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Abstract— Quantifying diseased areas in plant leaves is an important procedure in agriculture, as it contributes to crop monitoring
and decision-making for crop protection. It is, however, a time-consuming and very subjective manual procedure whose automation
is, therefore, highly expected. This work proposes a new method for the automatic segmentation of diseased leaf areas. The method
used the Simple Linear Iterative Clustering (SLIC) algorithm to group similar-color pixels together into regions called superpixels.
The color features of superpixel clusters were used to train artificial neural networks (ANNSs) for the classification of superpixels as
healthy or not healthy. These network parameters were heuristically tuned by choosing the network with the best classification
performance to obtain the automatic segmentation of the diseased areas. The performance of the classifier was measured by
comparing its automatic segmentations with those manually made from a database with public and private images divided into nine
groups by visual symptom and plant. The mean error of the area obtained was always below 11%, and the average F-score was 0.67,
which is higher than that found by the other two approaches reported in the literature (0.57 and 0.58) and used here for comparison.

Keywords— segmentation; superpixels; leaf diseases.

I. INTRODUCTION

Estimating the severity of leaf diseases reliably is an
overriding activity to predict yield losses, to monitor and
forecast epidemics, to evaluate the resistance of plants to
diseases, etc. However, not only is this procedure time-
consuming, it requires qualified personnel [1]. Automatic
segmentation of diseased leaf areas using image-processing
techniques could provide solutions to such problems, though
it reports its own extrinsic and intrinsic challenges. Extrinsic
issues are those related to image acquisition artifacts such asp.
changes in illumination and specular reflections, among =,
others. Intrinsic issues, on the other hand, refer to processing a8+
problems such as ambiguous disease boundaries, multiple "¢ W,
disease visual symptoms, and leaf isolation in a complex_ " — e - , , .
background [2]. Table I briefly summarizes these problems. Fig. 1 Leqf s_ample_lm_ag(_e of a Peruvian native tree called Cherimoya, in

) ’ i ~'2* which extrinsic and intrinsic problems are seen.

Figure 1 shows a Cherimoya leaf. In it, some extrinsic

issues become evident: specular reflection and changes in |t should be noted that many of these challenges also arise
illumination due to the position of the sun now of taking the \hen trying to quantify the severity of diseases manually. A
picture. Intrinsic issues are also visible: Interest leaf isolation common example would be the subjectivity in the definition
will not be an easy task, as the background is complex antyf disease boundaries; that is, the capacity to determine
composed of similar leaves, stems and soil; there is moréyhere sick or healthy tissue begins or ends. Due to these
than one visual symptom, and the yellow area boundariesyifficuities, many studies have focused on specific plants
are diffuse and difficult to determine, in contrast to the ang diseases, thus reducing the complexity of the task. For
dark areas with more defined edges. example, in [3], Clémentt al. developed a tool for the
quantification of bleached areas in Plane tree leaves caused

-
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TABLE |
CHALLENGES INAUTOMATIC SEGMENTATION OF DISEASEDAREAS

Extrinsic Intrinsic
Relatlve. t.ollmage Relative to leaf and disease
acquisition

Changes in illumination:

which would result in false positives. On the other hand,
doing only a global analysis would cause to lose local
positional features.

In this work, superpixels have been used as a mechanism
to preserve neighborhood features, grouping pixels together
by color and spatial proximity. Later, a classifier (neural

o Different features:
Healthy or sick tissue areas .
. The same disease could
may look darker or brighter ; S
. . manifest in different colors dug
and show visual differences .
. . to the stage of the disease or
between images or even in the A L
) changes in illumination.
same image.
Specular reflections:
They are produced by
sunlight or any other source
of reflection on leaf surfaces.
Some leaves are more
reflective than others.
Shades:
Other leaves, stems or even
the leaf itself, by its bending,
may obstruct sunlight and
produce shade.

network) was trained using the superpixel features,
generating binary masks that were then checked against the
labeled reference images (ground truth). Reference image
labeling is a determining and time-consuming procedure for
the correct evaluation of classifiers and comparison with
other approaches.

Although the Plant Village project [11] tried to offer a
free plant image database (it was discontinued due to
operating costs), there were no ground-truth images to be
used as a reference. This is even more critical when we talk
about more recent techniques such as deep learning, which
requires not only computationally expensive training.
However, a large number of training images and therefore
manually labeled images.

This work is divided as follows. Section Il introduces the
set of images used, the superpixel generation procedure
based on color and position, the parameters followed for
artificial neural network design, and the quantitative
by Corythucha ciliata. In [4], Kruseet al. comparedfour validation procedure. Section Ill reports the results obtained
methods to classify pixels of clover leave exposed towhen quantitatively comparing the proposed method with
ground-level ozone; they reported the LDA (Linear other methods. In Section IV, the results are discussed.
Discriminant Analysis) classifier as the best of those Finally, in Section V, the conclusions are presented.
evaluated. In [5], Pydipatt al. quantified diseased tissues
in grapefruit leaves (Duncan variety) using texture metrics Il.

on the HSI color transform under laboratory conditions. In The proposed methodology used a multilayer perceptron
[6], Zhouet al. used a 2D color histogram to train a Support peyral network to classify superpixels as healthy or not. The
Vector Machine (SVM) classifier and determine if the tissue ¢jassifier was built using color characteristics taken from

is damaged or not. In [7], Phadikeral. proposed a Fermi  training superpixels (Figure 2); these characteristics were
energy-based method for the automatic segmentation ofcolor transformations from the original image. In this section,
diseased areas in rice leaves. Using images of Oil Palmye wjll describe the image database used and the conditions
trees’ crown taken from a drone, Makéyal. [8] used ratios iy which pictures were taken. Also, we will detail the

between color channels to find relationships with proposed methodology’s most important blocks for image
chlorophyll content which could be used to determine prgcessing

whether the evaluated leaf area is ill or not.
Not many research studies have tried to solve theA. Image database

automatic segmentation problem covering more than one Two hundred seventy-nine images of leaves were used, as
disease in different plants. In [9], Camargo & Smith djvided into nine different groups by plant and disease.
developed a method based on the analysis of the channefaple I provides a list of these groups, as well as a brief
histograms from their color model (I3a, 13b, H) overall description of the visual manifestation of the disease and the
image. This analysis was used to perform adequatenumber of samples per group.
thresholding and generate masks that were then combined A hundred and twenty-nine images belong to avocado,
based on the maximum intensity values in each of themango, potato and quinoa leaves and were taken from
histograms. In [10], Barbedo developed a method for experimental crops from the Agro-Industrial Innovation
diseased area segmentation that uses two relationshipgenter for the Productivity (CITE) in Moquegua, the
obtained through pixel-level operations between RGB color National Institute of Agrarian Innovation (INIA) in
channels to generate binary masks. Then, Boolean ambayeque, the International Potato Center (CIP) in Lima
operations are applied to such binary masks to obtain theand INIA in Lima, respectively. Images show leaves with
result. visual disease symptoms in a complex background
However, these studies report problems when evaluatingcomposed of stems, other leaves, soil, among others (as
diffuse diseased areas, probably because assessing featurgfown in Figure 1). They were taken under natural light
pixel by pixel or globally is not as suitable as doing it taking conditions using a 5 MP (2592x1944 pixels) camera from a
into account neighboring pixels instead. Evaluating diffuse GT N5110 Samsung tablet. These images were cut so we
areas using algorithms that take into account only pixel-levelonly had in focus leaf of interest. The images were
data would lead to losing information, as the intensity resampled, so the smaller size is 600 pixels length. Images
distribution of neighboring pixels would not be considered, resulted in a final approximate resolution of 600x900.

Undefined boundaries:
Subjectivity to determine
where sick tissue begins and
where it ends (see Fig.1).

Complex background:
Isolating the leaf under study
could be challenging if the
background is not uniform.

Stems:
Some stems share the same
color with sick tissue.

Other elements:
Soil or insects on the leaves.

MATERIAL AND METHOD
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G ACQUISTON (Cb) and red chrominance Cf) color model, with
componentsl, (X,y), 15X y) andl. (X Yy).
l For automatic background extraction, we have used
BACKGROUND AR s masks obtained by thresholding, which varies depending on
‘ o the group the image belongs (see Table Il). Such masks are
+ . generated as follows:
TEST SAMPLES TRAINING SAMPLES
l Groupn=1
i s 1, 02<lI, Kk,y)<051
X, Y) = i 1
SUPERPIXELS SUPERPIXELES TRAINING BINARY MASKS bl( y) {0 , otherwise ( )
i Groupn=2
N 1, I &,y)<048
TRAINING SUPERPIXELS posttions b Xl = . 2
2(%.Y) {0 , otherwise @
l Groupn=3
FEATURE EXTRACTION FEATURE EXTRACTION 1 1 011< I S (X1 y) < 1
X, Y) = . 3
| e % 00Y) {0 , otherwise ®)
Groupn=5
BUILD CLASSIFIER 1 , I o(,y)< 051
bs(x.y) = Y . 4)
| 0, otherwise
szst ¥
CLASSIFIER . . .
Thus, a region of interest segmentation (only leaves) can be
l computed as:
RESULTS COMPARISON v .
IR(XIy): IR(Xiy)'bn(X! y) (5)
Fig. 2 Flowchart of the proposed method. I-G x,y) =l (X, y)b, (X ) (6)
The rest of the images were acquired from the Plant -
0 ] 16 (06,Y) = 16 (06, Y) b, (%, ¥) (7)

Village website. They belong to apple or grape leaves with
visual disease symptoms in a uniform background,;
uniformity was obtained by placing a gray or black paper
under the leaf of interest. Images have an approximatec Training and test samples
resolution of 600 x 800 pixels and 24-bit color depth and
were taken under natural light conditions with a Sony DSC-
Rx100/B 20.2 MP digital camera. For more information, see

wheren specifies the group the image analyzed belongs.

Sixty-eight representative images (25% of total), as
classified into the nine different groups (each one with its

[11]. corresponding binary mask), were chosen as training
All of the images have 24-bits color depth (true color Samples (see Figure 3). o

RGB) with primary componentd ,(x,y) , I.(xy) and Images with diseased areas in different parts of the leaf
| RIS e (apex, veins, center) were selected so that a good
s (XY)- generalization is guaranteed when training our classifier. The

remaining images became test samples used to verify the

B. Background extraction X o
proper operation of the classifier.

We specified that complex background consists of stems,
other leaves, soil, among others (as shown in Figure 1) a®. Binary masks

this is a challenging tasI@ which is sti_II under study [12], Binary masks were made from the images of isolated
some approaches use images acquired under controlleghyyes (Figure 3). Binary masks show diseased areas in
conditions [13]. The images used for this study have either a,ita and the rest in black. They were also divided into

uniform or a complex background that must be removed 5ining and test groups; the first is used to generate data for
before any procedure for diseased tissue segmentation. our neural network training, while the latter is used to

Thus, complex backgrounds (Groups n = 4, 6, 7, 8 and 9 — antify our method's results and compare them with the
Table 1) were manually removed using free selection tool

X X approaches of Camargo [9] and Barbedo[10].
(Lasso tool) from GIMP 2.8 software, while uniform
backgrounds (Groups n = 1, 2, 3 and 5 — Table I) wereE. Superpixel generation
automatically removed by thresholding one of the channels  gyperpixels are groups of pixels with common features;

of the image transformeq into the hir) (saturation § and they serve to make calculations on wider regions, thus

value) color model, with components;, (X,y), 1s(x,y) accelerating the computational speed and avoiding some

and I, (x,y), or to the luminanceY], blue chrominance artifacts generated when evaluating the images at a pixel
level.
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TABLE Il

SET OF IMAGESUSED

Group n P!?nt and Visual description Samples
isease
1 Apple, scab Black or dark gray 30
lesions on the leaf
surface.
2 Apple, black | Circular light lesions 30
rot with reddish or purplish
margins.
3 Apple, cedar | Small bright yellow 30
apple rust spots that gradually
enlarge and change color
to orange. They may
show brighter concentrig
rings.
4 Avocado . . 30
: Necrosis: Dark margins.
necrosis and T
. . Infection: Yellow spots.
infection
5 Grape, black | Circular black or brown | 30
rot lesion.
6 Mango, Brown spots with dark | 30
necrosis margins.
7 Potato, White, black, brown and| 39
Alternaria yellow spots.
8 Peach, Brown or black spots 30
bacterial spot| with a yellow halo.
9 Q_umoa, Yellow spots. 30
mildew
Total 279

There are numerous techniques to generate superpixels. 4

review of such techniques is presented in [14].

superpixel generation, we have used the approach presente
in [15], which adapted the k-means grouping method to
obtain the SLIC algorithm in which superpixels are produced
from the groups obtained by proximity, as measured with a

For

non-obvious distanc®(x,y) from the 5-dimensional space

generated by the CIELAB color

model (with components

I (xY), I,(xy) andl (x,y)) and from the position of
the pixels in the image plangy).

SLIC takes as input the quantil§ of superpixels that is
desired and follows the next procedure:

Step 1. The approximate sté{ between each group

center is calculated as:

M

whereN is the number of pixels of the evaluated image, and

= /N/K

K is the number of superpixels required.

Step 2:K centers of clusters are locateg, (y, ); these

®)

centers are points in a 5-dimensional space, three of th

dimensions being defined by CIELAB color space channels

(1.(xy), 1,(x,y) andl,(x,y)) and two by the position of
pixels y) in the image plane. The initi&l centers &, y, )
are separated by a distandeand are laid out in the space

(xy)-

Step 3: Then, theg€ centers are relocated to pixels with

smaller gradient values in @ x v window, in order to
diminish the likelihood of centers being located in an edge or
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noisy pixel. Gradients in a pixel locatedxjyy are calculated
as follows:

Fo&y)=II &+ 1y)-1, (x-1y)P

. . ) (9)
I &y+ D=1 xy-D|
' —n' 1 2
Fa éf,y =11, (X+Ily) l.x=1y)l (10)
+ L &y + D=1, &y -
f )=l Gyl
+ Iy Gy + D=1, y-DF
The symbol “||” is the euclidian norm and the square window

has a side = 3. The new centers are defined &g, {, ).

Step 4: Subsequently, the pixels inM 8 2M window at
eachK center is assigned to the nearest center measured at a
distance D(x,y). Distance D(x,y) is not the Euclidean
distance. Such distance considers the size of the superpixels
to be generated and it is calculated as follows:

2 2
De (% Y) = |dc2(x,y) + (WJ m (1)

Group 1

Fig. 3 Samles of representative images with no background and their
corresponding manually generated ground-truth images.



Where dc, and ds, being theEuclidean distance in colour
space (LAB) and spatial coordinates respectively.

ac2 (x,y) = (1L 0 y) = 11 (e, 90

G. Feature extraction

All the nine features correspond to the average values of
the superpixel in every channel of the RGB color model and
to the color transformations of these average values to the

f T 2 i
+(|a(X- y)- Ia(xk1yk)) (13) HSV and YCbCr models. The result will be a veckr of

(10609~ 1s e viOf

nine elements per superpixel defined as:

(15)

wherek is the superpixel number of imageThe following

ds? (%, ) = (x= % +(y = %) (14) equations determine the elements of the vector:
—t 1 Rl
Parametem allows us to weigh the importance between R« =Ferkt (Xj k2 Yix) (16)
j=0
the similarity of color (dc, ) and the spatial proximityds, ). <
After this, K centers positions are recalculated as the average =
pixel position that belongs to the same group. Théh,x2 Gk =F Lg, X ks Vi) (17)
2M square windows centered at the new superpixels centers k j=0
are defined again, and the procedure is repeated ten times
forcing connectivity in every iteration. This procedure 1% .
results inK superpixels whose final centers are defined as B :FZLbk (X0 Yix) (18)
( Xox»Yox ) for k = 0,1,..., K-1. Figure 4 shows the ks
superpixels’ boundaries for iteration 1, 5 and 10. Note how
they increase their regularity in every iteration. _ o_5(§tk —Etkj +(ﬁf< —Etk)
We define pixels primary components which belong to HL =cos? 5 (19)
superpixel k from isolated imaget as Lr/ (X, V) . (ﬁi —a() +(ﬁtk —EL)(EL —EL)
Lgy (X; . Y;x) andLb, (x; ., y;,) . Here, (x;,.y;,) are the
pixel coordinates which make up superpikelThenj has ot 3 L=t =t =t
valuesj = 0,1,...,P — 1, whereP, is the number of pixels SeFlr———— m'r(Rk’Gk'Bkj (20)
. ; . Rk + Gk + Bk
which determine superpix&l
F. Training superpixels V. = ma{ﬁl ,EL,ELJ 1)
Training superpixels were taken from pixel positions as
randomly chosen from every representative image. Using . _ _ _
ground-truth images, pixels were taken so that they belong to Yk= 0068 025Rk + 050&« + 0098Bk (22)
healthy and diseased areas equally. The location of each
pixel corresponds to an image superpixel, our training data —t _ =t —t —t
will be then obtained from these superpixels. Cbx = 0502 0148k — 029Gk + 043Bi  (23)
Original i=1 —t —t —t —t
) Crx = 0502 043Bk - 036&k — 0071Bk (24)

Fig. 4 Superpxels’ boundaries for iteration 1,5 and 10 in quinoa leaf.
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Use of ground-truth
images to randemly
select healthy and
discascd positions.

Associatec pixel in Asscciated
sample image superpixel

Fig. 5 Procedure to obtain training features.

A summary of the procedure used to obtain training features
is shown in figure 5.

Features totrain
neural netwerk



H. Classifier

Inspired by the mechanisms of communication between
biological neurons, artificial neural networks (ANNS) consist
of layers in which various artificial neurons are found. The
neurons between one layer and the other are connected by
links that simulate the synapse of their biological equals and
whose intensity is governed by weights or parameters (W).
These computing systems are usually used as classifiers. The
first layer contains the input data, while the class
corresponding to the input data is obtained from the last
layer; between both, there are hidden layers whose
parameters adapt to extract relevant information from the
input data and perform the classification task through linear
and non-linear transformations.

Figure 6 shows the artificial neural network architecture

used in this work. The input vectoﬁ( propagates through

the network. where WeightW determine each neuron’s Fig. 6 Architecture of the artificial neural network used in this work.
contribution to the other neurons in the posterior layer. Each B B _ L

neuron is activated based on the activation function x|t<’5 = SL. xf(yﬁ =VL, xlt(’7 =YL, xf(B = CbL and
Training is an iterative procedure whose objective is to find .

the weights W that decrease the error, which is the X,t(’g =Cr); v\ﬁyi , represents the weight that links the

i
difference of the targef, and the outpus of the artificial

neural network.

Thus, ANNs are non-linear modeling tools seeking trend coefficient (bias) in neurgnof the first layer;net, |,
relationships between previously known inputs and outputsis the value as calculated according to the propagation rule
for supervised training. This training process consisted infor neuronj, which will be evaluated in the activation
changing the weights of the connections between neuronsunction f,. The sigmoid hyperbolic tangent of the input

according to pre-established rules in the training algorithm yafines the activation function fiet! . Then, the output of
and reducing the error of the ANN output compared to the .
target associated with the input data. the neural networkg, ) can be computed as:

In this case, superpixels were classified as healthy or not

INPUTS.

TARGET
T

BACK-PROPAGATION

hidden neuron with the input neuror; 9]1 represents the

healthy based on their color featur¥$, as specified in 1 O, . - ,

section G, which were used as input data to the neural Sk = fz(z Picj Waj +91J:Z PejWy; +6  (28)
network. The corresponding targéltlé were taken from the J J

manually-created binary masks. In this case, the activation function of the neuron in the

In this ANN, a single-hidden-layer topology has been
established, in which the number of neurons has been foun
using the relationship proposed in [16]. that connects the output neuron with the neuron of the

hidden layerj; 912, represents the bias coefficient in the

neuron of the output layer. The weight training algorithm is
back-propagation, and it modifies the weights depending on

ethe errors found when comparing the outgtwith the

é)utput layer 1) is proportional;wjzyi, represents the weight

r<2Q+1 (25)

whereQ is the number of inputs to the neural network, and
is the number of neurons in the hidden layer (in this case w
have considered = 19). Likewise, the output of each of the targetTy.
neurons in the hidden layemp) is determined by the

propagation rule and the activation function of the neurons

t t t
erron, = s, — T, 29
shown in the following equations: k=% (29)

A detailed explanation of the algorithm is found in [16].

9
nety ; = ZXIEJW}J +6 (26) I.  Performance measures
= Performance measures used for this study have been
Py = fl(net;_):#_l 27) obtained by comparing the classification masks resulting
! . 1+e—2naﬁ,j from the method evaluated with the manually created binary

masks. This allowed us to analyze different methodologies
quantitatively. The following indices were used as diagnostic
measures: True positive3R), which represent the number

; t 5l oyt —@l oyt _R oyt gt of well-classified diseased pixels; true negatives)( which
(n thigase Xig =R, Xiz =Gk, Xia = Bl Xicg = Hi represent the number of well-classified healthy pixels; false

where Xiis represents the input i
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positives FP), which represent the number of healthy pixels

compared with [9], whose index ranged from 0.28 to 0.58, or

incorrectly classified as diseased pixels; and false negativeg10], which ranged from 0.21 to 0.73 (Figure 7).

(FN), which represent the number of diseased pixels
incorrectly classified as healthy pixels. Another performance
measure used was accuraddC(C), whose calculation is
obtained using the next equation.

AcC o TP+TN
TP+TN +FP+FN

(30)

Additionally, the F-score and the Jaccard inde} (vere
calculated according to the following equations:

F —score= ZXM (31)
TPR + PRE
TP+FP+FN

whereTPR is the true positive rate and is calculated @R

= TP/(TP + FN); PRE is the precision, whose calculation is
governed byPRE = TP/(TP + FP). The F-score and the
Jaccard index are used because they correctly combine an
penalize the similarities and differences between the
obtained and desired results [17].

An important application of diseased area segmentation
is the quantification of the infected area in the leaf under
study. To study this application, the error has been
calculated as the difference between the area obtained fro
the manually-segmented mask and the area of the ma
calculated with the method under study (According to [9],
[10] or the proposed method). The error is calculated as:

- |A:a]culated B Ananual|

ual

e x100

area

(33)

I1l. RESULTS ANDDISCUSSION

The method proposed has been compared with the
approaches in [9] and [10]. The comparison used the averag
TPR, ACC, F-score andlJ for each group. We have obtained
values consistently greater than those of other approache
thus demonstrating the robustness of our method. TPRe
of the proposed method is in range of 0.42 to 0.90, which is
higher than that of other approaches (Figure 7). AGE is
in the range of 0.55 to 0.98 and had similar variations that of
the other two methods whose variations are in the range o
0.58 to 0.94 and 0.7 to 0.98 for [9] and [10], respectively
(Figure 7).

The F-score is a complete measurement because it takes
into accountTPR and PRE values. The proposed method
showed average values ranging from 0.56 to 0.80 (Figure 7)
This range is narrower than the one of the methods propose
by [10] (0.33-0.83) and that [9] (0.38-0.73).

On the other hand, tHd, which can be understood as the
ratio between the intersection of the calculated mask and th
manual mask and their combination, also presented les
variable values in the proposed method (0.43-0.69) when
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nnnnnn

[——Barbedo
Fig. 7 Performance measurements of the methods proposed by Camargo [9],

Barbedo [10] and our method.

Camargo —— Proposed|

d Figure 8 shows one image per group with its manually-
created mask and the masks obtained when evaluating the
picture with the proposed method and with the other two
approaches. Images from groups 1, 8 and 9 show different
diffuse zones. The masks obtained using the methods in [9]
and [10] perform well only on the areas with strong visual
isease symptoms, such as veins (group 1) or necrotic edges
roup 8), but not on diffuse areas. In images of groups 2
and 5 (Figure 8), diseased areas are well contrasted with the
background, which results in a similar performance by all
three algorithms.

Evaluation of the area error allowed us to evaluate the use
of the approaches in practical situations. Figure 9 presents
quartiles and outliers in a boxplot diagram. In diagrams from
Figure 9, we can see that the median error of the estimated
diseased area using the proposed method is always below
10%, and in groups 1, 4, 5, 8 and 9, these values are lower
than those of the others two methods. In groups 2, 3, 6 and 7,

Fesults are comparable to those of the other methods.

However, the differences between the errors calculated with

Yhe other two methods are always under 6%. In the case of

the image group 2, the median error evaluated using [9] is
2.9%, the one using [10] is 0.32%, and the one using our
method is less than 0.5%; with the last two being quite
ccurate.

Enhance the improvements presented using the proposed
method can still. This becomes evident when we evaluate the
F-score and1J values (Figure 7); they achieve peak values
for image group 2 and lower values for image group 6. The
first belongs to apple leaves with a disease called black rot,

hose high contrast with the color of the leaf makes the task
asier. On the other hand, image group 6 consists of mango
leaves with prominent veins, which sometimes are mistaken
for diseased areas. As previously mentioned, most image
roups have an easy-to-classify area and a diffuse difficult-

o-classify area whose boundaries are not well defined. This
was noted by [10], who reported their results on the not
diffuse areas.
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Fig. 8 Sample visual comparison from disease segmentation using the method proposed for Camargo [9], Barbedo [10] and our method.




Group 1 Group 2 Group 3

20 f ] 80
60
¥ . 70
50 16
+ + + 60
* 4
40
50
@ a2 o
2 — 1 1
< 30 | < 107 = 40
v I o o $
-_T | 4 +
] I 8 ! 30
! I I
20 ' | 6+ L ] +
! 20 *
4r o+ 1 4 +
10 + ol
2r 1 ! 1
I S—— T j:
1 B - L ] | T ] [ ]
Proposed Camargo Barbedo Proposed Camargo Barbedo Proposed Camargo Barbedo
Group 4 Group 5 Group 6
+
%0
70 l
80

1
1
1
60 |
I
! 70
1
1

I
|
I
|
|
+ |
|
|
|
L

60

area

50 +

I
I
I
I
I
[—
@ 30 R S woF —T—
}
0 ‘ ° 30 i +
I
° 5 i } ' T = 1
! - 2 ! —— 10 [il +
0 PR R — |

- —— _

Proposed Camargo Barbedo Proposed Camargo Barbedo Proposed Camargo Barbedo

area
area

Grorp 7 Group 8 Group 9
+ 60 +
% +
T
80 1 .
80 I
70 + + 50
+ + 70
+
60 40
60 +
+
= 50 = ]
< I S 50 51
] E ERY
E | E |
@ 40 + N L 4 | 5}
+ | !
F 4 1 20 ! 20 !
20 i * +
' — 208 4 $ ol T i
I
b :l l_—l_l Ij ° : ‘
1 ]
I — 1 | —— o — e I

I
Proposed Camargo Barbedo Proposed Camargo Barbedo Proposed Camargo Barbedo

Fig. 9 Comparison of the area errors using the method proposed for Camargo [9], Barbedo [10] and our method.

In addition to the intrinsic challenges, there are also presence of very small diseased areas, because average color
extrinsic difficulties such as the presence of soil, shadows orfeatures might cause the same effect as saturated pixels. It
specular reflections, the latter being quite problematic should be noted that, while spatial color features are
because they are usually mistaken for disease, especially ilmportant, texture features, as evaluated here according to
images of plants whose leaves are very reflective, such asvork in [18], do not make significant contributions, but they
groups 4, 5 and 6, corresponding to leaves of avocado, grap@)crease the computational load and even generate false
and mango, respectively. Therefore, it is best to take intopositives FP). The reason is that the textures are generated
consideration these conditions when taking the picture. on grayscale images, thus losing vital data for the correct

Another important source of error is veins, which in some discrimination of affected areas. It is, therefore, necessary to
cases are similar to the leaf, but in others make a greaincorporate better color features that consider spatial data.
contrast with them; the color of diseased and healthy veins Image resolutions were slightly different with 600x800
usually differs from those of leaves. pixels for groups n = 1,2,3,5 and 800x900 pixels for the rest.

The issue was solved by using superpixels; part of the Therefore, as we have set the number of superpikglso(
veins was grouped with the leaf surface and, when averagind00, each superpixel has in average approximately 600 and
color values, their influence was reduced 650 pixels respectively. This makes 50 pixels of difference,

However, this does not usually occur with central veins, which, for a leave of 10 cm with 600x800 resolution,
as they are more prominent. As said before, a benefit ofrepresents approximately 0.8 mrmof the area which is a
using average color features on superpixels instead ofnegligible size for the naked eye. However, further work
common pixels is that the first incorporate leaf spatial color should be done to find how superpixels size alters
data and allow reducing some artifacts caused by pixelssegmentation.
saturated by illumination or edge pixels. These conditions The performance was also measured using different
cause many false positiveBR) when evaluating pixel by  classifiers. Table Il shows the-scores obtained using k-
pixel. Nonetheless, this benefit may be counteracted in thenearest neighbors (KNN, with 1 and 3 neighbors) which
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classifies new data based on labeled data (training data)
according to similarity with its k-neighborhoods, Support 3]
Vector Machine (SVM) and a Naive Bayesian Classifier
(NBC) reported in [19]. Results show that SVM and NBC
classifiers surpass the KNN classifier and their results
similar to those obtained with the artificial neural network;

- . . 4
improvements are mainly due to the use of superpixels. 4

TABLE Il
F-SCORESRESULTS WITHDIFFERENTCLASSIFIERS
Group KNN(L) KNN(3) SVM | NBC 5
1 0518 0525 0541 | 0475
2 0728 0.689 0765 | 0.784 (6]
3 0575 0547 0627 | 0581
4 0738 0.760 0735 | 0.803
5 0.708 0716 0754 | 0.688
6 0.557 0.532 0576 | 0.484 (7]
7 0623 0627 0670 | 0631
8 0.647 0.605 0719 | 0.74
9 0.559 0.561 0549 | 0591 8]

IV. CONCLUSIONS

The proposed method for the segmentation and estimation
of diseased areas in plant leaves reports consistent resul
and, in most of the studied cases, shows a performance
higher than that of the methods used for comparison. This
means that the method allows detecting diseased areas basé&tf]
on a wide arrange of visual symptoms in a short time as the
computational cost is not high. Like the other methods, the
presence of specular reflections, shadows, and soil at thg11]
moment of taking the picture pose some difficulties that
need to be taken into consideration. However, our method[12]
preserves neighboring characteristics that allow us to
perform a proper segmentation even in diffuse areas where

the other approaches are imprecise. [13]
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