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Abstract— Segmentation of the carpal bones (CBs) especially for children above seven years old is a challenging task in computer 
vision mainly because of poor definitions of the bone contours and the occurrence of the partial overlapping of the bones. Although 
active contour methods are widely employed in image bone segmentation, they are sensitive to initialization and have limitation in 
segmenting overlapping objects.  Thus, there is a need for a robust segmentation method for bone segmentation. This paper presents 
an automatic active boundary-based segmentation method, gradient inverse coefficient of variation, based on dynamic programming 
(DP-GICOV) method to segment carpal bones on radiographic images of children age 5 to 8 years old. A mapping procedure is 
designed based on a priori knowledge about the natural growth and the arrangement of carpal bones in human body. The accuracy of 
the DP-GICOV is compared qualitatively and quantitatively with the de-regularized level set (DRLS) and multi-scale gradient vector 
flow (MGVF) on a dataset of 20 images of carpal bones from University of Southern California. The presented method is capable to 
detect the bone boundaries fast and accurate. Results show that the DP-GICOV is highly accurate especially for overlapping bones, 
which is more than 85% in many cases, and it requires minimal user’s intervention. This method has produced a promised result in 
overcoming both issues faced by active contours method; initialization and overlapping objects. 
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I. INTRODUCTION 

Bone age estimation (BAE) is a method of assigning a 
level of biological maturity to a child.  It is widely used in 
diagnosing heredity diseases and growth disorder. Besides, it 
is an essential tool in the assessment of children with growth 
delay and in following response to therapy. BAE is also 
being used in cases of unregistered child, under-age sports 
tournaments, juvenile court cases, asylum-seeking children, 
and forensic practice. In general, the BAE was derived by 
two methods, comparison of the radiography of hand bones 
with a reference using Greulich and Pyle atlas [1] or by the 
numerical scoring system of Tanner-Whitehouse [2]. Both 
methods are laborious and prone to inter- and intra-observer 
variability between experienced and inexperienced 
radiologist. Hence, an automated and consistent method 
using a computerized BAE (CBAE) method is needed.  

There have been many attempts to computerize the BAE 
procedure ranging from semi-automated in which active 
shape models are used on the implementation of the TW2 

system [3] and distance ratios are supplied to neural 
networks for BA calculation [4] to fully automated system 
using integrated clinical system with Picture Archiving 
Communication Systems (PACs) [5], fuzzy approach on 
carpal bones [6], particle swarm optimization [7], neural 
networks to produce a BAE based on radius and ulna bones 
[8], and neural networks to extract the features of carpal 
bones [9]. Most CBAE methods focus on analyzing the 
bones of the phalanges, metacarpal, and wrist for children 
from 0 to 18 years old. These types of bones are popular in 
estimating the bone age because the layout of these bones is 
simple, and they are not tended to overlap onto one another. 
Apart from those bones, estimation of bone age using carpal 
bones receives less attention because the structure of the 
carpal is complicated especially when the child starts to 
grow into teenage years. One of the biggest challenges in the 
carpal bone analysis is when the carpal bones are getting 
bigger and too close to one another until some of them are 
overlapped [10]. Fig. 1 shows a hand radiograph image of a 
7 years old Asian male. Here, the ground truth (GT) 
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boundaries for all seven carpals bones are highlighted. The 
numbers (1-7) indicate the most common order of carpal 
bones appearance based on the natural growth of children. 
The bones are growth chronologically from bone 1 until 
bone 7.  
 

 
Fig. 1   Carpal region of interest indicate non-overlapping bones (1-5) and 
overlapping bones (6-7) with their ground truth boundary. 

 
Typically, at this age (~7 years old), there are non-overlap 

(NOL) carpal bones such as capitate, hamate, triquetral, 
lunate, and scaphoid; and overlaps (OL) bones such as 
trapezium and trapezoid. The segmentation of hand and 
wrist anatomical structures is a critical component for CBAE. 
Features used for describing the bone age are based on 
boundary, shape, and area can be calculated only after 
segmentation has been performed. Segmentation for carpal 
bones is challenging because issues like bone overlapping 
need to be solved. Various methods such as geodesic active 
contour with overlap resolution [11], spatial relationship of 
the non-overlapping and overlapping areas [12], hybrid of 
local density clustering and gradient-barrier watershed [13], 
various methodologies to segment a text-based image at 
various levels of segmentation [14], and morphology 
analysis [15] are used to segment overlapping or touching 
objects in different type of images. Active contour methods 
have become favorites in segmenting carpal bones [16, 17]. 
However, a significant limitation of the active contour is the 
inability to detect overlapping objects and sensitive to 
initialization [11]. Segmentation of overlapping objects in 
different applications has been previously studied [18-20]. A 
fusion management algorithm with the cutting line is used to 
separate the overlapped trapezium and trapezoid [16]. This 
procedure assumes that the trapezium and trapezoid are not 
overlapped but appear side by side very carefully. The 
disadvantage of the cutting line method is that the shape of 
the trapezium and trapezoid may not be represented 
accurately. 

In boundary detection, dynamic programming (DP) 
method has been implemented in many applications 
including in biomedical imaging field applications [21], such 
as the segmentation of myocardium [22], right [23] and left 
ventricles [24], breast [25], and lung [26]. The basic idea of 
DP is to determine the optimum path between two given 
points, in which those two points are also optimum lying on 
the path [27]. Therefore, the DP method offers an optimal 
calculation of global contour with polynomial time [28].  

The gradient inverse coefficient of variation (GICOV) [29] 
is defined as the ratio of average image directional 
derivatives and its standard deviation along a boundary. 
Potential carpal bones boundaries possess high GICOV 
values. DP-GICOV follows the principle of cost function 
minimization [30]. The combination of GICOV and DP [30] 
can overcome two main issues faced by the active contour 
methods: (1) initialization boundary and (2) overlapping 
region of interest (ROI). In this study, the DP-GICOV 
method has been implemented on segmenting the carpal 
bones and then its performance is compared with two other 
established contouring methods, which are DRLS [33] and 
MGVF [33]. 

II. MATERIALS AND METHODS 

A. Data 

This study is applied to twenty images of carpal bones for 
male and female children from four ethnic groups, African-
American, Asian, Caucasian, and Hispanic from hand 
radiographs database developed by University of Southern 
California (USC) (http://ipilab.usc.edu/BAAweb/) [31]. In 
this study, the range of children age was from 5 to 8 years 
old. Each image contains overlapping (OV) and non-
overlapping (NOV) carpal bones. 

B. DP-GICOV 

Gradient inverse coefficient of variation (GICOV) 
measures the ratio of the mean and standard deviation of 
directional image derivatives over an entire closed contour 
fitted using active contour techniques to a carpal bone 
boundary. The directional derivatives are the normal 
outward directions on contour points [30]. The gradient of 
the derivative images is computed as in Eq. (1) 

 

 ( )2 2= +% x yg I I  (1) 

Where = ∂ ∂xI I x  and = ∂ ∂yI I y . I is the original image. 

Using directional information of the gradient, the directional 
gradient is obtained in Eq. (2).  
 

 ( ) ( )2 2 cos sinθ θ= + +x y x yg I I sign I I  (2) 

Where θ is the angle of the radial line taken from a centroid 
of a two-dimensional closed contour. This centroid can be 
used as a point of initialization for the closed contouring 
method.  

GICOV score is the ratio of the mean and the variance of 
the directional gradient, g(v1) at a point v1 on the first radial 
line through, g(vN) at a point vN on the Nth radial line as given 
in Eq. (3).  
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In order to maximize Eq. (3) using DP [30], this equation 

is rewritten as given in Eq. (4) 
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where s is the noise variance.  

The cost function of the active contour is given in Eq. (5). 
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The Eq. (5) is computed using dynamic programming. In Eq. 
(5) c is the center of the contour, and each cost function is 
defined in Eq. (6)   
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where function D(x) measures the distance between point vi 
to point vi+1, and δ is the distance threshold.  

C. Carpal Bones Segmentation 

The workflow of the proposed carpal bones segmentation 
procedure is shown in Fig. 2. Firstly, the orientation of the 
hand image is corrected [17]. Manual intervention is 
required to estimate the centroid of the capitate and to 
initialize the zonal mapping procedure. Here, the 
intervention is the only input required from users in which a 
seed point is assigned. Based on the centroid, the carpal 
region of interest (CROI) is derived containing all the seven 
carpal bones. Based on [16], six zone boundaries are derived 
from detecting every carpal bone in a sequential order 
according to the natural growth of the bones. The designated 
zone area is typically larger than the expected bone area. 
Any detected bone boundary that touches the zone boundary 
is considered invalid. DP-GICOV will only perform the 
contouring inside the zonal area. 

The first zone is derived to ensure that the capitate bone 
lies approximately at the center of the zone. The rectangular 
box of zone 1 in Fig. 3(a) is derived sufficiently broad to 
cover the area of the capitate and avoiding overlapping of 
lines between the zonal box and capitate boundary. 
Approximation of the size and location of the zonal box that 
would fit the capitate bone in all the images in the datasets 
are used. These approximations are based on heuristic 
analysis that takes the averages of the size and location of 
the zonal box from the images in the datasets. In Table 1, the 
typical values from the capitate centroid to other carpal 
bones centroids for their distance, angle, eccentricity, and 
grid points are approximated heuristically from the images in 
the datasets. 

A seed point is assigned at the center of the zone in which 
the center of the zone is regarded as the centroid of the 
capitate bone, as shown in Fig. 3(a). The seed point is used 
to initialize the derivation of the bone boundary. From the 
seed point, the boundary of the capitate bone is derived 
using DP-GICOV. The shape of the derived carpal bones is 
validated according to its shape eccentricity, which is in the 
range of 0.7–0.9 and shown in Table 1. If the shape 
eccentricity of the derived bone is not within that range, 

more seed numbers will be assigned within proximity of the 
original seed point to repeat the process of DP-GICOV 
initialization until the eccentricity of the bone fall within the 
predetermined range.  

TABLE I 
MEAN VALUES FOR DISTANCE AND ANGLE, ECCENTRICITY AND GRID POINTS 

Bones Distance ± σσσσ 
(pixels) 

Angle ± σσσσ 
(degrees) 

Eccentricity Grid 
points 

Capitate - - 0.70 – 0.90 125 

Hamate 96.65 ± 5.97 175.00 ± 0.00 0.60 – 0.80 125 

Triquetral 143.38 ± 11.40 215.38 ± 6.02 0.60 – 0.80 115 

Lunate 127.91 ± 8.10 258.39 ± 5.74 0.40 – 0.80 115 

Scaphoid 115.01 ± 8.10 326.33 ± 6.61 0.40 – 0.80 85 

Trapezium 139.00 ± 12.51 8.04 ± 6.01 0.40 – 0.80 45 

Trapezoid 98.71 ± 5.57 29.52 ± 5.43 0.20 – 0.70 45 

Continue checking the next zone 

No

Yes

Yes

No

Update the seed 
number

s+1Conform to the shape eccentricity

Segment the boundary using 
DP-GICOV method

Does the
eccentricity range satisfied

or 
s = 3 

Start

Load carpal ROI

Estimate the zone 1, n=1
Number of bone, b=0

Assign one seed point
s=1

Updates: 
number of  bone, b+1
number of zone, n+1

Are all 6  zones checked
n=6

End

Transform ROI to polar domain

Compute cost matrix

Start

End

DP-GICOV

Invert ROI to Cartesian domain

 
Fig. 2  The outline flowchart of the main steps of carpal bones detection 
using the DP-GICOV segmentation method. 

 
The detection of the subsequent bones follows the general 

chronological order of the natural growth of the carpal bones, 
as shown in Fig. 1. Throughout the age from 0 to 18 years 
old, the growth of the carpal bones is observed to be by the 
appearance of each carpal bone, one after another, in 
chronological order. Capitate bone is first developed, 
followed by hamate, then triquetral, lunate, scaphoid, 
trapezium and finally trapezoid.  

The centroid of the hamate is determined based on its 
distance and angle from the centroid of capitate. Based on 
the centroid of hamate, a polygonal box of zone 2 is derived. 
DP-GICOV is applied to estimate the boundary of the 
hamate and its eccentricity is validated within the range of 
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0.6–0.8. This procedure is repeated to find the other bones in 
zone 3 until zone 6. Fig. 3(b) shows the allocation of all the 
zones on the carpal bones image. Unlike zone 1-5 that 
contain only one carpal bone in each zone, zone 6 may 
contain one or two bones. These two bones are trapezium 
and trapezoid. 

In most cases, trapezium will first to appear then followed 
by the trapezoid. As the growth of the children continues, 
these two bones are getting larger until they may appear to 
be overlapped onto each other. Therefore, the detection of 
these two bones is more challenging than the other bones. 
These two bones can be differentiated by referring to the 
distance and angle to the centroid of the capitate 
 

   
(a)    (b)    (c) 

Fig.  3  Zone mapping for all carpal bones. (a) Zone 1 - capitate. (b) Zone 2 – hamate, zone 3 – triquetral, zone 4 – lunate, zone 5 – scaphoid, zone 6 – trapezium 
and trapezoid. (c) Estimated centroid for all the carpal bones.   

 
Typically, bone with a shorter distance and larger angle to 

the centroid of the capitate is referred to trapezoid. To 
confirm the existence of trapezium and trapezoid bones, 
Table 1 is used as a look-up table. The prior knowledge 
about the distance, angle, and eccentricity of the trapezium 
and trapezoid assists DP-GICOV to derive the boundaries of 
these two bones.  Fig. 3(c) shows the estimated centroid their 
standard deviations for all carpal bones. 

The optimal carpal bones pathfinding using the DP-
GICOV method is demonstrated with capitate bone as shown 
in Fig. 4. Since the carpal bones images have star-shaped 
boundaries, the optimal boundaries can be determined using 
polar coordinates. The objective is to find a closed boundary 
along which the image has uniform edge strength [30]. Fig. 4 
illustrate the approach. A center point is chosen as the origin 
for the polar coordinate system within the image, I, shown in 
Fig. 4(a) and transform the image into polar coordinates, I’ , 
as shown in Fig. 4(b). The x-axis in the polar image 
represents the length of the radial line from the centroid to P 
grid points, and the y-axis represents the angle of the radial 
line from 0 to 3600. The DP is based on a radial mesh of grid 
points, with N number of radial lines and P grid points on 
each line. Therefore, there are PN different possible closed 
boundaries. Then, the uniform edge strength of I’  is 
calculated and the optimal boundary is determined as shown 
in Fig. 4(c). Finally, the detected boundary is transformed 
back to the Cartesian coordinates, as shown in Fig. 4(d).  

III.  RESULTS AND DISCUSSIONS 

Segmentation results from the proposed DP-GICOV are 
compared with DRLS [32] and MGVF [33] methods. 
Manual segmentation performed by two observers is used as 
ground truth (GT). The segmentation accuracy is measured 
using the Jaccard index [34]. An analysis is done to 
determine the optimal number of radial lines, N that can 
assist DP-GICOV in the segmentation task. The performance 

of the DP-GICOV method is tested using 11 different sets of 
radial lines on capitate, starting from N=50 until N=550 with 
the increment of 50. As shown in Fig. 5, the method starts to 
converge and stabilize at 61.2 seconds with N=300, and the 
Jaccard index is more than 90% and modified Hausdorff 
distance (MHD) less than 4 pixels. Based on these results, 
the optimal number of N=300 is chosen for further 
segmentation tasks. Then, the radius length of the N is 
chosen based on the average size of the individual bone 
based on Table 1. Any increment of the number of radial 
lines would not significantly increase the Jaccard index but 
merely increase the computational complexity. On the other 
hand, reducing the number of radial lines may speed up the 
segmentation time at the expense of segmentation accuracy. 
Fig. 6 displays boundaries determined using four different 
values for N, i.e. 100, 200, 300, 350. The GICOV value 
increases with the increment of N, and the optimum 
boundary is determined when N=300 with GICOV score 
G=5.15. 

Both the DRLS and MGVF require human intervention 
on each carpal bone to initialize the segmentation as shown 
in red curves in Fig. 7(a) and Fig. 7(b). In contrast, the 
proposed DP-GICOV does not require initialization on each 
bone. Only the centroid of the capitate bone that needs to be 
determined by users. It is therefore reduced the human 
intervention in the DP-GICOV. Fig. 7(c) shows the result of 
boundary segmentation of all the carpal bones using only 
initializing at the centroid of the capitate assisted with 300 
radial lines. 

More analyses are focused on the individual NOL bone 
like capitate and OL bone trapezium, as shown in Fig. 8. The 
segmentation boundaries derived from DRLS, MGVF, and 
DP-GICOV are overlaid on the capitate (NOL bone) and 
trapezium (OL bone) in Fig. 8(a) and Fig. 8(b), respectively. 
The boundaries of the GT for both bones are used as a 
benchmark. The centroid distance (CD) shape signatures of 

ZONE 2

ZONE 3

ZONE 4

ZONE 5

ZONE 6

ZONE 1

capitate
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capitate and trapezium are compared against GT. The CD 
denotes the distances of the boundary points from the 
centroid of the bone. For capitate bone, the CD shape 
signature of DP-GICOV followed the GT signature closely 
as shown in Fig. 8(c). DRLS tended to overestimate the 
capitate boundary, MGVF has massively underestimated the 
boundary, while DP-GICOV produced a close estimation of 
the boundary. For OL bones, the intersection points between 

trapezium and trapezoid are at the angles IP1 = 201.4O and 
IP2 = 108.2O measured from the centroid of the trapezium. 
CD shape signature of DP-GICOV for trapezium followed 
the GT signature closely. Both DRLS and MGVF suffered in 
the case of OL bones as they underestimated the boundary of 
the trapezium. Here, the estimation of the boundary for NOL 
and OL bones using DP-GICOV produced the best 
estimation close to the GT boundary.  

 

    
            (a)       (b) 

    

capitate
hamate

triquetral

lunate

scaphoid

trapezium
trapezoid

 
    (c)        (d) 

 
Fig.  4  (a) carpal bones ROI with 36 radial lines emanating from the capitate centroid (b) cost image after polar transform with radial lines R=300 (c) 
minimum cost path overlaid on the polar (d)   segmented capitate bone boundary overlaid on the Cartesian image. 
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            Fig. 5 Determination of the optimal number of radial lines.          Fig. 6 Different values of the radial line produce different GICOV scores. 

 
Further analysis is done to determine the accuracy of 

segmentation techniques under different brightness levels. 
The segmentation results using DRLS, MGVF, and DP-
GICOV on a different level of brightness are demonstrated 
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in Fig. 9. The brightness of the three images is low, medium, 
and high. DP-GICOV produced the best results with the 
accuracy of more than 80% of the Jaccard index for all the 
bones in three different brightness conditions. DRLS and 
MGVF produced less accurate results especially for OL 
bones such as trapezium and trapezoid. The results suggest 
that the DP-GICOV is robust in a different level of image 
brightness and performs well for segmenting the NOL and 
OL bones. 

The accuracy assessments for 20 images are presented in 
Table 2. DP-GICOV produced the best percentage of the 
Jaccard index. Also, the DP-GICOV technique produced the 
lowest standard deviations as compared to DRLS and 
MGVF techniques. The results suggest that the DP-GICOV 
is the most accurate than that of DRLS and MGVF in 
segmentation NOL and OL bones. 

  

 

 

 
(a) (b) (c) 

Fig.  7   CROI with corresponding segmentation results for all 7 carpal bones using (a) DRLS (b) MGVF and (c) DP-GICOV. The red curves are the initial 
boundary for DRLS and MGVF methods, the black curves are the GT, and the blue curves are the segmentation results. DP-GICOV does not need an initial 
boundary, but it needs radial lines. 

       
(a) (b) 

     

(c) (d) 

Fig.  8   Bone profile using DRLS, MGVF, and DP-GICOV (a) Segmentation boundaries overlaid on a NOL bone (capitate) (b) Segmentation boundaries 
overlaid on an OL bone (trapezium) (c) CD shape signatures of a NOL bone (capitate) (d) CD shape signatures of an OL bone (trapezium) 
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    (a)             (b) 

  
       (c)             (d) 

  
       (e)             (f) 
Fig.  9   Segmentation accuracy at the various level of brightness. (a) Low 
brightness and (b) its Jaccard index for each bone. (c) Medium brightness 
and (d) its Jaccard index. (e) High brightness and (f) its Jaccard index.  

 

TABLE II 
THE MEAN AND STANDARD DEVIATION OF JACCARD INDEX ACCURACY 

FROM 20 IMAGES BASED ON INDIVIDUAL CARPAL BONES. 

IV.  CONCLUSIONS 

This paper presents carpal bones boundary detection using 
DP-GICOV that is implemented in each of the mapping 
zones. The mapping zone is generated based on a 
chronological order according to the natural growth of 
children. This approach overcomes two common issues 
faced by other segmentation techniques, (1) initialization 
requirement for active contour and (2) overlapping bones. 
Also, DP-GICOV can minimize user’s intervention during 
the initializing process. Only one user input is required to 
segment all the seven carpal bones. Compared to DRLS and 
MGVF, DP-GICOV can closely estimate the boundary of 
the carpal bones, thus producing the most accurate results in 
a different level of brightness especially for overlapping 

bones with the accuracy more than 85%. For future work, we 
would focus on the estimation of child’s age based upon the 
growth of the carpal bones, in terms of the number of bones, 
size, and spatial orientation of the bones.   
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