

Vol.8 (2018) No. 2

ISSN: 2088-5334

Improving DDoS Detection Accuracy Using Six-Sigma in SDN
Environment

Achmad Khalif Hakim#, Maman Abdurohman*, Fazmah Arif Yulianto*
#Telkom Indonesia Corp. Jln. Japati No. 1, Bandung, Indonesia

 E-mail: kholif@telkom.co.id

*School of Computing, Jln. Telekomunikasi No. 1, Bandung, 40257, Indonesia
 E-mail: {abdurohman, fazmaharif}@telkomuniversity.ac.id

Abstract— This paper proposes the new method for improving the accuracy of detection of DDoS attacks on the SDN by utilizing
control plane using Six-Sigma method. Software-Defined Networking (SDN) is a centralized network control system. This system
offers flexibility on receiving, processing and forwarding packets between subnetworks. The centralized system of SDN, which
separates control plane and data plan, has an immense number of advantages, but it also has the risk of becoming a single point of
network failure. Distributed Denial of Service (DDoS) attack is the major issues faced in the security aspect of SDN. This attack can
make network resources unreachable by the real packets. The widely known method has been implemented on SDN for avoiding a
DDoS attack is Three-Sigma method. Three-Sigma method uses a threshold value to determine the existence of a DDoS attack.
However, this method has drawbacks regarding accuracy in determining the DDoS attack. The main contribution of this paper is
utilizing central control plane of SDN for improving accuracy on detecting the DDoS attack. Several experiments performed for
proving the concept. The result shows the new method can improve the accuracy of detection of a DDoS attack, either in constant or
fluctuating traffic, by reducing the false positive. The performance is about 50% more accurate than the previous method.

Keywords— Software-Defined Networking (SDN); Distributed Denial of Service (DDoS); three-sigma; six-sigma

I. INTRODUCTION

There are several methods for avoiding DDoS attacks on
SDN environment [1], [2], [3]. There are two level attacks,
network, and application level attacks. Network attacks are
usually made by flooding the network by useless packets.
The transaction-level attack occurred by activating of
applications that consume resources of a computer system
[4]. In the traditional / existing Network, to innovate and
manage the network is hard due to each device has its
control logic and has vendor dependency. The challenge is
how to implement new ideas in real traditional networks
because new ideas often include nonstandard aspects. This
shortage makes it difficult on implementing DDoS detection
mechanism

SDN is an approach to computer network system that uses
software for control and manages network devices that can
be programmed. OpenFlow is secured communication
protocol between planes in SDN [5]. This research has
explored the implementation of Software-Defined
Networking (SDN) with OpenFlow protocol for detecting
network-level attacks.

Based on the theoretical and conceptual of the SDN and
the statistical approach several points can be enhanced by

the accuracy of the DDoS detection in SDN network. In a
traditional network, there is a limitation of DDoS detection,
such as adding many of third-party tools in the network,
depending on the topology. The previous method of
detecting DDoS in SDN is using three-sigma threshold [1],
that is too low for defined as a threshold, so while suddenly
there is an increase of legitimate traffic it will be detected as
a DDoS.

The sigma or deviation can be used as detection threshold.
The sigma is a standard deviation of the list of value. It can
be used as a reference standard or limit, how much traffic
may be distorted. Because sigma is the standard deviation
value, it is not the value of traffic that will be compared with
a standard deviation of itself, but the difference between the
current traffic by an average of previous traffic history. The
use of sigma for threshold can use the general equation for
finding deviation.

In other research, there is a method using Six-Sigma. The
three-sigma normal distribution output falls between 99.7%.
However, the normal distribution output of Six-Sigma is
99.97%, this normal distribution output can be used for
achieving extremely low false positive or negative. By
identifying Six-Sigma as threshold values [1], we will use
only the Upper Control Limit (UCL) value as an upper

365

threshold because the attack traffic is always expanding the
traffic.

The previous method just uses three of standard deviation
threshold mechanism from 60 pool of packet flow from
switches, which if there is a sudden increase of traffic then it
will be detected as a DDoS attack although it is regular
traffic. To improve the detection, we propose the
modification of the previous method by changing the three-
sigma value to Six-Sigma value, Gupta identified that Six-
Sigma value has better accuracy and low false positive [1] in
a DDoS attack in traditional / existing networks. This paper
works in SDN environment which has different
characteristic compared to traditional / existing networks. In
this research to improve the previous method, we change the
threshold of detection to Six-Sigma to lowering the false
positive rate.

II. MATERIAL AND METHOD

A. Software-Defined Networking (SDN)

There are various types of attack, and it can be classified
base on the characteristics of the effect on the victim. There
are software attack, protocol attack and bandwidth attack [6].
This paper focuses on traffic attack solution.

SDN is a new concept in computer network system, it
simplifies control of the network and enables innovation
through the programmable network, it has a concept of
separating the control from forwarding planes. On SDN,
control-plane is separated on another machine called
controller [7]. This process provides innovative network
architecture, programmable, cost-efficient and vendor-
agnostic [8].

Fig. 1, (a) and (b) shows how the existing traditional
network running specification, which is the control and the
data planes are on the same machine. Fig. 2 shows the
running specification of SDN OpenFlow where planes are
separated in a different machine.

CONTROL

DATA

CONTROL

DATA

(a) (b)

Fig. 1 (a) or (b) is an existing traditional network [5]

Fig. 2 The specification of SDN OpenFlow [9]

B. SDN OpenFlow

OpenFlow is a new protocol that used by the controller to
communicate with the switches. This protocol is an essential
part of SDN. It controls the switches and external entity to
arrange the flow of packets on the network.

Every switch has ingress and egress paths data on the
table. OpenFlow makes the controller can access these tables.

Fig. 3 and Fig. 4 show the SDN architecture with
OpenFlow protocol [10]. Fig. 5 shows OpenFlow table that
stores 12-tuple with fields and every flow has a statistic, a
priority, and action [4].

C. SDN Controller

SDN controller is an essential device that is responsible
for maintaining all of the network rules. It distributes proper
instructions for the network devices. The OpenFlow
controller is entirely responsible for handling packets [9].

In the traditional / existing Network, to innovate and
manage the network is hard due to each device has its
control logic and has vendor dependency. It is not easy to
experiment new ideas in real traditional networks because
new ideas often include nonstandard aspects. To break this
limitation, SDN was introduced. SDN enabled controllers
can control devices through a secure channel.

Fig. 3 SDN architecture with OpenFlow protocol [10]

Fig. 4 Simple network using OpenFlow protocol

366

Fig. 5 OpenFlow table entry [4]

Controllers instruct devices to forward packets based on

the instructions or flow entries. Users can deploy their new
idea on the SDN network with centralized control logic [11].
The controller will communicate to the data plane device
using OpenFlow protocol. With this benefit, it is possible to
organize OpenFlow Switches [2].

D. Available Methods for Detecting DDoS

There are several methods related to DDoS detection that
is based on traffic anomaly. The DDoS detection on traffic
anomaly that commonly used is based on statistical approach
likewise the use of standard deviation and entropy.

The standard deviation could be used for divining a
threshold for DDoS detection; there are several researches of
using standard deviation as a DDoS detection threshold. The
standard deviation itself sometimes called sigma, referring to
the standard deviation symbol (σ).
1. Three-sigma on SDN network: There are some methods
on using OpenFlow for detecting malicious activity [12]. It
functions to inspect certain traffic classes [13]. The previous
method using three-sigma deviation from 60 pool of packet
flow from switches, which suddenly there is an increase of
traffic that the range is still reasonable from normal behavior,
it will be detected as a DDoS, whether it is normal traffic.
After 60 pooling T60port stats from the switch, the value of
the 3sigma and the mean (μ) are calculated, the three-sigma
(3σ) will be defined as a threshold, and the mean value will
be kept as for next process. When the 61st (TN) traffic
pooled, it will subtract with the previous mean (μ) value, the
result of subtraction will be compared to the 3σ, if it is
higher than the 3σ, is known as an attack. The equation can
represent this concept.

 Attack  (TN-μ(T60)) > (3σ(T60)) (1)

2. Six-Sigma: Six-Sigma, is six standard deviations from the
mean, the plan is proposed by Motorola to address quality
issue what's more, business change. Six-Sigma signifies an
efficient, creative movement to factually gauge and
investigate reasons for deformities that happen in all parts of
the administration, and at that point evacuate those causes by
distinguishing proof of limits of the critical measurements
which are measured. Six-Sigma asserts that concentrating on
the diminishment of variety will settle process. By utilizing
an arrangement of factual instruments to comprehend the
variance of a procedure, the administration can start to
foresee the normal result of that procedure. [1]. In other
research, there is a method using Six-Sigma for DDoS
detection in the traditional network. The standard deviation

obtained from traffic flow will be multiplied by six and then
add or subtract the result for calculating the mean value.

 UCL = μ + 6σ (2)

In equations formula 3, UCL is a method that uses the
upper limit control mechanism as the threshold. However, by
using the mean plus Six-Sigma, there is a potential that the
threshold is too high. Because the sigma is a deviation, so
the difference of the mean should compare it. Also, there is
no literature showing the use of Six-Sigma on SDN network.
Table 1 shows the difference between two methods.

TABLE I
DIFFERENTIATION BETWEEN TWO METHODS

Method Used in SDN
Normally Distributed

Output
Three-sigma Yes 99.7%
Six-Sigma No 99.97%

The three-sigma, have a normally distributed output of

99.7%. Otherwise, Six-Sigma have the normally distributed
output is 99.97% [1], this normally distributed output can be
used for achieving extremely low false positive, this method
used in the traditional network. On the other hand, there is
the use of standard deviation as DDoS detecting threshold in
SDN, but it just used the three-sigma.

E. Method for the Proposed System

We have proposed the new scheme using Six-Sigma
because the three-sigma normally distributed output fall
between 99.7%. Otherwise, Six-Sigma have the normally
distributed output is 99.97% [1], this normally distributed
output can be used for achieving extremely low false
positive, by identifying Six-Sigma as threshold values [1] we
will use only the UCL value as an upper threshold because
the attack traffic always up warding the traffic.

In comparing mechanism, we choose the previous method
comparing subtracted the “now traffic” with the mean of 60
pool of traffic, and compare it with the standard deviation
that multiplies by 6 (Six-Sigma) for defining a threshold.
The Six-Sigma is a deviation, so it should be comparing it
with the difference value between the “now traffic” and the
mean. If the value of “now traffic” minus the mean of 60
pools is higher than the Six-Sigma, it considered as DDoS.
Base on the benefit of that method. The standard deviation
we get from the traffic flow will be multiplied by 6.

 Attack  (TN-μ(T60)) > (6σ(T60)) (3)

After 60 pooling T60port stats from the switch, the value
of the 6sigma and the mean (μ) are calculated, the 6sigma
(6σ) will be defined as a threshold, and the mean value will
be kept as for next process. When the 61st (TN) traffic
pooled, it will subtract with the previous mean (μ) value, the
result of subtraction will be compared to the 6σ, if it is
higher than the 6σ, it is known as an attack. The comparison
between the previous and the improvement methods is
described in Fig. 6. While Fig. 7 shows the flowchart of a
proposed method.

367

Fig. 6 Method comparison

Start

Read The
statistics of the

port

Send the statistic
to n=60 array

Define Threshold

6σ(T60)

If

(TN-μ(T60)) >

(6σ(T60))

Attack Y

N

Stop

Fig. 7 Flowchart of designed method

We proposed the combination of above previous methods,

changing the three-sigma from the SDN base DDoS
Detection with the Six-Sigma from the traditional network.
Fig. 7 shows the complete flowchart of the system as follows:

1) Read Port Statistics: The flow statistics pooled to the
controller from the port of the switch, each eth port of the
host will pool to the controller.

2) Send Statistics to a Bucket of Array: Every port
statistics from the switch will be inserted into a bucket of the
array that has size 60 if exceeded, the first entry value of the
Bucket of the array will be deleted.

3) Define Threshold: Calculate the threshold of Six-Sigma
from the 60 value of a bucket of the array.

4) Triggered by Attack: If the new entry (TN) subtracted
with the mean of a bucket of the array is larger than Six-
Sigma of the bucket of the array, then the TN

III. RESULTS AND DISCUSSIONS

This section describes the detailed scenario that we used
to the experiment. The detail of the scenarios is explained
below. The experiment has been performed using simulation
software tools Mininet framework, with the following
network elements: 1 OpenFlow controller (Ryu Controller),
1 OVS Switch (OpenFlow switch), 2 Host, 1 host as an
attacker and another host with normal traffic and 1 host as a
victim. The topology of the simulation network that is used
in this research can be shown in Fig. 8.

OpenFlow Switch

Host A Host CHost B

Ryu Controller

Fig. 8 Topology scenario of simulation

The network topology in this scenario is using 3 hosts

such as Host 1, Host 2 and Host 3, 1 OpenFlow Switch, and
1 Controller. Host 2 will act as an attacker, Host 3 as a
regular user and Host 1 as a victim. At the first time, Host 3
will send a normal packet to Host 1 and then Host 2 and 3
will send attack packet to Host 1. Ryu controller is selected
because it provides distinct API software components. In
this experiment, there are two scenarios with representing
traffic in Telkom Corp. network to simulate normal traffic
with sudden change and DDoS attack traffic. After analysis
the Telkom Corp. Mean Router Traffic Gateway (MRTG); it
is found that there is two type of traffic in Telkom network,
uniform, and un-uniform.

A. Scenario 1

This scenario will test how both methods, previous
method, and improved method, to detect normal traffic with
a suddenly increased traffic, in unflat condition. The attacker
sends 20M and the maximum legitimate traffic set to 6M.
We choose the 6M value from the highest traffic value 5M
added by 1M, just in case if there is an increase in traffic that
exceeds the maximum traffic. However, it should be not too
high from the average, so we believe the 6M represents the
highest traffic on this traffic pattern. The testing is on the
first traffic pattern mimicking the real traffic on Telkom ISP
user. This testing will try to use 2 attackers. We called this
traffic pattern as Traffic A.

B. Scenario 2

In this scenario, previous method and improvement
method will be tested to detect attack traffic with the flat
condition. The attacker sends 20M, and the maximum
legitimate traffic set to 9M. We choose the 9M value from
the highest traffic value 8M added by 1M, just in case if
there is an increase in traffic that exceeds the maximum
traffic. However, it should be not too high from the average,
so we believe the 6M represents the highest traffic on this
traffic pattern. The testing is on the first traffic pattern
mimicking the real traffic. This testing will try to use 2
attackers. We called this traffic pattern as Traffic B.

On implementing experiment scenario, there are three
main steps such as creates Mininet simulator environment
where all simulation get a place, run controller with
detection method in it, and run Iperf to generate IP traffic.

368

C. Experiment Result of Scenario 1

In this scenario, the real traffic data of Telkom Corp. is
used, by mimicking them with traffic generator, first let the
traffic generator run based on mimicking data traffic that
represents active user traffic. In Fig. 9, at second 208, there
is injected UDP traffic as an attack. Every second, the
controller will pool 60 values to the array and calculate the
mean and the 6sigma of it. The controller will always
calculate this value and will compare the next value of traffic
with the mean and Six-Sigma.

The Mean of 60 pool of traffic from second 147 to 207 is
1.49, the sigma value of the 60 pool traffic is 1.06. The
traffic at second 208 is 20m as attack traffic; when it is
subtracted from the mean, the value is above the threshold of
both Six-Sigma and three-sigma. It is detected as an attack.

It used the real traffic data of Telkom Indonesia Corp., by
mimicking them with traffic generator. First, we let the
traffic generator run based on mimicking data traffic as
active user traffic. In Fig. 10, at second 208, we inject the
UDP traffic as legitimate. Every second, the controller will
pool 60 values to the array and calculate the mean and the
6sigma of it. The controller will always calculate this value
and will compare the next value of traffic with the mean and
Six-Sigma.

D. Experiment Result of Scenario 2

We use the real traffic data, by mimicking them with
traffic generator. First, we let the traffic generator run based
on mimicking data traffic as infrequent user traffic, we want
to know is the three-sigma, or Six-Sigma can detect an
attack on the flat tendencies traffic.

In Fig. 11 at second 208, we inject the UDP traffic as
Attack. Every second, the controller will pool 60 values to
the array and calculate the mean and the 6sigma of it. The
controller will always calculate this value and will compare
the next value of traffic with the mean and Six-Sigma.

Fig. 9 20M traffic injected on second 208

Fig. 10 6M legitimate traffic on second 208

Fig. 11 20M traffic injected on second 162

The Mean of 60 pool of traffic from second 103 to 162 is

3.51, the sigma value of the 60 pool traffic is 1.73. The
traffic at second 163 is 20m as attack traffic when it is
subtracted from the mean; the value is above the threshold of
both Six-Sigma and three-sigma. It is detected as an attack.

We use the real traffic data, by mimicking them with
traffic generator. First, we let the traffic generator run based
on mimicking data traffic as infrequent user traffic. In Fig.
12, at second 208, we inject the UDP traffic as legitimate.
Every second, the controller will pool 60 values to the array
and calculate the mean and the 6sigma of it. The controller
will always calculate this value and will compare the next
value of traffic with the mean and Six-Sigma.

E. Data Presentation and Analysis

The Mean of 60 pool of traffic from second 147 to 207 is
1.49 while the sigma value of the 60 pool traffic is 1.06. The
traffic at second 208 is 6M as legitimate traffic when it is
subtracted from the mean, the value of last traffic is above
the threshold of three-sigma, and it is detected as an attack.
However, otherwise, it bellows the Six-Sigma threshold, so
it is not detected as an attack. To understand this we will see
Table 2, the difference value of the last traffic value and the
mean present by (Q1-M) column, the 3sigma or 6sigma
present by (sigma 60) column. Those values are compared.
If the values of the (Q1-M) are bigger than the Sigma (60), it
categorized as DDoS.

The Mean of 60 pool of traffic from second 103 to 162 is
3.51 while the sigma value of the 60 pool traffic is 1.73. The
traffic at second 208 is 9m as legitimate traffic when it is
subtracted from the mean, the value of the last traffic is
above the threshold of three-sigma, and it is detected as an
attack. However, otherwise, it is bellowing the Six-Sigma
threshold, so it is not detected as an attack. To understand
this we will see Table 3, the difference value of the last
traffic value and the mean present by (Q1-M) column, the
3sigma or 6sigma present by (sigma 60) column. Those
values are compared. If the value of the (Q1-M) is bigger
than the sigma (60), it categorized as DDoS.

Fig. 12 6M legitimate traffic on second 162

Second

Mb/s

Mb/s

Second

Mb/s

Second

Mb/s

Second

369

TABLE II
COMPARISON BETWEEN TESTING SCENARIO 1

Sigma Traffic Attack μ(60) Q1-μ σ (60) Result

Previous
Method
(3sigma)

20M Yes 1.49 18.51 3.19 Detected

6M No 1.49 4.51 3.19 Detected

Proposed
Method
(6sigma)

20M Yes 1.49 18.51 6.38 Detected

6M No 1.49 4.51 6.38
Not

detected

TABLE III

COMPARISON BETWEEN TESTING SCENARIO 2

Sigma Traffic Traffic
Type μ(60) Q1-

M
σ

(60) Result

Previous
Method
(3sigma)

20M Attack 3.51 16.49 5.19 Detected

9M Normal 3.51 5.49 5.19 Detected

Proposed
Method
(6sigma)

20M Attack 3.51 16.49 10.38 Detected

9M Normal 3.51 5/49 10.38
Not

Detected

F. Discussion and Summary Research Findings

In the aspect of simplicity, SDN controller can be
programmed with a high-level programming language to
implement low-level rules forwarding hardware, to
implement the detection mechanism; we only use 2 functions,
for the packet statistic pooling and the detection function. In
the traditional network, it is tough to program high-level
programming language; it only has to use the low-level rules.

For the detection accuracy, Table 2 and Table 3 present
the result of a testing scenario. The result is that both three-
sigma and Six-Sigma can detect the DDoS Attack. However,
the three-sigma also detected the legitimate traffic as
anomaly traffic, in that scenario the three-sigma have the
false positive rate of 50%, in the Six-Sigma they have 0% of
false positive. It is due to the threshold that shaped by three-
sigma are too low. On the contrary, the improved Six-Sigma
could detect the anomaly traffic and let the legitimate traffic
not detected as an anomaly. It is due to the Six-Sigma
shaping threshold above the three-sigma shaped threshold.
The false positive value that we get shows an extreme
percentage due to lack of traffic scenario; it is because the
data traffic patterns that we get from the ISP only have 2
types.

IV. CONCLUSIONS

Based on several experiments have been performed, the
results show that the use of Six-Sigma as threshold have
better accuracy than using three-sigma. Six-Sigma has lower
false positive than three-sigma. It is because the three-sigma
threshold is too low and the gap of the routine traffic is too
narrow, so when there is the high increase of traffic, it will
be detected as an attack. The Six-Sigma otherwise, shows
much of gap for the legitimate traffic to expand and not
detected as an attack. The results show the proposed method
could improve the accuracy of DDoS attack detection on
SDN environment, either in constant or fluctuating traffic,
by reducing the false positive. The performance is about 50%
more accurate than the previous method.

ACKNOWLEDGMENT

Authors thank Telkom University under Research and
Community Service Bureau (PPM) program for publication
incentive. Also, thank Telkom Indonesia Corp. for financial
support. Last but not least our colleague in the graduate
program of Telkom University.

REFERENCES
[1] B. B. Gupta, Manoj Misra, R. C. Joshi, An ISP Level Solution to

Combat DDoS Attacks using Combined Statistical Based Approach,
2008.

[2] Mousavi, S.M “Early Detection of DDoS Attacks in Software
Defined Networks Controller.” Carleton University. Canada.
https://curve.carleton.ca/system/files/etd/. 2014.

[3] Yadav, A., Radadiya, M., Tilva, M., Rohokale, V. “SDN Control
Plan Security in Cloud Computing Against DDOS Attack.”
www.ijariie.com. 2016.

[4] C. Dillon, M. Berkelaar, “OpenFlow (D)DoS Mitigation,” 2014
[5] S. Das, G. Parulkar, N. McKeown, “Unifying Packet and Circuit

Networks,” Below IP Networking (BIPN), November 2009. (S, G, &
N, 2009)

[6] Alvaro Garcia de la Villa, Tuomas Aura, Aapo Kalliola, Distributed
Denial of Service Attacks defenses and OpenFlow: Implementing
denial-of-service defense mechanisms with software-defined
networking, 2014.

[7] Saurav Das, Guru Parulkar, Nick McKeown. Unifying Packet and
Circuit Switched Networks with OpenFlow. 2009

[8] Siamak Azodolmolky, software-defined network with OpenFlow,
2013

[9] Varun Tiwari, Rushit Parekh, and Vishal Patel. A Survey on
Vulnerabilities of OpenFlow Network and its Impact on
SDN/OpenFlow Controller. in World Academics Journal of
Engineering Sciences 2014

[10] Wolfgang Braun, Michael Menth, Software-Defined Networking
Using OpenFlow: Protocols, Applications and Architectural Design
Choices, 2014.

[11] Chun-Yu Hsu, Pang-Wei Tsai, Hou-Yi Chou, Mon-Yen Luo, Chu-
Sing Yang, 1A Flow-based Method to Measure Traffic Statistics in
Software Defined Network, 2014.

[12] S. Akbar Mehdi, J. Khalid, and S. Ali Khayam Revisiting Traffic
Anomaly Detection using Software-Defined Networking, 2011

[13] Open Networking Foundation, OpenFlow Switch Speci_cation v1.0,
2009

370

