution of traffic flow and modes 
 

B. Queue Length Case: Synthetic Data 

We have not been able to find data of queue length where 
is recorded with sufficient accuracy over the successive 
cycles of the traffic light, as considered in our model. 
Fortunately, the advanced computational power and the 
flexibility that state-of-the-art computer-based simulation 
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software offers makes it possible to validate our algorithm 
using the VISSIM traffic micro-simulator. We use VISSIM 
as a microscopic traffic simulator generating synthetic 
traffic data implementing a detailed model with the same 
traffic flow rates as for the hybrid dynamic SHM model 
introduced in the previous section. The simulated output can 
be made more realistic by generating the noise as required 
for realistic representation of traffic irregularity, mode 
changes. Moreover, VISSIM allows the user to read out data 
like current traffic flow, and queue length at different 
locations, data that after adding measurement noise, can be 
used as the simulated output of real traffic sensors. These 
synthetic output data ytk simulate the sensor output available 
for online analysis. The output of such a simulation run 
provides the noisy data about traffic flow rates under 
various conditions, for the time intervals corresponding to 
the cycle of the traffic lights. Hence comparing the queue 
length obtained via microsimulation with the estimations 
and predictions obtained via the PF estimator provides a fair 
and honest way of validating the correctness of the proposed 
estimator method.  In the PF approach, 
prediction of traffic flow over one or two cycles ahead is 
performed by using JMM equation (3). Let assume at time tk, 

the parameter θ={β,γ,σ2} and also mode 
kt

s has been 

identified by parameter estimation and based on the 

equation (4) and also Πij then the traffic flow rate 
1+kt

α  can 

be predicted and so on for the 
2+kt

α . Fig.5 shows that the 

PF queue length estimator and predictor gives results close 
to the ”synthetic” VISSIM queue length.  
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IV.  CONCLUSION 

This paper proposed a hybrid dynamic system model as a 
powerful approach for capturing the complicated dynamics 
of urban traffic flow, including many sources of uncertainty. 
The model was appealing as traffic flow conditions can be 
classified into two or three modes and the switch between 
these three modes was controlled by a first-order Markov 
chain. The model was characterized by a set of parameters 
to be estimated using measured data (e.g., from a video 

camera overlooking traffic), and it was shown that a particle 
filter technique might lead to a useful real-time state 
estimation algorithm that can be part of a feedback control 
loop. 

The study reported in this paper investigated the 
proposed approach both by using actual traffic flow data 
and synthetic data and confirmed its validity by showing 
that the particle filter based on the identified model 
provided satisfactory state estimation and correctly captured 
the random variation of the traffic flow. The proposed 
hybrid model along with the particle filter estimator will be 
applied to a paper in preparation for queue length estimators 
as a crucial part of the synthesis of traffic light control.   
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