

Vol.7 (2017) No. 5

ISSN: 2088-5334

An Analysis of a Recursive and an Iterative Algorithm for Generating
Permutations Modified for Travelling Salesman Problem

Velin Kralev

Department of Informatics, South-West University "Neofit Rilski", 66 Ivan Michailov Str., Blagoevgrad, 2700, Bulgaria
 E-mail: velin_kralev@swu.bg

Abstract— This paper presents the results of a comparative analysis between a recursive and an iterative algorithm when generating
permutation. A number of studies discussing the problem and some methods dealing with its solution are analyzed. Recursion and
iteration are approaches used in computer programs to implement different algorithms. An iterative approach is the repeated
execution of the same source code until a certain end condition is met. On the other hand, a recursive approach uses a recursive
function that repeatedly calls itself. This function contains a source code that must be executed repeatedly. Both algorithms presented
in this paper can be used to generate permutations of an n element set. The algorithms are modified so that they can be used to solve
the Travelling Salesman Problem (TSP) with a small number of vertices. Several publications that discuss the TSP and some
approaches to its solution are also presented. The methodology and the conditions for conducting the experiments are described in
details. The obtained results have been analyzed; they show that for the same conditions the iterative algorithm works from of 23 to 24
times faster than the recursive algorithm in all the tested input data. Several approaches to optimize the two algorithms in terms of
the number of permutations tested when searching a minimal Hamiltonian cycle are presented.

Keywords— iterative algorithm; recursive algorithm; travelling salesman problem; computer programming.

I. INTRODUCTION

The most important components of a computer program
are the algorithms used. This defines the amount of memory
used (necessary for storing data structures) as well as the
programme's performance (i.e., its effectiveness). Therefore,
when developing computer algorithms, it is important to use
such methods whereby the memory used is as small as
possible and the time to perform computational processes is
as short as possible. Research into the development of
computer algorithms began many years ago. Exhaustive and
systematized research in this field are presented in [1] and
[2]. When creating an algorithm to solve a practical problem,
first, it is necessary to select a suitable data structure. These
data will be stored and processed during the computation
process. The approach that will be chosen for modeling and
solving the problem will determine how the computation
process runs, e.g., recursive or iterative.

A study reveals the preferences of beginner programmers
when developing computer algorithms in terms of whether to
be recursive or iterative [3]. The results show that the
preferences in recent years have been in favor of recursive
algorithms. These algorithms are more frequently preferred
than the iterative ones. Another study presented in [4] shows
that when selecting a relevant approach, the specificity of the

problem should be taken into account. In [5] a method based
on incrementalization for transforming the recursion in
iteration is proposed. The results show that in most
experiments the iterative algorithms used more memory. On
the other hand, these algorithms were performed faster. A
method for recursion removal is proposed in [6]. Different
methods for optimizing memory usage when using recursion
are offered in [7]. In addition, similar situations in which
nested cycles are used have been taken into consideration.
An approach to transforming iterative cycles in recursive
methods is presented in [8]. In earlier sources, similar
approaches for creating a recursive algorithm based on an
iterative process are also presented [9]. The idea of
automated transforming of recursive methods in iterative
loops may also be a subject of a study.

Iterative and recursive implementations of various
algorithms are widely used in many fields of science and
practice, such as those presented in [10]–[12]. An intensively
investigated field of study is the graph theory. This is a part
of discrete mathematics, which has undergone great
development over the last few decades and has a huge
practical application. In many cases, the description, analysis,
and research of real systems is accomplished successfully
and comparatively simply with graphs. A graph contains two
sets of elements - vertices and edges. Each edge connects a
pair of vertices. The ordered pair (V, E) is called an

1685

undirected graph (G), where: V = {v1, v2, ..., vn} is a set of
vertices and E = {e1, e2, ..., em} is a set of edges. The V and
E sets are finite. Each element k ∈ E, (k = 1, 2, .., m) is an
ordered pair (vi, vj), vi, vj ∈ V, 1 ≤ i, j ≤ n. When the pair of
vertices (vi, vj) is ordered, the graph is called directed, and
the edges are called arcs. If a function f(i, j) is given,
comparing an integer value to each edge (i, j) ∈ E, f(i, j) =
f(j, i), the graph is called undirected weighted. If a sequence
of vertices v1, v2, ..., vk is given, such that for each i = 1, 2, ...,
k-1 is satisfied (vi, vi+1) ∈ E, then this sequence is called a
path in a directed graph. In the case of an undirected graph,
the ordinance of elements in the pair (vi, vi+1) does not matter.
The path where the start and final vertex coincide is called a
cycle. A cycle that passes through each edge exactly once is
called Eulerian, while a cycle that passes through each
vertex exactly once is called Hamiltonian. A graph is called
complete when for each pair of vertices there is an edge that
connects them, i.e., an edge that is incidentally with them. In
[13] more information related to the graphs theory is given:
the main ways of presenting these structures in computer
programs and a wide variety of algorithms to solve particular
problems.

The graphs provide opportunities to formulate and solve
complex practical problems effectively in a natural way and
in an accessible language. Numerous problems in different
fields, both in science and in practice (for example, transport
problems, resource allocation problems, search for optimal
routes and the location of service centers, problems related
to optimal schedules and timetables and many others), can
be modeled with graphs and solved with appropriate
algorithms [13]. In many cases these problems are linear,
which means that they are solved with linear optimization
methods. For some problems with large input data, it is
necessary to look for efficient algorithms (usually
approximated) so that they can be solved for a reasonable
time. Solving these problems without a computer and a
suitable application would be very difficult except for some
cases in which the input data are very small. But even with a
computer and appropriate application software, solving some
problems would be impossible, or theoretically, it would
take a long time, for example years, to find an exact solution
[14]. Such are all NP-hard problems in which a solution
cannot be found in polynomial time. The methods based on
the "backtracking" approach yield good ressults but only for
problems with small input data. For instance, in a complete
undirected graph with 25 vertices and 25 * (25-1) / 2 = 300
edges, the number of all Hamiltonian cycles (if necessary to
be checked) is very large, respectively: (25-1)! / 2 = 310 224
200 866 620 000 000 000. With the capabilities of modern
computers, this approach, though possible, is practically
inapplicable. Therefore, the interest in developing new or
modifying the existing heuristic or approximate algorithms
(not only for graphs) is explicable. This helps to find a
solution to some "hard" problems for a reasonable time.

The number of practical problems that can be modeled by
graphs is big. A problem to find a minimal Hamiltonian
cycle in a complete undirected weighted graph will be
selected for the present study. This is a combinatorial
optimization problem that has been researched very actively
in recent years. A detailed description of the Travelling
Salesman Problem (TSP) is presented in [15]. Moreover, in

[16] different variants of it are presented. Due to the great
practical application of this problem, many algorithms have
been created for it. There are two main approaches on the
basis of which all algorithms for solving the TSP are
developed. The first approach is based on the creation of
exact algorithms. These algorithms always find the exact
solution, but a lot of computing time is required for their
execution. It is recommended that these algorithms be used
in small input data (in this case, a small number of vertices
in a graph, for instance, up to 20). Examples of such
algorithms are presented in [17]–[19]. The second approach
is based on the creation of approximate or heuristic
algorithms. These algorithms find solutions that are close to
optimal or optimal, but this cannot be proven. Most of the
developed algorithms for solving TSP are in this category.
Examples of such algorithms are presented in [20]–[24].

II. MATERIAL AND METHOD

This paper presents the results from an experimental study
of two algorithms for generating permutations, respectively
recursive and iterative [2]. Both algorithms have been
modified to be used to search for an exact TSP solution. The
analysis of the results aims at determining the way the
algorithmic implementation influences on the computation
process. For this purpose, both algorithms need to generate
the same solutions. The main metrics that will be analyzed
are the quality of the solutions found (minimum length of the
Hamiltonian cycle) and the execution time (the time required
to check all possible Hamiltonian cycles).

Let a set A = {a1, a2, ..., an} with n elements be given.
Each sequence (or order) of these elements (without
repetition) is called permutation. The set of all possible
permutations is denoted with Pn and its power is marked
with |Pn|, which is equal to n!. The following recursive
relationship can be used to generate permutations: after
placing a particular element in position k, the sequential
generation of all possible permutations of the remaining n-k
elements follows. After generating each permutation, the
length of a Hamiltonian cycle formed by the sequence of the
vertices defined in the current permutation will be calculated.

When executing the algorithms, some global arrays and
variables will be used. They need to be pre-declared, as
shown in Fig. 1 (in Delphi language).

01 │ AdjacencyMatrix: array of array of Integer;
02 │ MarkedVertices: array of Boolean;
03 │ HamiltonianCycle: array of Integer;
04 │ MinimumHamiltonianCycle: array of Integer;
05 │ CycleLength: Integer;
06 │ MinimumCycleLength: Integer;
07 │ Counter: Int64;
08 │ CounterCycles: Int64;
09 │ CounterBetterCycles: Int64;
10 │ BestCycleIndex: Int64;
11 │ StartTickCount: Cardinal;
12 │ FinishTickCount: Cardinal;

Fig. 1 Source code of the global declarations

A recursive algorithm used to search for a minimal

Hamiltonian cycle is presented in Fig. 2. This algorithm is
based on the generation of permutations and uses the
"backtracking" method.

1686

01 procedure HamiltonianCycleByRecursion
02 │ (Iteration, Position, VertexCount: Integer);
03 var
04 │ J: Integer;
05 begin
06 │ Inc(Counter);
07 │ if ((Iteration = 1) and (Position > 1)) then
08 │ begin
09 │ │ if (Position = VertexCount+1) then
10 │ │ begin
11 │ │ │ Inc(CounterCycles);
12 │ │ │ CycleLength := 0;
13 │ │ │ for J := 0 to VertexCount-1 do
14 │ │ │ │ CycleLength := CycleLength +
15 │ │ │ │ AdjacencyMatrix[HamiltonianCycle[J]]
16 │ │ │ │ [HamiltonianCycle[J+1]];
17 │ │ │ if (MinimumCycleLength > CycleLength) then
18 │ │ │ begin
19 │ │ │ │ BestCycleIndex := CounterCycles;
20 │ │ │ │ Inc(CounterBetterCycles);
21 │ │ │ │ MinimumCycleLength := CycleLength;
22 │ │ │ │ for J := 1 to VertexCount do
23 │ │ │ │ │ MinimumHamiltonianCycle[J] :=
24 │ │ │ │ │ HamiltonianCycle[J];
25 │ │ │ end;
26 │ │ end;
27 │ │ Exit;
28 │ end;
29 │ if (MarkedVertices[Iteration]=True) then Exit;
30 │ MarkedVertices[Iteration] := True;
31 │ for J := 1 to VertexCount do
32 │ begin
33 │ │ if ((AdjacencyMatrix[Iteration][J] > 0) and
34 │ │ │ (J <> Iteration)) then
35 │ │ begin
36 │ │ │ HamiltonianCycle[Position] := J;
37 │ │ │ HamiltonianCycleByRecursion
38 │ │ │ (J, Position+1, VertexCount);
39 │ │ end;
40 │ end;
41 │ MarkedVertices[Iteration] := False;
42 end;

Fig. 2 Source code of the recursion based algorithm

This algorithm uses a modification of the Depth-first

search (DFS) method. The HamiltonianCycleByRecursion
procedure is called recursively (lines 37 and 38) until all
Hamiltonian paths starting from a first vertex and passing
through all other vertices are generated. Finally, the edge
that connects the end with the first vertex is added to this
path to form a Hamiltonian cycle. This is done when the
condition of line 9 is true. The length of the new
Hamiltonian cycle is calculated on lines 13–16. Then,
whether this cycle is shorter than the shortest one that has
been found so far (line 17) is checked. If this proves true, the
current cycle is stored as the shortest one (lines 19–24). The
complexity of the algorithm is exponential because it
generates all (VertexCount-1)! Hamiltonian cycles
(including those in the opposite direction).

Another algorithm used to search for a minimal
Hamiltonian cycle is presented in Fig. 3. This algorithm,
however, is based on the generation of permutations using an
iterative approach.

This algorithm generates iteratively all permutations of
(VertexCount-1) elements – formed by the vertex indexes,
respectively, 2, 3, ..., VertexCount. After generating the next
Hamiltonian path (composed of vertices 1, 2, ...,
VertexCount), the edge (VertexCount, 1) is added to it.
Since the explored graphs are complete, such an edge
certainly exists.

01 procedure HamiltonianCycleByIteration
02 │ (VertexCount: Integer);
03 var
04 │ LeftPos, RightPos, Temp: Integer;
05 │ Terminated, NewPermutation: Boolean;
06 begin
07 │ for Temp := 0 to VertexCount-1 do
08 │ │ HamiltonianCycle[Temp] := Temp + 1;
09 │ HamiltonianCycle[VertexCount] := 1;
10 │ CounterCycles := 1;
11 │ MinimumCycleLength := 0;
12 │ for Temp := 0 to VertexCount-1 do
13 │ │ MinimumCycleLength := MinimumCycleLength +
14 │ │ AdjacencyMatrix[HamiltonianCycle[Temp]]
15 │ │ [HamiltonianCycle[Temp+1]];
16 │ BestCycleIndex := 1;
17 │ CounterBetterCycles := 1;
18 │ for Temp := 0 to VertexCount do
19 │ │ MinimumHamiltonianCycle[Temp] :=
20 │ │ HamiltonianCycle[Temp];
21 │ Terminated := False;
22 │ repeat
23 │ │ Inc(Counter);
24 │ │ NewPermutation := False;
25 │ │ LeftPos := VertexCount;
26 │ │ while (LeftPos > 0) do
27 │ │ begin
28 │ │ │ Inc(Counter); Dec(LeftPos);
29 │ │ │ RightPos := VertexCount;
30 │ │ │ while (RightPos > LeftPos) do
31 │ │ │ begin
32 │ │ │ │ Inc(Counter); Dec(RightPos);
33 │ │ │ │ if (HamiltonianCycle[LeftPos] <
34 │ │ │ │ │ HamiltonianCycle[RightPos]) then
35 │ │ │ │ begin
36 │ │ │ │ │ Temp := HamiltonianCycle[LeftPos];
37 │ │ │ │ │ HamiltonianCycle[LeftPos] :=
38 │ │ │ │ │ HamiltonianCycle[RightPos];
39 │ │ │ │ │ HamiltonianCycle[RightPos] := Temp;
40 │ │ │ │ │ Inc(LeftPos);
41 │ │ │ │ │ RightPos := VertexCount - 1;
42 │ │ │ │ │ while (LeftPos < RightPos) do
43 │ │ │ │ │ begin
44 │ │ │ │ │ │ Inc(Counter);
45 │ │ │ │ │ │ Temp := HamiltonianCycle[LeftPos];
46 │ │ │ │ │ │ HamiltonianCycle[LeftPos] :=
47 │ │ │ │ │ │ HamiltonianCycle[RightPos];
48 │ │ │ │ │ │ HamiltonianCycle[RightPos] := Temp;
49 │ │ │ │ │ │ Inc(LeftPos);
50 │ │ │ │ │ │ Dec(RightPos);
51 │ │ │ │ │ end;
52 │ │ │ │ │ Inc(CounterCycles);
53 │ │ │ │ │ CycleLength := 0;
54 │ │ │ │ │ for Temp := 0 to VertexCount-1 do
55 │ │ │ │ │ │ CycleLength := CycleLength +
56 │ │ │ │ │ │ AdjacencyMatrix
57 │ │ │ │ │ │ [HamiltonianCycle[Temp]]
58 │ │ │ │ │ │ [HamiltonianCycle[Temp+1]];
59 │ │ │ │ │ if(MinimumCycleLength>CycleLength)then
60 │ │ │ │ │ begin
61 │ │ │ │ │ │ BestCycleIndex := CounterCycles;
62 │ │ │ │ │ │ Inc(CounterBetterCycles);
63 │ │ │ │ │ │ MinimumCycleLength := CycleLength;
64 │ │ │ │ │ │ for Temp := 1 to VertexCount do
65 │ │ │ │ │ │ │ MinimumHamiltonianCycle[Temp] :=
66 │ │ │ │ │ │ │ HamiltonianCycle[Temp];
67 │ │ │ │ │ end;
68 │ │ │ │ │ NewPermutation := True; Break;
69 │ │ │ │ end;
70 │ │ │ end;
71 │ │ │ if ((LeftPos=1) and (RightPos=1)) then
72 │ │ │ begin Terminated := True; Break; end;
73 │ │ │ if NewPermutation then Break;
74 │ │ end;
75 │ until (Terminated);
76 end;

Fig. 3 Source code of the iterative based algorithm

1687

In lines 7–9, an initialization Hamiltonian cycle is
generated. This cycle contains the following sequence of
vertices: 1, 2, ..., VertexCount, 1. In lines 12–15, the length
of the generated Hamiltonian cycle is calculated using the
adjacency matrix. The lengths of all edges are stored in this
matrix. At this point only this cycle is generated, this is why
it is stored as a minimum (lines 18–20).

The iterative generation of permutations is performed by
three nested loops (while –– do). These loops begin at lines
26, 30 and 42, respectively. From the right to the left, each
subsequent number of the current series is permutated
sequentially. When this is done (line 51), a new permutation
is already generated. Based on this permutation, the next
Hamiltonian cycle is formed and its length is calculated
(lines 54–58). If the length of the last generated Hamiltonian
cycle is shorter than the smallest length found so far, the
length is stored as the smallest one (line 63) and the
corresponding cycle is stored as the shortest one (lines 64–
66). The generation process is repeated until the left and
right positions of the indexes of the elements become equal
to 1. Since the next permutations, starting with the vertex
numbers 2, 3, ..., VertexCount, respectively, are already
checked for previous generations, they are not considered.
These are identical cycles where the starting vertex is
different from 1.

This iterative algorithm initially generates a Hamiltonian
cycle, respectively: 1, 2, ..., VertexCount, 1, and calculates
its length. The first order of the vertices is used as the
initialization permutation from which all the next ones are
generated. In the recursive algorithm, this initial permutation
occurs when the recursive procedure is called
(VertexCount+1) times to form this first cycle. Therefore,
chronometers that report the execution time of the two
algorithms are started before the initialization process. A
variant of the procedure for starting the two algorithms is
shown in Fig. 4.

01 procedure Run;
02 begin
03 │ SetLength(MarkedVertices, VCount+1);
04 │ SetLength(MinimumHamiltonianCycle, VCount+1);
05 │ SetLength(HamiltonianCycle, VCount+1);
06 │ MinimumCycleLength := MaxInt;
07 │ CycleLength := 0;
08 │ HamiltonianCycle[0] := 1;
09 │ MinimumHamiltonianCycle[0] := 1;
10 │ CounterCycles := 0;
11 │ CounterBetterCycles := 0;
12 │ BestCycleIndex := 0;
13 │ Counter := 0;
14 │ StartTickCount := GetTickCount();
15 │ HamiltonianCycleByRecursion(1,1,VCount);
16 │ // HamiltonianCycleByIteration(VCount);
17 │ FinishTickCount := GetTickCount();
18 │ ShowHamiltonianCycleInformation;
19 end;

Fig. 4 Source code of the run method

Both algorithms can be run by calling the Run procedure.

Memory allocation for the dynamic arrays where the
required information will be stored is performed on lines 3–5.
The initialization values of the global variables are set on
lines 6–12. Since a similar initialization is performed before
the iteration algorithm is executed, the source code of these
lines may not be executed. Before the iterative algorithm can

be started, lines 6–12 and 15 may be commenting out and
line 16 to be uncommenting. The runtime of both algorithms
is counted using the GetTickCount function. The result after
performing this function is the elapsed time (in milliseconds)
from the start of the operating system (at the current work
session). The first call to the function is before the start of
both algorithms, and the second call is after the completion
of their execution. To count the elapsed time, the first value
is subtracted from the second value. Typically, the operating
systems use a multi-tasking mode. This means that more
work is simulated at the same time. During the operation of
the operating system, different processes are executed. In
order to accurately measure the runtime of both algorithms,
they are run 10 times. Then an average runtime is calculated.

The presentation of algorithms with pseudo-codes or
block diagrams does not guarantee that their implementation
will be correct. In order to verify the results obtained, it is
necessary to implement the presented algorithms correctly.
Therefore, the complete source codes of both algorithms are
presented in this paper. In this way, it is easier (and safer) for
both algorithms to be implemented in another programming
language. Also, by compiling into a suitable development
environment, these algorithms can be executed immediately.

III. RESULTS AND DISCUSSION

The aim of the experiments is to determine the behavior
of both algorithms with the same input data. For this reason
it is necessary to make a comparative analysis between these
algorithms in order to determine for what graphs (with how
many vertices and edges) they will be able to generate
optimal solutions (in terms of the length of the Hamiltonian
cycles) but for a reasonable time.

A. Methodology of the experiment

Six complete and weighted graphs were created for the
experiments, respectively with 10÷15 vertices. Each graph
(except K10) was created by adding a new vertex (n) and n-1
edges. These edges connect the new vertex with all other
vertices. K15 graph is presented in Fig. 5.

Fig. 5 K15 graph (with 15 vertices and 105 edges)

1688

The coordinates of the vertices are shown in Table I.
These are the screen coordinates of the centers of the
vertices. The abbreviations of the columns in Table I are as
follows: V – vertex number; X – the x coordinate of the
vertex, and Y – the y coordinate of the vertex.

TABLE I
THE COORDINATES OF THE VERTICES OF THE K15 GRAPH

V X Y V X Y V X Y
1 100 143 6 196 23 11 210 331

2 41 31 7 96 325 12 85 81

3 44 261 8 300 232 13 324 78

4 246 139 9 255 73 14 320 301

5 249 275 10 141 265 15 165 80

Both algorithms use an adjacency matrix –

A[VertexCount] [VertexCount]. When there is an edge (u, v)
between two vertices, for example u and v, then A[u][v] > 0,
or, otherwise, A[u][v] = 0. Each element A[u][v] > 0 is equal
to the length of the edge (u, v). The adjacency matrix of the
K15 graph is shown in Table II.

TABLE II
THE ADJACENCY MATRIX OF K15 GRAPH

V\V 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 127 131 146 199 154 182 219 170 129 218 64 233 271 91

2 127 0 230 232 321 155 299 328 218 254 344 67 287 388 133

3 131 230 0 236 205 282 82 258 283 97 180 185 334 279 218

4 146 232 236 0 136 126 239 108 67 164 195 171 99 178 100

5 199 321 205 136 0 258 161 67 202 108 68 254 211 76 212

6 154 155 282 126 258 0 318 233 77 248 308 125 139 304 65

7 182 299 82 239 161 318 0 224 298 75 114 244 336 225 255

8 219 328 258 108 67 233 224 0 165 162 134 263 156 72 203

9 170 218 283 67 202 77 298 165 0 223 262 170 69 237 90

10 129 254 97 164 108 248 75 162 223 0 95 192 262 183 187

11 218 344 180 195 68 308 114 134 262 95 0 280 277 114 255

12 64 67 185 171 254 125 244 263 170 192 280 0 239 322 80

13 233 287 334 99 211 139 336 156 69 262 277 239 0 223 159

14 271 388 279 178 76 304 225 72 237 183 114 322 223 0 270

15 91 133 218 100 212 65 255 203 90 187 255 80 159 270 0

All elements in the matrix (except those in the main

diagonal) have a value other than 0 because the graphs under
consideration are complete. Also, the adjacency matrix is
symmetrical (relative to its main diagonal) in these graphs.
The element values are calculated from the coordinates of
each pair of vertices and are equal to the Euclidean distance
between these vertices.

B. Experimental Conditions

The experimental conditions are the following: PC with
64–bit Operating System Windows 10 Pro, x64–based
processor and hardware configuration: Processor: Intel (R)
Core (TM) i7–4712MQ CPU at 2.30 GHz; RAM: 8GB
DDR3.

C. Experimental results

In Table III, the main properties of the studied graphs are
shown. These properties are as follows: the graph

abbreviation – G, the number of the vertices – |V|, the
number of the edges – |E|, the number of the Hamiltonian
cycles – (|V|-1)!/2, and the number of the cycles that are to
be verified – (|V|-1)!.

TABLE III
THE MAIN PROPERTIES OF THE GRAPHS

G |V| |E| (|V|-1)!/2 (|V|-1)!
K10 10 45 181 440 362 880
K11 11 55 1 814 400 3 628 800
K12 12 66 19 958 400 39 916 800
K13 13 78 239 500 800 479 001 600
K14 14 91 3 113 510 400 6 227 020 800
K15 15 105 43 589 145 600 87 178 291 200

The minimum Hamiltonian cycles that were generated by

both algorithms for all studied graphs are shown in Fig. 6 ÷
Fig. 11.

Fig. 6 K10 minimal Hamiltonian cycle

Fig. 7 K11 minimal Hamiltonian cycle

1689

Fig. 8 K12 minimal Hamiltonian cycle

Fig. 9 K13 minimal Hamiltonian cycle

Fig. 10 K14 minimal Hamiltonian cycle

Fig. 11 K15 minimal Hamiltonian cycle

The results of the recursion based algorithm for input data

K10 – K15 are shown in Table IV.

TABLE IV
THE RESULTS OF THE RECURSION BASED ALGORITHM

G Better
Cycles Recursive Calls Time (ms) Cycle

Length
K10 23 8 877 691 219 997

K11 34 98 641 011 2 281 1 052

K12 37 1 193 556 233 27 938 1 056

K13 42 15 624 736 141 356 672 1 157

K14 47 220 048 367 319 5 215 391 1 238

K15 52 3 312 775 065 600 79 940 943 1 281

Table V shows the results from the iterative based

algorithm for input data K10 – K15.

TABLE V
THE RESULTS OF THE ITERATIVE BASED ALGORITHM

G Better
Cycles

Iterations by
Loops

Time (ms) Cycle
Length

K10 23 3 025 967 31 997

K11 34 30 259 771 250 1 052

K12 37 332 857 608 2 797 1 056

K13 42 3 994 291 441 35 031 1 157

K14 47 51 925 788 909 467 781 1 238

K15 52 726 961 044 923 6 762 694 1 281

Table IV and Table V show the results of both algorithms.

The columns are as follows: "G" – the abbreviation of the
graph; "Better Cycles" – the number of the better cycles
found in the search process; "Recursive Calls" – the number
of recursive calls; "Iterations by Loops" – the number of
iterations made by the iterative algorithm; "Time (ms)" – the
execution time (in milliseconds) of the corresponding
algorithm; "Cycle Length" – the length of the minimal
Hamiltonian cycle (in pixels).

The results show that the found minimal Hamiltonian
cycles are the same for both algorithms. This provides

1690

grounds to analyze the values in the column "Time (ms)"
that shows the execution time of both algorithms.

The influence of the number of vertices on the execution
time for both algorithms is shown in Fig. 12.

Fig. 12 Influence of the number of vertices (the x-axis) on the execution
time (the y-axis in milliseconds) for both algorithms (for all input data)

Fig. 12 shows that the execution time of both algorithms

increases exponentially with the increase of the number of
the vertices. Additionally, the execution time of the recursive
algorithm is significantly longer than the iterative algorithm
(for the same input data).

Fig. 13 shows a chart of the data versus the execution
time for both algorithms (the y-axis is transformed into a
logarithmic one with base 2).

Fig. 13 Influence of the number of vertices (the x-axis) on the execution
time (the y-axis in a logarithmic scale with base 2) for both algorithms

After transforming the y scale into a logarithmic one (with

base 2), it can be seen that the delay of the recursive
algorithm compared to that of the iterative one is within the
range of 23 to 24 times (in milliseconds). This ratio is kept
almost constant for all input data sets. The results show that
under the same conditions (identical input data and
operations), the iterative variant of this process compared to
the recursive one is executed several times faster. This gives
some idea of the nature of the computation process when it
is modeled recursively or iteratively. The extra time for
executing the recursive algorithm is due to the fact that
additional computer instructions are executed at each
recursive call. These instructions allocate and release

additional memory for the new copies of all local variables
(which are used by the recursive function). In the iterative
algorithm, this process is executed by a counter and a
transition instruction (to organize a cyclic process). This
peculiarity in the realization of the two processes leads to the
great difference in their execution time.

IV. CONCLUSION

In this paper, a comparative analysis between two
algorithms for generating permutations but modified to find
a minimal Hamiltonian cycle in complete undirected
weighted graph was made. Both algorithms (respectively
recursive and iterative) generate all permutations of n
numbers, where n equals to the number of vertices in a given
graph. For each generated permutation the Hamiltonian
cycle length is calculated. This cycle is obtained after
passing through each vertex of a graph in a sequence
determined by the order of the numbers in the current
permutation. The results obtained from both algorithms are
identical both for the generated permutations and for the
formed Hamiltonian cycles with minimum length. The
difference between the two algorithms is the time for their
execution. It was experimentally found out that the recursive
algorithm is executed several times more slowly (in the
order of 23 to 24 times) than the iterative algorithm.

In this study, TSP results are used to analyze the
performance of both algorithms. Moreover, these results
reveal that the solution to the TSP with exact methods
(although it is possible) is not applicable for graphs with
many vertices. There are approaches, such as branch-and-
bound and others, that can reduce the number of the
Hamiltonian cycles that are formed. However, for complete
undirected weighted graphs with more than 50 vertices these
approaches are not applicable. Therefore, for TSP with large
complete graphs (e.g., with thousands of vertices)
approximate methods should be used. Taking into
consideration the results obtained in this study, one can
suggest that if these methods can be implemented
algorithmically by an iterative process, then, it must be
chosen leaving aside the recursive one.

ACKNOWLEDGMENT

I would like to express my sincere gratitude to Dr.
Radoslava Kraleva and Dr. Dafina Kostadinova from the
South-West University in Bulgaria, for their suggestions and
constructive criticism regarding the paper.

REFERENCES
[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,

Introduction to Algorithms, 3rd ed., Cambridge, Massachusetts, USA:
The MIT Press, 2009.

[2] R. Sedgewick and K. Wayne, Algorithms, 4th ed., New Jersey, USA:
Person Education, Inc., 2011.

[3] R. McCauley, B. Hanks, S. Fitzgerald, and L. Murphy, “Recursion vs.
iteration: An empirical study of comprehension revisited,” in Proc.
SIGCSE’15, 2015, pp. 350-355.

[4] S. Bhaskar, “A Difference in Complexity Between Recursion and
Tail Recursion,” Theory of Computing Systems, vol. 60(2), pp. 299–
313, Feb. 2017.

[5] Y. A. Liu and S. D. Stoller, “From recursion to iteration: What are
the optimizations?,” in Proc. ACM SIGPLAN’00, 2000, paper 57078,
p. 73.

1691

[6] P. G. Harrison and H. Khoshnevisan, “A new approach to recursion
removal,” Theoretical Computer Science, vol. 93(1), pp. 91–113, Feb.
1992.

[7] K. Sundararajah, L. Sakka, and M. Kulkarni, “Locality
transformations for nested recursive iteration spaces,” in Proc.
ASPLOS’17, 2017, paper 127193, p. 281.

[8] D. Insa and J. Silva, “Automatic transformation of iterative loops into
recursive methods,” Information and Software Technology, vol. 58,
pp. 95–109, Feb. 2015.

[9] A. Filinski, “Recursion from iteration,” LISP and Symbolic
Computation, vol. 7(1), pp. 11–37, Jan. 1994.

[10] J. Ding, “Data filtering based recursive and iterative least squares
algorithms for parameter estimation of multi-input output systems,”
Algorithms, vol. 9(3), 49, Sep. 2016.

[11] M. Kazemi and M. M.Arefi, “A fast iterative recursive least squares
algorithm for Wiener model identification of highly nonlinear
systems,” ISA Transactions, vol. 67, pp. 382–388, Mar. 2017.

[12] Z. He and D. Ding, “Efficient recursive-iterative solution for EM
scattering problems,” Electronics Letters, vol. 51(4), pp. 306–308,
Feb. 2015.

[13] R. J. Wilson, Introduction to Graph Theory, 5th ed., New Jersey,
USA: Prentice Hall, 2010.

[14] V. E. Alekseev, R. Boliac, D. V. Korobitsyn, and V. V. Lozin, “NP-
hard graph problems and boundary classes of graphs,” Theoretical
Computer Science, vol. 389(1), pp. 219–236, Dec. 2007.

[15] D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook, The
Traveling Salesman Problem: A Computational Study, 2nd ed.,
Princeton, USA: Princeton University Press, 2007.

[16] G. Gutin and A.P. Punnen, The Traveling Salesman Problem and Its
Variations (Combinatorial Optimization), 2nd ed., New York City,
USA: Springer, 2007.

[17] M. Battarra, A. A. Pessoa, A. Subramanian, and E. Uchoa, “Exact
algorithms for the traveling salesman problem with draft limits,”
European Journal of Operational Research, vol. 235(1), pp. 115–128,
May. 2014.

[18] G. Benoit and S. Boyd, “Finding the exact integrality gap for small
traveling salesman problems,” Mathematics of Operations Research,
vol. 33(4), pp. 921–931, Nov. 2008.

[19] J. Kinable, B. Smeulders, E. Delcour, F. C. R. Spieksma, “Exact
algorithms for the Equitable Traveling Salesman Problem,”
European Journal of Operational Research, vol. 261(2), pp. 1339–
1351, Sep. 2017.

[20] Z. A. Othman, N. H. Al-Dhwai, A. Srour, and W. Diyi, “Water Flow-
Like Algorithm with Simulated Annealing for Travelling Salesman
Problems,” International Journal on Advanced Science, Engineering
and Information Technology, vol. 7(2), pp. 669–675, Jul. 2017.

[21] A. Khanra, M. K Maiti, and M. Maiti, “A hybrid heuristic algorithm
for single and multi-objective imprecise traveling salesman
problems,” Journal of Intelligent and Fuzzy Systems, vol. 30(4), pp.
1987–2001, Mar. 2016.

[22] M. Mestria, “A hybrid heuristic algorithm for the clustered traveling
salesman problem,” Pesquisa Operacional, vol. 36(1), pp. 113–132,
Jan-Apr. 2016.

[23] Y. Wang, “A genetic algorithm with the mixed heuristics for
traveling salesman problem,” International Journal of Computational
Intelligence and Applications, vol. 14(1), pp. 33–46, Mar. 2015.

[24] V. Vladimirov, F. Sapundzhi, R. Kraleva, and V. Kralev, “Modified
Genetic Algorithm to Traveling Salesman Problem for Large Input
Datasets,” Biomath Communications, vol. 3(1), p. 71, Jun. 2016.

1692

