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Abstract— Artificial Neural Networks (ANN) form a dynamic architecture for machine learning and have attained significant 
capabilities in various fields. It is a combination of interrelated calculation elements and derives outputs for new inputs after being 
trained. This study introduced a new mechanism utilizing ANN which was trained using Bayesian Regularization Back Propagation 
(BRBP) to improve the computational cost problem of the existing algorithm of the Generalized Singular Value Decomposition-based 
Linear Discriminant Analysis (LDA/GSVD). The proposed approach can minimize the number of iterations and mathematical 
processes of the existing LDA/GSVD algorithm which suffers time complexity. Through simulation using BLE RSSI Dataset from 
UCI which has 105 classes and 13 dimensions with 1420 instances, it was found out that ANN improved the computational cost during 
the classification of the data up to 57.14% while maintaining its accuracy. This new technique is recommended when classifying big 
data, and for pattern analysis as well. 
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I. INTRODUCTION 

Classification is one of data mining’s approaches in which 
it is used to forecast, assign or predict hidden occurrences to 
their predefined groups [1]. It is mostly employed to 
evaluate a given dataset, consider each item of it, and 
allocates this item to a specific group [2]. There are some 
types of classification algorithms which include ID3, K-
Nearest Neighbor (KNN) classifier, C4.5, Naive Bayes, 
Artificial Neural Network (ANN), Support Vector Machine 
(SVM), and Linear Discriminant Analysis (LDA) [2, 3].  

Thus, it was found out that LDA outperformed other 
classification models and algorithms [3], and has been 
utilized widely in the previous years for dimensionality 
reduction, detection, and supervised learning [4]. It has been 
extensively employed as well in numerous applications [5-
12].  It is supervised learning [13, 14] which intends for 
ideal conversion directions by reducing usual within-class 
scatter and make most of the average between-class scatter. 
Further, LDA has other advantages such as (a) inexpensive 
application; (b) adapts in discriminating non-linear datasets; 
and (c) coherence to Bayesian classification [15, 16]. Also, it 
surpasses PCA concerning classification performance [17]. 

It has the benefit of looking for projection vector that 
produces ideal discrimination among different collections of 
observations [18]. However, it fails when the matrix is 
singular due to small sample size (SSS) problem [8, 19, 20] 
which happens if the quantity of the training vectors is less 
than the dimensions. Because of that, the calculation of 
eigenvalues and eigenvectors becomes unbearable [4, 8, 20, 
21]. 

To deal with SSS problem on LDA, there were several 
solutions proposed such as exponential discriminant analysis 
(EDA) technique which was suggested to solve the 
undersampled problem [22]. Other proposed method is the 
Spectral Regression Discriminant Analysis (SRDA) which 
casts discriminant analysis into a regression framework  [23]. 
The Regularized Discriminant Analysis offers a computation 
concerning the relationship among the dilemmas of multi-
class discriminant analysis and multivariate regression  [24]. 
Also, direct LDA (D-LDA) [25], MBLDA [20], and 
LDA/QR [26] are for classifying multidimensional data with 
fast learning capability. The two-stage method utilizing 
bidirectional LDA and RLDA was designed for two-
dimensional data only [14] while the split and combined 
approaches for LDA (SC-LDA) was developed to replace 
the full eigenvector decomposition [27]. However, the 
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widely used technique in solving SSS problem is the 
Generalized Singular Value Decomposition (GSVD) since it 
can overcome the mathematical problems integral in 
establishing the scatter matrices [28]. GSVD is also 
generally applied by various discriminant analysis 
approaches [21, 29], and a typical method for computing the 
matrix singular problems in different mathematical solutions 
[21, 30]. Moreover, GSVD on LDA (LDA/GSVD) provides 
extraordinary recognition accuracy [31] that is why many 
researchers used and developed variance of it. However, 
GSVD suffers from computational cost [12, 31-33] which 
can cause a longer time in classifying datasets when applied 
to LDA. 

Thus, the purpose of the study is to improve the 
computational cost of LDA/GSVD by utilizing Artificial 
Neural Network (ANN). This technique will eliminate the 
mathematical computations and numerous iterations that are 
involved in the existing LDA/GSVD algorithm which 
compromise time complexity making it less efficient. 
Further, if there is a new instance for classification in the 
existing LDA/GSVD, the whole process of the algorithm 
will be repeated from the very start. With the proposed 
enhanced LDA/GSVD, learning can be done from the 
datasets and classify each instance, whether new or 
previously part of the training or testing, will be faster 
because it will not go back to the start of the whole 
procedure.  

The use of ANN in developing the algorithm has the 
benefit of accuracy. Also, ANN is equipped with the 
uniqueness of concurrent processing, can learn and recall 
data relationships, and mapping of non-linear instances [34, 
35]. It is also used in several mathematical calculations [36]. 
ANNs are applied in several real-world purposes because of 
their capability concerning resiliency and stableness even in 
noisy data and for its fault tolerance [37]. Thus, the widely 
employed method is Back Propagation Neural Network 
(BPNN). It is composed of input layer, hidden layers, and 
output layer [38]. An example of BPNN is Bayesian 
Regularization Back Propagation (BRBP). BRBP offers 
robust approximation for difficult and noisy inputs. Thus, it 
works excellently by removing network weights which have 
no impact on the problem solving and presents 
improvements on evading the problems of local minima [37]. 
Furthermore, it delivers weights into a training function 
while advancing the simplification performance of the old 
BPNN automatically [38]. 

 Besides, the proposed new approach in this study aims to 
maintain the existing LDA/GSVD’s performance concerning 
its accuracy and to make its classification and prediction 
faster. Moreover, this new technique can also be adapted to 
other mathematical models or computations that implement 
GSVD. 

A simulation of the existing LDA/GSVD algorithm has 
been presented for comparison with the results of the 
simulation having the new approach which is the utilization 
of ANN regarding the computational cost or time complexity, 
and accuracy. 

 
 
 

II. MATERIAL AND METHOD 

The study simulates the existing and the enhanced 
approach for LDA/GSVD algorithms. Dataset from UCI was 
used during the simulation. This dataset comprises RSSI 
readings collected from a collection of Bluetooth Low 
Energy (BLE) iBeacons in a practical indoor setting for 
navigation and localization applications. There are 105 
classes, and 13 dimensions with 1420 instances in the dataset 
[39]. 

Table 1 shows parts of the dataset where dimensions are 
labeled initially from B3001 to B3013 which match to the 13 
iBeacons. RSSI values are negative. Thus, more essential 
RSSI values designate closer adjacency to a certain iBeacon. 
A value of -200 implies that the iBeacon is very far. For 
class labeling, the column and row of the iBeacon’s position 
on the map are employed (e.g., I04 means that it is for 
column I, row 4). 

 

TABLE I 
PARTS OF BLE RSSI DATASET 

  Class Label Dimension Name RSSI Value 

I04 

B3001 -75 
B3002 -198 
B3003 -200 
B3004 -200 
B3005 -200 
B3006 -200 
B3007 -200 
B3008 -200 
B3009 -74 
B3010 -200 
B3011 -200 
B3012 -200 
B3013 -200 

O02 

B3001 -200 
B3002 -200 
B3003 -200 
B3004 -200 
B3005 -200 
B3006 -200 
B3007 -200 
B3008 -200 
B3009 -74 
B3010 -200 
B3011 -200 
B3012 -200 
B3013 -200 

U01 

B3001 -200 
B3002 -200 
B3003 -200 
B3004 -80 
B3005 -200 
B3006 -200 
B3007 -200 
B3008 -200 
B3009 -200 
B3010 -200 
B3011 -200 
B3012 -200 
B3013 -200 

 
Figure 1 presents the bar graph of the class labels with the 

corresponding number of instances. It can be observed in 
figure 1 that there are classes which in some instances are 
lower than the number of dimensions such as D13, D14, E14, 
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F08, G15 and few others. Thus, it can lead to SSS problem 
on the classical LDA that is why LDA/GSVD shall be used. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Classes and number of instances of the BLE RSSI dataset 
 
The study introduced a new approach for LDA/GSVD by 

utilizing ANN. The tansigmoid transmission function was 
utilized for the hidden layers’ activation function. The flow 
of the procedure in training the enhanced algorithm is shown 
in figure 2, and the trained network’s architecture is 
presented in figure 3. The ANN architecture is formed from 
13 input variables which are the dimensions, and the 
corresponding 13 output variables are the expected feature 
subspaces. For the architecture to learn and predict the 

possible outcomes, the feature subspaces must be derived 
from the existing LDA/GSVD algorithm (table 2) since each 
dimension will have a corresponding feature subspace.  

These dimensions and feature subspaces will be used in 
training and testing. For the sampling, 70% of the instances 
of the dataset were allocated for training, and 30% for the 
testing. Moreover, in training of the network, Bayesian 
Regularization Back Propagation (BRBP) was employed. 

 

TABLE II 
EXISTING LDA/GSVD ALGORITHM 

Algorithm: Existing LDA/GSVD Algorithm  

For the matrix A ∈ Rm×n with k groups, it calculates the matrix’s 
columns G ∈ Rm×(k−1), which maintains the configured cluster 
dimensionally narrowed space, and determines (k − 1)-dimensional 
depiction Y of A. 

 
Step 1: Calculate Hw ∈ Rm×n and Hb ∈ Rm×k from A 
Step 2: Solve the K = (Hb,Hw)T ∈ R(k+n)×m for its orthogonal 
decomposition. 

 
 
 

Step 3: Let t = rank(K). 
Step 4: Calculate W from the SVD of P(1 : k,1 : t), which is 
UTP(1 : k,1 : t) W = ΣA. 
Step 5: Solve the first k − 1 columns of 

 
 
 
and allocate those to G. 

Step 6: Y = GTA. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2 Training process flowchart of the ANN for LDA/GSVD 
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After saving the trained network, it will become a module 
or subroutine that will be used to solve the expected new 
feature subspaces of the inputs. Thus, the algorithm (table 3) 
was used to compute the feature subspaces of the instances 
of the BLE RSSI dataset. 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3 Artificial Neural Network Architecture for the LDA/GSVD algorithm 

 

TABLE III 
COMPUTATION OF THE FEATURE SUBSPACES USING THE ENHANCED 

LDA/GSVD ALGORITHM 

Algorithm: Computation of the Feature Subspaces 
1. Enter the 13 values of the 13 dimensions. 
2. Compute the 13 feature subspaces using the module from the 

trained network. 
3. Return the computed feature subspaces. 

III.  RESULT AND DISCUSSION 

Using MATLAB R2014a, both algorithms, existing and 
enhanced LDA/GSVD, were coded and ran on a PC with the 
processor of Intel® Core i5, 4GB RAM, and 2.7GHz speed. 

A. Dataset without LDA/GSVD Classification 

Figure 4 below shows the graphical representation of the 
data without performing LDA/GSVD. Since the dataset is 
multi-dimensional, for this example, only the first two 
dimensions are shown in the graph. It can be seen that 
instead of 105 classes, data points are grouped in 
approximately three (3) classes. Thus, all of these data points 
cannot be distinguished as to what classes they belong. 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4 Graph of the dataset without applying LDA/GSVD 

 

B. Existing LDA/GSVD Algorithm 

For classifying 105 classes with 13 dimensions, and a 
total of 1420 instances, the LDA/GSVD algorithm took 7 
seconds to finish. The computational cost was obtained 
using equation 1. 

CC = ET – ST                              (1) 
 
Where CC is the computational cost, ET means end time 

or the time when the program finished to execute all the 
instructions), and ST means start time or the time when the 
program starts to execute. 

Figure 5 shows the graph for the feature subspaces of the 
first two dimensions of the dataset using the existing 
LDA/GSVD. Also, figure 5 shows a better separation of data 
points compared to figure 4. Due to the number classes and 
instances, most of the data points with same feature 
subspaces overlap with each other. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 5 Graph of the feature subspaces after applying LDA/GSVD 

C. Enhanced LDA/GSVD 

The performance functions were used in the study which 
includes the Mean Squared Error (MSE) and Regression (R) 
to evaluate the performance of the ANN for LDA/GSVD 
algorithm. MSE is the average squared difference between 
experimental output values and the fed targets in training. 
 

(2) 
 
Where n is the sample set’s size, ai is the ANN 

experimental or observed output and ti is the matching 
targets. Regression (R) computes the outputs and targets’ 
correlation. When the value of R is 1, it signifies a good or 
close relationship, otherwise a random relationship [38]. 

Figure 6 depicts the performance of training and test 
samples using BRBP algorithm. The graph shows that the 
test and training samples overlap with each other. Thus, 
training and test curves continue to stabilize every time the 
epoch increments. At epoch 1500 the MSE error is 
approximately 2.5115 x10-3. Further, the histogram in figure 
7 presents the frequency of the instances per error. The 
measurement of the error is by subtracting the targets and the 

Hidden Layer: 30 hidden neurons 

Input 
Layer: 
1420 

instances 
by 13 

dimensions 

Output 
Layer: 13 
classifiers 

for 13 
feature 

subspaces 
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resultant outputs. The most significant error in the training 
was at around 0.2443. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 6. BRBP’s Prediction Result 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 7. BRBP’s Histogram of Error Sequences 
 

Figure 8 shows BRBP algorithm’s correlation. Thus, the 
graphs present that the algorithm is accurate and better 
because the MSE is less than zero and the value of R for the 
training, test, and overall analysis is 1. Further, table 4 shows 
the performance of the enhanced LDA/GSVD. 

 

TABLE IV 
PERFORMANCE OF ANN ALGORITHM FOR LDA/GSVD USING BRBP 

Dataset Sample Mean Square Error Regression 
Training 5.6896e-05 1 

Testing 6.1412e-05 1 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 8. BRBP’s Regression Analysis 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9 Graph of the feature subspaces after applying the enhanced 
LDA/GSVD 

 
It is noticeable that figure 9 above which presents the 

graph of the feature subspaces using the enhanced algorithm 
is very much similar to figure 5 which utilized the existing 
LDA/GSVD. It is a manifestation that the accuracy of the 
improved LDA/GSVD maintains the accuracy of current 
LDA/GSVD algorithm. 

Using equation 1, Table 5 presents the computational 
costs of two algorithms. It is evident that the enhanced 
LDA/GSVD improved the computational cost by 57.14%. 
The values for the computational costs may be too small 
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because there are only 1420 instances that composed the 
dataset. 

TABLE V 
COMPUTATIONAL COSTS OF THE EXISTING AND ENHANCED ALGORITHMS 

Algorithm STa ETb CCc 
Existing 
LDA/GSVD 

08:51:02 08:51:09 7 seconds 

Enhanced 
LDA/GSVD 

09:35:43 09:35:46 3 seconds 

Improvement of the Enhanced LDA/GSVD 57.14% 
a. Start Time,  b. End Time,  c. Computational Costs 

IV.  CONCLUSIONS 

Simulation results showed that enhanced LDA/GSVD 
using ANN outperformed the existing LDA/GSVD 
algorithm regarding computational cost during the 
classification of the datasets. Thus, it makes the new 
approach an efficient way of doing LDA/GSVD. It is also 
evident in the simulation that the new technique using BRBP 
can obtain the best performance of accuracy by increasing 
the number of epochs. With that, the new mechanism is 
highly recommended especially if the dataset has many 
instances and dimensions due to its lower computational cost. 
Moreover, implementation of the enhanced LDA/GSVD 
algorithm to big data will be the next research to be done. 
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