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Abstract— This paper presents the results of a comparative analysis between a recursive and an iterative algorithm when generating
permutation. A number of studies discussing the problem and some methods dealing with its solution are analyzed. Recursion and
iteration are approaches used in computer programs to implement different algorithms. An iterative approach is the repeated
execution of the same source code until a certain end condition is met. On the other hand, a recursive approach uses a recursive
function that repeatedly calls itself. This function contains a source code that must be executed repeatedly. Both algorithms presented
in this paper can be used to generate permutations of an n element set. The algorithms are modified so that they can be used to solve
the Travelling Salesman Problem (TSP) with a small number of vertices. Several publications that discuss the TSP and some
approaches to its solution are also presented. The methodology and the conditions for conducting the experiments are described in
details. The obtained results have been analyzed; they show that for the same conditions the iterative algorithm works from‘ao22*
times faster than the recursive algorithm in all the tested input data. Several approaches to optimize the two algorithms in terms of
the number of permutations tested when searching a minimal Hamiltonian cycle are presented.
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problem should be taken into account. In [5] a method based
[. INTRODUCTION on incrementalization for transforming the recursion in

The most important components of a computer program'ter""t'qn IS proposeq. The _results show that in most
are the algorithms used. This defines the amount of memoryEXPeriments the iterative algorithms used more memory. On

used (necessary for storing data structures) as well as théhe other hand, these algorithms were performed faster. A

programme's performance (i.e., its effectiveness). ThereforeMethod for recursion removal is proposed in [6]. Different

when developing computer algorithms, it is important to use methods for optimizing memory usage when using recursion
such methods whereby the memory used is as small ad'® offered in [7]. In addition, similar situations in yvh|ch_
possible and the time to perform computational processes igested cycles are used ha}ve l_:)een_taken Into _conS|der§1t|on.
as short as possible. Research into the development of\" approz?\ch to transfor_mlng |terat|ve_cycles In recursive
computer algorithms began many years ago. Exhaustive an&nethodsh IS fpresente_d in [8]. In_ ear:ler _shour%es, dS|m|Iar
systematized research in this field are presented in [1] ang@PProaches for creating ? recursive adgorg mThase_d on afn
[2]. When creating an algorithm to solve a practical problem, 't€rative grocessf are asfo presente [h]. q e ldea o
first, it is necessary to select a suitable data structure. Thes utomate tlrans ormmg_ 0 rfecursn(/je methods In iterative
data will be stored and processed during the computation'©®PS May also be a subject of a study.

process. The approach that will be chosen for modeling and Iterat|ve and recursive _|mplemen.tat|ons Of. various
solving the problem will determine how the computation aIgor!thms are widely used in many fields of science _and
PrOCess runs, e.g., recursive or iterative practice, such as those presented in [10]-[12]. An intensively

A study reveals the preferences of beginner programmerg’nvestigated field of study is the graph theory. This is a part

when developing computer algorithms in terms of whether to gf d||screte mathenr?atli:s, ‘ho'CZ hads undgrgr?ne gLeat
be recursive or iterative [3]. The results show that the evelopment over the last few decades and has a huge
preferences in recent years have been in favor of recursivé)racucal application. In many cases, the de_scrlptlon, analysis,
algorithms. These algorithms are more frequently preferredand research of real systems is accomplished successfully

than the iterative ones. Another study presented in [4] showsand C(;m?aratively simply with é]raghs. AEgrar?h gontains two
that when selecting a relevant approach, the specificity of theets of elements - vertices and edges. Each edge connects a
pair of vertices. The ordered pair (V, E) is called an
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undirected graph (G), where: V =4w,, ..., W} is a set of [16] different variants of it are presented. Due to the great
vertices and E = {g e, ..., g} is a set of edges. The V and practical application of this problem, many algorithms have
E sets are finite. Each elemenflkE, (k =1, 2, .., m) is an  been created for it. There are two main approaches on the
ordered pair (v v), v, v; OV, 1<, j < n. When the pair of basis of which all algorithms for solving the TSP are
vertices (v v;) is ordered, the graph is called directed, and developed. The first approach is based on the creation of
the edges are called arcs. If a function f(i, j) is given, exact algorithms. These algorithms always find the exact
comparing an integer value to each edge (i) J, f(i, j) = solution, but a lot of computing time is required for their
f(j, i), the graph is called undirected weighted. If a sequence€xecution. It is recommended that these algorithms be used
of vertices v, Vs, ..., \k is given, such that for eachi=1, 2, ..., ?n small input datz_;t (in this case, a small number of vertices
k-1 is satisfied (v vi.;) O E, then this sequence is called a N @ graph, for instance, up to 20). Examples of such
path in a directed graph. In the case of an undirected graph@lgorithms are presented in [17]-[19]. The second approach
the ordinance of elements in the pair W) does not matter. 1S based on the creation of approximate or heuristic
The path where the start and final vertex coincide is called a@lgorithms. These algorithms find solutions that are close to
cycle. A cycle that passes through each edge exactly once i@Ptimal or optimal, but this cannot be proven. Most of the
called Eulerian, while a cycle that passes through eachdeveloped algorithms fpr solving TSP are in this category.
vertex exactly once is called Hamiltonian. A graph is called Examples of such algorithms are presented in [20]-[24].
complete when for each pair of vertices there is an edge that
connects them, i.e., an edge thanhisdentally with them. In Il. MATERIAL AND METHOD
[13] more information related to the graphs theory is given:  This paper presents the results from an experimental study
the main ways of presenting these structures in computeiof two algorithms for generating permutations, respectively
programs and a wide variety of algorithms to solve particular recursive and iterative [2]. Both algorithms have been
problems. modified to be used to search for an exact TSP solution. The

The graphs provide opportunities to formulate and solve analysis of the results aims at determining the way the
complex practical problems effectively in a natural way and algorithmic implementation influences on the computation
in an accessible language. Numerous problems in differentorocess. For this purpose, both algorithms need to generate
fields, both in science and in practice (for example, transportthe same solutions. The main metrics that will be analyzed
problems, resource allocation problems, search for optimalare the quality of the solutions found (minimum length of the
routes and the location of service centers, problems relatedHamiltonian cycle) and the execution time (the time required
to optimal schedules and timetables and many others), cano check all possible Hamiltonian cycles).
be modeled with graphs and solved with appropriate Let a set A = {g @&, ..., @ with n elements be given.
algorithms [13]. In many cases these problems are linearEach sequence (or order) of these elements (without
which means that they are solved with linear optimization repetition) is called permutation. The set of all possible
methods. For some problems with large input data, it is permutations is denoted with, Rnd its power is marked
necessary to look for efficient algorithms (usually with |R), which is equal to n!. The following recursive
approximated) so that they can be solved for a reasonablgelationship can be used to generate permutations: after
time. Solving these problems without a computer and aplacing a particular element in position k, the sequential
suitable application would be very difficult except for some generation of all possible permutations of the remaining n-k
cases in which the input data are very small. But even with aglements follows. After generating each permutation, the
computer and appropriate application software, solving somelength of a Hamiltonian cycle formed by the sequence of the
problems would be impossible, or theoretically, it would vertices defined in the current permutation will be calculated.
take a long time, for example years, to find an exact solution When executing the algorithms, some global arrays and
[14]. Such are all NP-hard problems in which a solution variables will be used. They need to be pre-declared, as
cannot be found in polynomial time. The methods based onshown in Fig. 1 (in Delphi language).
the "backtracking" approach yield good ressults but only for
problems with small input data. For instance, in a complete®1 | AdjacencyMatrix: array of array of Integer;

. . . . _ Mar kedVertices: array of Bool ean

undirected graph with 25 vertices and 25 * (25-1) / 2 = 300 o3 | pani |t oni anCycl e: array of Integer:
edges, the number of all Hamiltonian cycles (if necessary t004 | M ni nuntHani | t oni anCycl e: array of Integer;
be checked) is very large, respectively: (25-1)! / 2 = 310 22405 | Cyclelength: Integer;
200 866 620 000 000 000. With the capabilities of modern 98 “Of'on' ;m”?\/f' fgjhgt h: Integer;
computers, this approach, though possible, is practicallygg OoﬂﬂtZ{'Cyc{‘esg,m 64:
inapplicable. Therefore, the interest in developing new or 09 | CounterBetterCycles: |nt64;
modifying the existing heuristic or approximate algorithms 10 | BestCyclel ndex: |nt64;
(not only for graphs) is explicable. This helps to find a E Efﬁur;:TfléEOogﬂgtcac;%Pﬁgl
solution to some "hard" problems for a reasonable time. Fig. 1 Source code of the global declarations

The number of practical problems that can be modeled by
graphs is big. A problem to find a minimal Hamiltonian A recursive algorithm used to search for a minimal
cycle in a complete undirected weighted graph will be Hamiltonian cycle is presented in Fig. 2. This algorithm is

selected for the present study. This is a combinatorialpased on the generation of permutations and uses the
optimization problem that has been researched very actively"backtracking" method.

in recent years. A detailed description of the Travelling
Salesman Problem (TSP) is presented in [15]. Moreover, in
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01 procedure Hami | toni anCycl eByRecursi on 01 procedure Hamiltoni anCycl eBylteration
02 | (lteration, Position, VertexCount: Integer); 02 | (VertexCount: |nteger);
03 var 03 var
04 | J: Integer; 04 Left Pos, R ghtPos, Tenp: |nteger;
05 begin 05 Ter mi nat ed, NewPer nut ati on: Bool ean;
06 I nc(Counter); 06 begin
07 if ((Iteration = 1) and (Position > 1)) then 07 for Tenmp := 0 to VertexCount-1 do
08 begi n 08 | HaniltonianCycle[Tenp] := Tenp + 1;
09 if (Position = VertexCount+1) then 09 Hami | t oni anCycl e[ VertexCount] := 1;
10 begi n 10 CounterCycles := 1;
11 I nc( Count er Cycl es) ; 11 M ni munCycl eLength := 0;
12 Cycl eLength := 0; 12 for Temp := 0 to VertexCount-1 do
13 for J :=0 to VertexCount-1 do 13 | M ni munCycl eLength : = M ni nunCycl eLength +
14 Cycl eLength := CycleLength + 14 Adj acencyMat ri x[ Ham | t oni anCycl e[ Tenp] ]
15 Adj acencyMat ri x[ Hami | t oni anCycl e[ J]] 15 [ Hami | t oni anCycl e[ Tenp+1]1];
16 [ Hami | toni anCycl e[ J+1]]; 16 Best Cycl el ndex : = 1;
17 if (MnimnCycleLength > Cycl eLength) then 17 Count erBetterCycles : = 1;
18 begi n 18 for Temp := 0 to VertexCount do
19 Best Cycl el ndex : = CounterCycl es; 19 M ni munHami | t oni anCycl e[ Tenp] : =
20 I nc(Count er Bett er Cycl es) ; 20 Hami | t oni anCycl e[ Tenp] ;
21 M ni munCycl eLength : = Cycl eLengt h; 21 Term nated : = Fal se;
22 for J :=1 to VertexCount do 22 repeat
23 | M ni nunHami | t oni anCycl e[J] : = 23 I nc(Counter);
24 | Hami | t oni anCycl e[ J] ; 24 NewPer nut ati on : = Fal se;
25 end; 25 Left Pos : = VertexCount;
26 end 26 while (LeftPos > 0) do
27 Exit; 27 begi n
28 end; 28 I nc(Counter); Dec(LeftPos);
29 if (MarkedVertices[lteration]=True) then Exit; 29 Ri ght Pos : = VertexCount;
30 Mar kedVertices[lteration] := True; 30 while (R ghtPos > LeftPos) do
31 for J := 1 to VertexCount do 31 begi n
32 begi n 32 I nc(Counter); Dec(Ri ghtPos);
33 | if ((AdjacencyMatrix[Iteration][J] > 0) and 33 i f (Ham |tonianCycl e[ LeftPos] <
34 | (J <> Iteration)) then 34 | HaniltonianCycl e[ R ght Pos]) then
35 begi n 35 begi n
36 | | HaniltonianCycle[Position] := J; 36 Tenp : = Haniltoni anCycl e[ Left Pos];
37 Hami | t oni anCycl eByRecur si on 37 Hami | t oni anCycl e[ Left Pos] : =
38 ‘ (J, Position+l, VertexCount); 38 Hami | t oni anCycl e[ Ri ght Pos] ;
39 end; 39 Hami | t oni anCycl e[ Ri ght Pos] : = Tenp;
40 end; 40 I nc(LeftPos);
41 Mar kedVertices[lteration] := False; 41 Ri ght Pos : = VertexCount - 1;
42 end; 42 while (LeftPos < Ri ght Pos) do
Fig. 2 Source code of the recursion based algorithm 43 begin
44 | I'nc(Counter);
; ; PP ! 45 Tenp : = Ham | t oni anCycl e[ Lef t Pos] ;
This algorithm uses a modification of the Depth-first 46 Hani | t oni anCycl e[ Lef t Pos] : =

search (DFS) method. The HamiltonianCycleByRecursion 47
procedure is called recursively (lines 37 and 38) until all 48
Hamiltonian paths starting from a first vertex and passing 49
through all other vertices are generated. Finally, the edgegl
that connects the end with the first vertex is added to thiss2
path to form a Hamiltonian cycle. This is done when the 53
condition of line 9 is true. The length of the new 2‘5"
Hamiltonian cycle is calculated on lines 13-16. Then, gq
whether this cycle is shorter than the shortest one that has7
been found so far (line 17 checked. If this proves true, the 58
current cycle is stored as the shortest one (lines 19-24). Thég
complexity of the algorithm is exponential because it g1
generates all (VertexCount-1)! Hamiltonian cycles 62
(including those in the opposite direction). 63

Another algorithm used to search for a minimal gg
Hamiltonian cycle is presented in Fig. 3. This algorithm, gg
however, is based on the generation of permutations using af7
iterative approach. gg

This algorithm generates iteratively all permutations of -
(VertexCount-1) elements — formed by the vertex indexes, 71
respectively, 2, 3, ..., VertexCount. After generating the next 72
Hamiltonian path (composed of vertices 1, 2, ..., 3
VertexCount), the edge (VertexCount, 1) is added to it. ;5
Since the explored graphs are complete, such an edges

certainly exists.
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Hami | t oni anCycl e[ Ri ght Pos] : = Tenp;
I nc(Left Pos);

‘ Hani | t oni anCycl e[ Ri ght Pos] ;
‘ Dec( Ri ght Pos) ;

end;
I nc(Count er Cycl es) ;
Cycl eLength : = 0;

for Temp := 0 to VertexCount-1 do
Cycl eLength : = Cycl eLength +
Adj acencyMatri x

[ Hami I t oni anCycl e[ Tenp] ]

[ Hami | t oni anCycl e[ Tenp+1] ] ;
i f (M ni munCycl eLengt h>Cycl eLengt h) t hen
begi n
Best Cycl el ndex : = Count er Cycl es;
I nc(Count er Better Cycl es);
M ni munCycl eLength : = Cycl eLengt h;
for Temp := 1 to VertexCount do
| M ni munHani | t oni anCycl e[ Tenp] : =
\ Hani | t oni anCycl e[ Tenp] ;
end;
NewPer nut at i on
end;
end;
if ((LeftPos=1) and (R ghtPos=1)) then
begin Term nated : = True; Break; end;
i f NewPermutation then Break;
end;
unti |
end;

Fig. 3 Source code of the iterative based algorithm

.= True; Break;

(Termi nat ed);



In lines 7-9, an initialization Hamiltonian cycle is be started, lines 6-12 and 15 may be commenting out and
generated. This cycle contains the following sequence ofline 16 to be uncommenting. The runtime of both algorithms
vertices: 1, 2, ..., VertexCount, 1. In lines 12-15, the lengthis counted using the GetTickCount function. The result after
of the generated Hamiltonian cycle is calculated using theperforming this function is the elapsed time (in milliseconds)
adjacency matrix. The lengths of all edges are stored in thisfrom the start of the operating system (at the current work
matrix. At this point only this cycle is generated, this is why session). The first call to the function is before the start of
it is stored as a minimum (lines 18-20). both algorithms, and the second call is after the completion

The iterative generation of permutations is performed by of their execution. To count the elapsed time, the first value
three nested loopsvhile — do). These loops begin at lines is subtracted from the second value. Typically, the operating
26, 30 and 42, respectively. From the right to the left, eachsystems use a multi-tasking mode. This means that more
subsequent number of the current series is permutatedvork is simulated at the same time. During the operation of
sequentially. When this is done (line 51), a new permutationthe operating system, different processes are executed. In
is already generated. Based on this permutation, the nexbrder to accurately measure the runtime of both algorithms,
Hamiltonian cycle is formed and its length is calculated they are run 10 times. Then an average runtime is calculated.
(lines 54-58). If the length of the last generated Hamiltonian The presentation of algorithms with pseudo-codes or
cycle is shorter than the smallest length found so far, theblock diagrams does not guarantee that their implementation
length is stored as the smallest one (line 63) and thewill be correct. In order to verify the results obtained, it is
corresponding cycle is stored as the shortest one (lines 64-necessary to implement the presented algorithms correctly.
66). The generation process is repeated until the left andTherefore, the complete source codes of both algorithms are
right positions of the indexes of the elements become equapresented in this paper. In this way, it is easier (and safer) for
to 1. Since the next permutations, starting with the vertexboth algorithms to be implemented in another programming
numbers 2, 3, ..., VertexCount, respectively, are alreadylanguage. Also, by compiling into a suitable development
checked for previous generations, they are not consideredenvironment, these algorithms can be executed immediately.
These are identical cycles where the starting vertex is
different from 1. [ll. RESULTS ANDDISCUSSION

This iterative algorithm initially generates a Hamiltonian The aim of the experiments is to determine the behavior
pyclle, reﬁpgrcrtllvefly: L zd' \f/eLtexCou_nt, 1’. and cdalculatﬁsof both algorithms with the same input data. For this reason
Its length. The first order of the vertices is used as they ;s necessary to make a comparative analysis between these

|n|t|aI|zat|é)n per:mutat|on frorln W.h'r::h au_the_ F‘ﬁXt ones are algorithms in order to determine for what graphs (with how
generated. In the recursive algorithm, this initial permutation many vertices and edges) they will be able to generate

occurs  when t_he recursive pr_ocedure is called optimal solutions (in terms of the length of the Hamiltonian
(VertexCount+1) times to form this first cycle. Therefore, cycles) but for a reasonable time

chronometers that report the execution time of the two
algorithms are started before the initialization process. A A. Methodology of the experiment

variant of the procedure for starting the two algorithms is gy complete and weighted graphs were created for the

shown in Fig. 4. experiments, respectively with 405 vertices. Each graph
01 procedure Run; (except Kg) was created by adding a new vertex (.n) and n-1
02 begin edges. These edges connect the new vertex with all other

03 | Setlength(MarkedVertices, VCount+1); vertices. Ks graph is presented in Fig. 5.
04 Set Lengt h( M ni mumHani | t oni anCycl e, VCount +1);
05 Set Lengt h( Hani | t oni anCycl e, VCount +1);

06 M ni munCycl eLength : = Maxlnt;

07 Cycl eLength := 0;

08 Ham | t oni anCycl e[0] := 1;

09 M ni nunHami | t oni anCycl e[ 0] := 1;

10 CounterCycles := 0;

11 Count erBetterCycles := 0;

12 Best Cycl el ndex : = 0;

13 Counter := 0,

14 Start Ti ckCount := GetTi ckCount();

15 Hami | t oni anCycl eByRecursi on( 1, 1, VCount) ;

16 /1 Ham | toni anCycl eBylteration(VCount);

17 Fi ni shTi ckCount := Get Ti ckCount ();

18 ShowHani | t oni anCycl el nf or mati on;

19 end;

Fig. 4 Source code of the run method

Both algorithms can be run by calling the Run procedure.
Memory allocation for the dynamic arrays where the
required information will be stored is performed on lines 3-5.
The initialization values of the global variables are set on
lines 6-12. Since a similar initialization is performed before
the iteration algorithm is executed, the source code of these
lines may not be executed. Before the iterative algorithm can Fig. 5 Ksgraph (with 15 vertices and 105 edges)
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The coordinates of the vertices are shown in Table I. abbreviation — G, the number of the vertices — |V|, the
These are the screen coordinates of the centers of th@umber of the edges — |E|, the number of the Hamiltonian
vertices. The abbreviations of the columns in Table | are ascycles — (|V|-1)!//2, and the number of the cycles that are to
follows: V — vertex number; X — the x coordinate of the be verified — (|V|-1)!.
vertex, and Y — the y coordinate of the vertex.

TABLE Il
TABLE | THE MAIN PROPERTIES OF THEGRAPHS
THE COORDINATES OF THEVERTICES OF THEK 15 GRAPH G V] IE| (VD)2 (VD!

\% X Y \ X Y \ X Y Kig 10 45 181 440 362 88(

1 100 | 143 | 6 196 | 23 11 210 | 331 K11 11 55 1814 400 3628 800

2 41 31 7 96 325 | 12 85 81 Kz 12 66 19 958 400 39 916 80D

3 44 261 | 8 300 | 232 | 13 324 | 78 K1z 13 78 239 500 80( 479 001 600
4 246 | 139 | 9 255 | 73 14 320 | 301 K14 14 91 3113510 400 6 227 020 8D0
5 249 | 275 10 141 | 265 | 15 165 | 80 Kis 15 105 43 589 145 600 87 178 291 200

Both algorithms use an adjacency matrix —  The minimum Hamiltonian cycles that were generated by

AlVertexCount] [VertexCount]. When there is an edge (u, V) both algorithms for all studied graphs are shown in Fig. 6
between two vertices, for example u and v, then A[u][v] > 0, Fig. 11.

or, otherwise, A[u][v] = 0. Each element A[u][v] > 0 is equal
to the length of the edge (u, v). The adjacency matrix of the
K15 graph is shown in Table II.

TABLE Il
THE ADJACENCY MATRIX OF K15 GRAPH

VIV 12| 3| 4/ 5| 6| 7/ 8 9 1p11|12|13|14|15
0 [127131]146/199|154(182|219/170/129|218| 64 |233|271| 91
127| 0 |230232/321|155|299|328|218|254|344| 67 |287|388|133
131|230] 0 [236205|282| 82|258/283| 97 |180{185|334(279/218
146(232/236| 0 |136126/239/108| 67 |164{195{171| 99 |178/100]
199/321|205{136| 0 |258161| 67 {202/108| 68 [254/211| 76 |212
154|155|282/126/258 0 |318233| 77 |248/308|125/139|304 65
182|299 82 [239)161|318| 0 |224298| 75 |114{244)336|225|255]
219(328)258/108| 67 |233|224| 0 |165162134|263|156| 72 [203
170/218/283| 67 |202| 77 |298|165| 0 |223262|170| 69 [237| 90
129|254| 97 |11641108|248| 75 [162/223| 0 | 95|192/262|183(187
218|344/180(195| 68 |308/114{134/262| 95| 0 (280277114255
64 | 67 [185/171|254|125|244/263|170{192/280| 0 |239322 80
233|287|334] 99 (211]139336|156| 69 |262|277|239| 0 |223159
271)388|279(178| 76 |304|225| 72|237|183|114{322/223| 0 |270
91 (133]218/100|212| 65|255/203| 90 [187|255| 80 (159|270 O

O Oo|N(fojO|_[W|N|F

=
o

[
[N

JEn
N

=
w

[
N

=
(&)]

All elements in the matrix (except those in the main
diagonal) have a value other than 0 because the graphs under
consideration are complete. Also, the adjacency matrix is
symmetrical (relative to its main diagonal) in these graphs.
The element values are calculated from the coordinates of
each pair of vertices and are equal to the Euclidean distance
between these vertices.

B. Experimental Conditions

The experimental conditions are the following: PC with
64—bit Operating System Windows 10 Pro, x64-based
processor and hardware configuration: Processor: Intel (R)
Core (TM) i7-4712MQ CPU at 2.30 GHz; RAM: 8GB
DDRS.

C. Experimental results

In Table I, the main properties of the studied graphs are Fig. 7 Ku minimal Hamiltonian cycle
shown. These properties are as follows: the graph
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Fig. 11 Ks minimal Hamiltonian cycle

The results of the recursion based algorithm for input data
K10 — Kis are shown in Table IV.

TABLE IV

THE RESULTS OF THERECURSIONBASED ALGORITHM
G (stglz rs Recursive Calls Time (ms) Egr?;h
K1o 23 8 877 691 219 997
K11 34 98 641 011 2 281 105
Kio 37 1 193 556 233 27 938 1 0%6
K1z 42 15624 736 141 356 672 1157
Kia 47 220048 367 319 5215 391 1238
Kis 52 3312 775 065 600 79 940 943 1281

Table V shows the results from the iterative based
algorithm for input data I — Kis.

Fig. 10 K4 minimal Hamiltonian cycle
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TABLE V
THE RESULTS OF THEI TERATIVE BASED ALGORITHM
Better | Iterations by ) Cycle
G Cycles | Loops Time (ms) Length
e Ko |23 3025 967 31 997
e l\ ™ 120 Ku |34 30 259 771 250 1052
7 TR - Ky |37 332 857 608 2797 1056
Y] '.'?( —— (13) Kis | 42 3994 291 44 35031 1157
SIpR ket | o | K | 47 51 925 788 909 467781 1238
L S
: :‘ﬁ. s | e ’ ' Kis | 52 726 961 044 923 6 762 694 1281
‘ zr_-325E fj.’fﬁl_.'- 158
53184233 223250262 200K, Table IV and Table V show the results of both algorithms.
322 The columns are as follows: "G" — the abbreviation of the
;‘ fi A\ ) graph; "Better Cycles" — the number of the better cycles
: ﬂ 1 Ay found in the search process; "Recursive Calls" — the number

[15 > of recursive calls; "lterations by Loops" — the number of
' iterations made by the iterative algorithm; "Time (ms)" — the
execution time (in milliseconds) of the corresponding
algorithm; "Cycle Length" — the length of the minimal
Hamiltonian cycle (in pixels).

The results show that the found minimal Hamiltonian
cycles are the same for both algorithms. This provides



grounds to analyze the values in the column "Time (ms)" additional memory for the new copies of all local variables

that shows the execution time of both algorithms. (which are used by the recursive function). In the iterative
The influence of the number of vertices on the execution algorithm, this process is executed by a counter and a
time for both algorithms is shown in Fig. 12. transition instruction (to organize a cyclic process). This

peculiarity in the realization of the two processes leads to the
great difference in their execution time.

80000 000
70000 000 IV. CONCLUSION
60000 000 In this paper, a comparative analysis between two
50000 000 algorithms for generating permutations but modified to find
40000 000 a minimal Hamiltonian cycle in complete undirected
30000 000 weighted graph was made. Both algorithms (respectively
20000 000 recursive and iterative) generate all permutations of n
numbers, where n equals to the number of vertices in a given

10 000 000 . A

0 . . . graph. For each generated permutation the Hamiltonian

cycle length is calculated. This cycle is obtained after
passing through each vertex of a graph in a sequence
determined by the order of the numbers in the current
permutation. The results obtained from both algorithms are
Fig. 12 Influence of the number of vertices (the x-axis) on the execution identical both for the generated permutations and for the
time (the y-axis in milliseconds) for both algorithms (for all input data) formed Hamiltonian cycles with minimum length. The
difference between the two algorithms is the time for their
Fig. 12 shows that the execution time of both algorithms execution. It was experimentally found out that the recursive
increases exponentially with the increase of the number ofaigorithm is executed several times more slowly (in the
the vertices. Additionally, the execution time of the recursive order of 2 to 2* times) than the iterative algorithm.
algorithm is significantly longer than the iterative algorithm In this study, TSP results are used to analyze the
(for the same input data). performance of both algorithms. Moreover, these results
Fig. 13 shows a chart of the data versus the executionreveal that the solution to the TSP with exact methods
time for both algorithms (the y—axis is transformed into a (a|th0ugh it is possib|e) is not app|icab|e for graphs with

10 11 12 13 14 15

=== Recursion === I|teration

logarithmic one with base 2). many vertices. There are approaches, such as branch-and-
bound and others, that can reduce the number of the
134 217728 Hamiltonian cycles that are formed. However, for complete
16777 216 undirected weighted graphs with more than 50 vertices these
5 097 152 approaches are not applicable. Therefore, for TSP with large
complete graphs (e.g., with thousands of vertices)
262 144 : . .
32768 approximate methods should be used. Taking into
consideration the results obtained in this study, one can
4096 suggest that if these methods can be implemented
12 algorithmically by an iterative process, then, it must be
64 chosen leaving aside the recursive one.
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