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Abstract—Solar irradiance needs to estimate power consumptions for requiring of saving energy. The demand accomplished by
providing facilities to predict. Time series data is a dataset that has complex problems. Multilayer perceptron (MLP) and
autoregressive integrated moving average (ARIMA) with multivariate input were used to solve the problem for predicting solar
irradiance. The dataset was collected from solar irradiance sensor by an online monitoring station with 10 minutes data interval for
18 months. Prediction experimented with t, t-2, and t-6 data inputs that represent t as the day to get the predictive model (t+1). In
ARIMA model, optimization was obtained in the input parameter (t-6), and ARIMA(1,1,2) with minimum RMSE is 43.91 W/m2,
whereas MLP model used a single layer, ten neurons and using relu activation function to predict with minimum RMSE is 8.68 W/m2
using (t) input parameter. The deep learning model is better than the statistical model in this experiment. RMSE, MSE, MAE, MAPE,
and R?, are used as an evaluation for model performance.

Keywords— MLP, ARIMA; performance of evaluation; time series; forecasting; multivariate input.

corresponding target in the weather data. To predict weather
I.  INTRODUCTION based on data set with non-linear calculated utilize an

Different methods have been carried out from various artificial neural network. By using artificial neural networks

predictive studies for weather and other natural phenomen;f"nd establishing structural relationships between entities by

that are useful for analyzing data measurement results from é}levelopmg reliable nonlinear prediction models to analyze

station or a mobile measuring instrument that generates data\[/veather data and compare with different transfer functions

The use of multi-layer perceptron not only in weather 3l . .
prediction from measurement data, but the analysis to Data of solar radiation measurements can provide a short-

predict short-term coal prices after identifying the €M pe|r|od Ofdl gour,ISImlnutes ahead W'tqh7 Input
characteristics of chaotic data. Also, they studied adds theMeteorology - an calculation - parameters. e input
maximum Lyapunov exponent, correlation dimension, and combination looks for pred|cted optimization, while the

the Kolmogorov entropy indicator and use multi-layer performance of evaluation for prediction uses Pearson's

perceptron to make predictions. The topology is used MLP coeffigients. Wind speed an_d wind direct_ion against_ solar
3-11-3 getting optimum results using 4 model performancesrad'at'on show weak correlation result, while the duration of

mean absolute percentage error, root mean square errOIirradiation has a strong correlation with solar radiation. For 5
direction statistic. and THEILindex’ [1] minutes interval data, input models 6 and 10 parameters

In determining the average annual wind speed in a have a small error on the evaluation of prediction values [4]

complex area, a neural network is used with predicted short- Sa_wmg energy - consumption espem_al_ly for indusrial

term data. Calculations are performed using a non—Iinearrequ'_red' They lry to consume as minimum energy as
process variable. The neural network backpropagation mode ossible, and _th!s is the challenge they_ face. By_usmg the
uses multi-layer perceptron with 3 layers and a supervised eather Prgdpnon Sy;tem hence required planr_ung of hot
learning algorithm. Input uses sixty days of data, resulting in €N€r9y_prediction for industrial need. The predicted heat

a coefficient correlation above 0.5 and an estimated error Ofgener.ated depends on the current weath.er conditions. In_put
below 6% [2] data in the form of measurement data is calculated using

|gl1ulti—layer perceptron method in combination with fuzzy

In the current period, several areas of research have used a"”. . L
logic and recurrent neural network method. This statistical

linear relationship between the data set input and the
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method complements the physically predicted method of
weather forecasting institute. In the experiment is conducted
by combining neural network topology with 35000 data
pattern with 15 minutes data interval. The predicted
temperature results in comparison with the required steam
power. This optimization obtains minimal energy
requirements [5]

Planning of water allocation for crop irrigation in the
Texas region is foreseen in order for information available
from irrigation scheduling. The main component of
irrigation demand is evapotranspiration, namely evaporation
of the environment and plants. Forecasting the previous
evapotranspiration using FAO56 PM from the data source
environment is quite a lot. The use of neural networks
methods to estimate future evapotranspiration values using
restricted climatic information data and sourced from the
public [6].

They are using energy estimates in the Indian pig iron
manufacturing organization. Energy demand prediction is
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Fig. 2 Diagram of neuror;ﬁé’ural network
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II.  THE MATERIAL AND METHOD

indispensable for intensive processes. Existing of ARIMA A. Multilayer Perceptron

models to help better environmental policymaking by

The Artificial Neural Network (ANN) model has been

reducing energy consumption will reduce GHG emissions yyigely applied because it has a comprehensive function with
and hope that models created using ARIMA can control the ghjlity to solve linear problems. The time series data

them [13].

settlement, especially about acceptable weather is using

_ To predict path lengths between pairs of nodes on theyyjiilayer Perceptron (MLP) with the interconnections
infrastructure that can communicate with each other usingpetwork between modified neurons and can solve non-linear

single-hop or multi-hop techniques on Mobile Ad-hoc

regression problems with differentiated function. Simple

network (MANET). Experimental analyses were used t0 M P models are ANNs that uséeedforward or back

evaluate prediction accuracy in forecasting path lengthsyrgpagation on supervised methods. MLP has multiple
between the source and destination nodes for Ad hoc Onqayers, an input layer connected to the source node, and then

Demand Distance Vector AODV routing in MANET using

at least one hidden layer connected to a computational node

ARIMA and MLP models. It was found that neural networks or neuron is a component for improving the learning

can be effectively used in forecasting the path length yarformance of the MLP model.
between mobile nodes better than statistical models an

Fig. 1 illustrated
rchitecture of MLP. The optimal output placement is

MLP-based neural network models found to be better getermined by the number of neurons in the hidden layer and

forecasters than ARIMA models [14].
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Fig. 1 Architecture of multilayer perceptron
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the number of themselves. Then the final layer of output can
consist of multiple connected neurons from the hidden layer.
In this study, we discuss the forecasting of each weather
feature consisting of multi-parameters with modeling
experimental for each weather parameter. Fig. 1 shows the
architecture of MLP. Therefore, mathematically, every layer
in the MLP network runs as described in Eq. (1) [7]:

a(i”) = a (T WD +w)) 1srsm (1)
In equation (1) is represent activation function. Tangent
hyperbolic is used in this function with a non-linear.
Configuration this function defining as hidden layers. Linear
function is used for the result of the output layer. The signal
r recognizes the definite layer in a network raf other
layers,h, indicates the several of layer neuronEEr) shows
neuroni as output in defining layet w}?, 1<r<hqg_q are
the weights corresponding to interconnect of neurasf
layer r with layerr — 1in neurons and/v((,? is the bias of
neuroni of defining layer. Layer=0, of extensiveh, is
vector of the result layer, concurs with the vector of input,
that isF® = x. Moreover, output vector of the last layem
of extensivé,,, which is result of layer of the network,
concurs with the network outputkg* = y.



In a more detailed of MLP can be seen as neuron of thelearning better known as tuning model. This model
neural network in Fig. 2w{) = wy, is the threshold value, ~automatically performs ARIMA model training and testing
whereas the bias gives a fixed value of 1 ang is the model with various combinations of parameters to obtain

weight. F represent measure a nonlinear activation function predictive evaluation and optimal parameter values. In
gnt. P o equation (4), the parametgg as AR is obtained, the
to conduct smooth for artificial neural networks.

parameterd as the differentiating time in the time series
B. Autoregressive Integrated Moving Average (ARIMA) dataset, the parameteras MA. The range of parameter
Model combinations is set to limit the training process

. - : . . automatically:
In modeling for prediction using time series, solar

radiation data use behavior of previous data. Representing
mostly model with a linear concept of Box-Jenkins pe{0l,...,10},d {0,123}, g {01, .. 10} )
Autoregressive Integrated Moving Average (ARIMA) model ¢. performance of Evaluation

which traditional approach [9] [12]. The ARIMA model

assumed that current data is a linear function of the previous - o o' \vootnar with multilayer-perceptron represented

data and error calculated also requires balance before it i y A as observation value a] represent predicted value
used in the linear equation [8]. In the first phase in ARIMA, = Ih | f ob ion Fhis th | '
the model has represented in the autoregressive (AR) sectiod 'S the mean values of observation @nts the mean values

i.e. relationship of current and previous data with the marker Predicted. _ - -
(p) using the equation [10], [11]: The following statistical indicators used to evaluate

Wavelet models:

n is numbers of data to be observed, while multi-

B = 1168s-1 + 262 + -+ 1,6, + £ 2
¢ = P91 7F H2Be2 HpPep T & 2 Root-Mean-Square Errors (RMSE)
Autoregressive (AR) phase represented time serieeva
in 8; as linear function generated from calculated of values - -
8¢-1,8¢—2, ..., 8._p. While the coefficient with the operation RMSE =  |2=(izBo” (8)
of linear function is py,pp, ..., 1, associated with "
et tO 6t—1' 6t—2' ey Gf—p

Moving average (MA) phase with markés) represented Mean-Squared-Errors (MSE)
generate previous error affected and using on current data
can be represented as the following equation [10], [11]: 1
: . MSE= 131,14, B ©

Be = £ — M8y — WpEpy — = — AgEiq 3) The coefficient of determmaﬂoer)

2 _ _[Zita(4i-4)(Bi-B)I?
K= @ o,es) (10)

In equation (3) can be seen;,s_;,...,&—4 is the
difference of random error value in the previous data. \jean Absolute ErrorMAE)
Whilea,, a;,..., a, is the coefficient of the moving average

corresponding t@; to & _y, &3, ..., &g MAE — S|4~ B] (11)
If equation (2) and (3) are combined using the integration T oon

phase(d), this will make an ARIMA mode{p, d, q) where

p is a predictor of an autoregressiahjs a differentiator, Mean Absolute Percentage ErrAPE)

while g is the marker for the moving average.

Mathematically can be represented as follows: MAPE = % ?:1 |%| X 100% (12)

D. Data Categorization

(1-B)48, = %st (4) The data used in this study is numerical weather data with
g several measurement parameters such as wind direction,
wind speed, temperature, humidity, solar irradiance and
u(B) = 1 — B! — u,B% — -+ — 1, BP (5) ra_in_fall at LIPI weather measurement station _Iocated in
Cibinong, West Java, Indonesia in Fig. 3. Data is a feature
that will be input and prediction. The measurements data are
grouped with interval 10 minutes to a day in interval range
December 2015 and April 2017 in Fig. 2. Data input is
adapted to the experimental model of single input and
window method consisting of multiple data inputs. The
dataset consists of several values of weather measurement
parameters.

a(B) =1—a;B' — a,B* — - — q,B? (6)

Could be defined time i&) and ‘B’ is backshift operator
(BB; = 8;_1). While u(B) anda(B) are autoregressive (AR)
and moving average (MA).

To find the optimum prediction value using ARIMA
model used a grid search procedure, in the use of machine
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INDONESIA

CIBINONG STATION
-6,502253, 106.844605

Fig. 3 The weather station for measurement data

In this experiment, the dataset is divided into 2 input
categoriesfirst, single input dataset. Default data will create
input data is measurement weathe
parameter at the given timé), and the result values
measurement at the next tirfte1). It can be configured by
constructing a disparate datass&cond window method.
Input dataset like different recent time steps can be applied
to create the prediction for the step of next time data. For the
window method, the parameters can be tuned for each input:
Input weather variable is given the current tifjeand wants

a dataset where

power source activation of weather monitoring stations using

solar panels.

E. Experimental Recorded

1) Multilayer Perceptron with multi-parameteSingle

file for input data from various sources of daily data files
recorded with intervals of 10 minutes and grouped into daily
dataset within approximately 18 months.
data input is obtained by entering weather variables (solar
irradiance) with single input and multi-input. The MLP
algorithm computes computationally for variable prediction
according to the MLP architecture that has been defined to
Dataset divided into three category;
observation data, training data, and testing data. Training
data consists of 67% of the dataset; while for testing data is
divided into 33% of the dataset. For dividing the dataset on
each input using a function that can extract single-column
datasets into multi-column input datasets such as input
columns in Table | with set the sequence of data becomes
fmportant for time series. In Table I, II, Il given data
columns for each hidden layer to predict (t+1) take data prior
times (1), (t-2, t-1, t), (t-6, t-5, t-4, t-3, t-2, t-1, t). Input data
such as recent times for combinations of input to predict
next time steps data. Some architectural models are used to
generate the optimization of error values.

produce the model.

TABLE |

Initialization of

to predICt the measurement value at the next time in theF’ERFORMANCE OFMLP MODEL FOR MULTI-INPUT SOLARIRRADIANCE WITH

sequencét+1). THE SINGLE HIDDEN LAYER(PREDICT 1)
5z o
Bl e Given Data g £ | Activation MSE RMSE | R?
isg» ! "-"‘(\"\" A \ \‘1 ol ' I »“ Il’hq\ \\*‘“‘1‘ﬂ.”‘;ll‘\‘"k""rﬁ"iw‘""\l\\"“ﬁ/"ﬂ;"“\w i Gl wy g function
0 e ' PR T ® 10 | RELU 74.88 0865 | 0.9691
NRTTIITRINT P WA "‘. (t2),(+1),(0 10 | RELU 967.33_| 31.10 | 0.5339
e BT pa— = —— (t6),(t-5)(t-4)(t-3),(t- | 10 [ RELU 1373.01 | 37.05 | 0.3150
M . o ) Temperatue (Celc 2),(t-1),(t)
O T TP T "‘mw,mA P
r'-‘fl L L YTV e LAV ® 10 | SOFTPLUS | 61441 | 24.78 | 0.7468
_ _ (t-2),(t1).() 10 | SOFTPLUS | 96132 | 31.00 | 0.5368
o 0 ; ‘. mm,mwﬂ (t-6),(t-5)(t-4)(t-3),(t- | 10 SOFTPLUS | 1369.76 | 37.01 0.3166
Sfr'/‘m ‘\‘I‘H" ”ﬁ" 'N \.I J .. M n ,;‘ M ‘” il "‘ m",‘ 2),(t-1),(t)
75. ”' Wi f (t 10 SELU 587.39 24.23 0.7580
BQ° T ™ m 0 (t-2).(1),() 10 | SELU 955.84 | 30.91 | 0.5395

V vL. T oo ,“"’”}f"“’“""“’"‘? (t-6),(t5)(t-4)(t-3),(t- | 10 | SELU 1454.15 | 38.13 0.2745

1@8 Y W e i s 1o L AL A T e i 2),(t-1),(t)
(h = = oA t 20 | RELU 97.00 09.84 | 0.9600
;5- Rain Fal (t-2),(t1).() 20 | RELU 1030.61 | 32.10 | 0.5034
| S . (t6),t5)(t-4)(t-3),(- | 20 | RELU 1201.85 | 34.66 | 0.4004
Ll If |
Al D i Wbl gt Lol bl 2),(1),0)
! - 0 o ) 20 | SOFTPLUS | 986.70 | 31.41 | 0.5935
Flg 4 Mean measurement data multlvarlable per days (210 20 SOFTPLUS 923.79 30.39 0.5549
(t6),(t5)(t-4)(t-3),(- | 20 | SOFTPLUS | 1201.07 | 3465 | 0.4008
In this case can be used the current t{theand given six Zt)’(t-l)y(t) o | seLu T D
previous timeqt-6, t-5, t-4, t-3, t-2, t-1)When dataset as 82) 0.0 20 [ SELU 105437 | 3247 1 04920
regression variables ateg, t-5, t-4, t-3, t-2, t-1, t and the (t6),(t5)(t-4)(t-3),(tt | 20 | SELU 1205.41 | 3471 | 0.3986
output variable ig+1. Predictions are created by providing [-2:(t1).()

. ! e IG) 30 | RELU 281.27 | 16.77 | 0.8841
the input to MLP and performing a forward-pass enabling it~ w0 30 | RELU 1058.00 | 3252 1 0.4902
to generate of result that can use as a prediction. (t-6),(t-5)(t-4)(t-3).(t | 30 | RELU 1365.60 | 36.95 | 0.3187

i i in L2.t1.0
The primary goal this paper_has generate_d and train O 30 TSorPius T 1issor T 3573 (o5
network that can be able to estimate the particular weath{ 2.1, 30 | SOETPLUS | 1029.62 | 3208 | 05039
parameters, e.g., wind speed, temperature, and humidit (tiﬁ(),(t)-S())(t-4)(t-3),(t- 30 | SOFTPLUS | 1246.06 | 35.29 | 0.3783

: : - . o] 2) (D),
This study has experlment_ed just. for solar irradiance 0 30 [ SELU To59 17 3254 | 05635
measurement focus on design Multilayer Perceptron an[2),e1.@ 30 | SELU 993.37 | 3151 | 0.5214
ARIMA models because trying to provide data on solaf (zt;fi(zv(lt)-S(z)(t-4)(t-3),(t- 30 | SELU 1237.93 | 35.18 | 0.3824

irradiance in the monitoring station environment. Provid

results of the analysis for research needs sourced from solar
irradiance, as well as for the calculation of the need for
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TABLE Il

PERFORMANCE OFMLP MODEL FOR MULTI-INPUT SOLARIRRADIANCE WITH

FOUR HIDDEN LAYERS(PREDICT T+1)

TABLE Il
PERFORMANCE OFMLP MODEL FOR MULTIFINPUT SOLARIRRADIANCE WITH
EIGHT HIDDEN LAYERS(PREDICT 1)

Given Data ZNeuron | Actvation | yqp | pyse | R? Given Data ZNeuron | Activation | yqp | pmsg | R?
layer function layer function
(t) 10 RELU 1270.44 | 35.64 0.4766 (t) 10 RELU 1615.49 | 40.19 0.3345
(t-2),(t-1),(1) 10 RELU 954.01 30.88 0.5403 (t-2),(t-1),(1) 10 RELU 1036.10 | 32.18 0.5008
(t-6),(t-5),(t-4),(t-3),(t-2),(t- 10 RELU 1222.10 | 34.95 0.3903 (t-6),(t-5),(t-4),(t-3),(t-2),(t- 10 RELU 142450 | 37.74 0.2893
1.0 1.0
(t) 10 SOFTPLUS 2586.74 | 50.86 0.0655* (t) 10 SOFTPLUS 1673.94 | 40.91 0.3104
(t-2),(t-1),(0) 10 SOFTPLUS | 922.49 30.37 0.5555 (t-2),(t-1),(0) 10 SOFTPLUS | 1081.85| 32.89 0.4787
(t-6),(t-5),(t-4),(t-3),(t-2),(t- 10 SOFTPLUS | 1466.91 | 38.30 0.2682 (t-6),(t-5),(t-4),(t-3),(t-2),(t- 10 SOFTPLUS | 1800.36 | 42.43 0.1018
1), 1),
() 10 SELU 1890.89 | 43.48 0.2210 () 10 SELU 1498.31 | 38.70 0.3827
(t-2),(t-1),(1) 10 SELU 1235.71 | 35.15 | 0.4046 (t-2),(t-1),(1) 10 SELU 140231 | 37.44 | 0.3244
(t-6),(t-5),(t-4),(t-3),(t-2),(t- 10 SELU 1725.14 | 41.53 | 0.1393 (t-6),(t-5),(t-4),(-3),(t-2),(t- | 10 SELU 2357.24 | 4855 | 0.1759*
(t) (t)
(t) 20 RELU 3019.94 | 54.95 0.2440* (t) 20 RELU 1516.68 | 38.94 0.3752
(t-2),(t-1),(0) 20 RELU 1106.60 | 33.26 0.4668 (t-2),(t-1),(t) 20 RELU 1327.68 | 36.43 0.3603
(t-6),(t-5),(t-4),(t-3), (t-2),(t- 20 RELU 171351 | 41.39 | 0.1451 (t-6),(t-5),(t-4),(-3),(t-2),(t- | 20 RELU 2059.60 | 45.38 | 0.0274*
1), 1),
(t) 20 SOFTPLUS | 3281.08 | 57.28 0.3516* (t) 20 SOFTPLUS | 1568.87 | 39.60 0.3537
(t-2),(t-1),(1) 20 SOFTPLUS | 1057.07 | 32.51 0.4907 (t-2),(t-1),(1) 20 SOFTPLUS | 1242.95| 35.25 0.4011
(t-6),(t-5),(t-4),(t-3),(t-2),(t- 20 SOFTPLUS | 1397.99 | 37.38 0.3025 (t-6),(t-5),(t-4),(t-3),(t-2),(t- 20 SOFTPLUS | 2336.11 | 48.33 0.1654*
1, 1.,
(t) 20 SELU 2037.80 | 45.14 0.1605 (t) 20 SELU 1638.14 | 40.47 0.3251
(t-2),(t-1),(0) 20 SELU 1374.63 | 37.07 0.3377 (t-2),(t-1),(t) 20 SELU 1421.21 | 37.69 0.3153
(t-6),(t-5),(t-4),(t-3),(t-2),(t- 20 SELU 1284.02 | 35.83 0.3594 (t-6),(t-5),(t-4),(t-3),(t-2),(t- 20 SELU 2947.83 | 54.29 0.4705*
1.0 1.0
() 30 RELU 1923.13 | 43.85 0.2077 () 30 RELU 1665.34 | 40.80 0.3139
(t-2),(t-1),(1) 30 RELU 1016.61 | 31.88 | 0.5102 (t-2),(t-1),(1) 30 RELU 1293.91 | 35.97 | 0.3766
(t-6),(t-5),(t-4),(t-3),(t-2),(t- 30 RELU 1603.27 | 40.04 0.2001 (t-6),(t-5),(t-4),(t-3),(t-2),(t- 30 RELU 2329.77 | 48.26 0.1622*
1), 1),
(t) 30 SOFTPLUS | 2431.16 | 49.30 0.0015* (t) 30 SOFTPLUS | 1644.23 | 40.54 0.3226
(t-2),(t-1),(8) 30 SOFTPLUS | 1039.73 | 32.19 | 0.5005 (t-2),(t-1),(8) 30 SOFTPLUS | 1345.75| 36.68 | 0.3516
(t-6),(t-5),(t-4),(t-3),(t-2),(t- 30 SOFTPLUS | 1945.33 | 44.10 0.0295 (t-6),(t-5),(t-4),(t-3),(t-2),(t- 30 SOFTPLUS | 2957.65 | 24.38 0.4754*
(t) (t)
(t) 30 SELU 1881.46 | 43.37 0.2249 (t) 30 SELU 1611.53 | 40.14 33.61
(t-2),(t-1),(1) 30 SELU 1475.46 | 38.41 0.2691 (t-2),(t-1),(1) 30 SELU 1350.04 | 36.74 0.3495
(t-6),(t-5),(t-4),(t-3),(t-2),(t- 30 SELU 1922.16 | 43.84 0.0410 (t-6),(t-5),(t-4),(t-3),(t-2),(t- 30 SELU 3203.42 | 56.59 0.5980*
1.0 1.0

& Prediction of Solar Irradiance (t+1, given t) with Single Hidden Layer aso
. 400
o
o
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Fig. 6 Plotting observed against prediction for ten neurons and
Fig. 5 Observed against prediction for ten neurons and relu actiiation activation function
function
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Fig. 7 Observed against prediction for ten neurons and soft plus acti

function

afign8. Plotting observed against prediction for ten neurons and

plus activation function
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. Prediction of Solar Irradiance (t+1, given t, t-1, t-2) with 8 Hidden Layers

......

Solar Irradiance (Wm
.
.

days 260 to 360

280

230

Observed (W/m2)

220
Predicted (W/m2)

Fig. 9 Observed against prediction for ten neurons and relu activafidsh 10 Observed against prediction for ten neurons and |relu
function activation function

Prediction results of multilayer perceptron can be seen il ARIMA(2, 1, 1) 46.249 35.504 24.600
each view of the figures above with the number of th QE:MQ% é’ i) ig-;‘?? gg-ggg gg-ggg
minimum error. The results are displayed to see the be (3.0.1) ' : :

. ; ARIMA3, 1, 1) 46.353 35.603 24.624

model_ for ea_ch hidden layer. I_n Fig. 5 the model generat ARIMA(4, 1, 1) 26.469 35.750 52.649
in a single hidden layer experiment with the best test given
data(t) predictive model is present by generating the optimal TABLE V

model; number of neurons 10, activation function =
RELU, MSE = 74.88 W/rf) RMSE = 08.65 W/rj) and R =

PERFORMANCE OF THEARIMA MODEL FOR MULTHINPUT SOLAR
IRRADIANCE WITH TUNING MODEL (PREDICT 1) WITH INPUT (T-2,T-1,T)

0.9691, while for distribution of plotting data between

observed and prediction seen in Fig. 6.
Data output using this model is more likely forming a

straight line on a linear equation. While in Fig. 7, the

experiments using four hidden layers with the best test give

data(t-2, t-1, t) resulting in an optimal prediction model;

number of neurons = 10, activation function = SOFTPLUS

MSE = 922.49 W/fy RMSE = 30.37 W/M and R =

0.5555. Plotting data between observed and prediction cg

be seen in Fig. 8, the distribution of both data using thi

model has scattered away from the straight line because

Given Model RMSE MAE MAPE
ARIMA(1, 1, 2) 45.762 35.272 24.139
ARIMA(1, 1, 3) 45.943 35.598 24.237
ARIMA(1, 1, 4) 45.789 35.56 24.134
ARIMA(2, 1, 1) 45.821 35.488 24.185
ARIMA(3, 0, 1) 46.031 35.738 24.995
ARIMA(3, 0, 2) 46.057 35.752 24.994
ARIMA(3, 1, 1) 45.930 35.490 24.193
ARIMA(4, 1, 1) 45.943 35.682 24.232
ARIMA(4, 1, 2) 45.829 35.366 24.187
TABLE. VI

training and testing data are experimented by adding a PERFORMANCE OFARIMA MODEL FOR MULTI INPUT SOLARIRRADIANCE

hidden layer in its neural network.

Fig. 9 shows the_WITH TUNING MODEL (PREDICT T1) WITH INPUT (T-6,7-5,7-4,T-3T-2,T-1.T)

experiment using eight hidden layers with optimal data give Given Model RMSE MAE MAPE
(t-2, t-1, t) resulting optimal prediction model; number of ARIMA(L, 1, 2) 43.914 34.827 23.762
neurons = 10, activation function = RELU, MSE = 1036.10 QE:MQE%, i i; ﬁ-ggi gi-ggi gg-ggg
2 — — , 1, . . .
W/m_, RMSE. - .32'18 W/t and R = 0.5008, whereas _the ARIMA(2, 1, 2) 44.150 35.025 23.647
plotting distribution of data added more away from linear ARIMA(3. 0. 1) 22115 35053 24659
straight line compared to four hidden layers, with increasin AR|MA(3: 0 2) 44186 35.099 24.645
hidden layer on the same activation function makes th|  ARIMA3, 1, 1) 44.186 34.995 23.663
model performance become worse. ARIMA(4, 0, 1) 44.138 35.080 24.666
) ) ARIMA(4, 1, 1) 44.065 35.044 23.690
2) Autoregressive Integrated Moving Average
(ARIMA) With tuning model process for each input using a
TABLE IV combination of parameters that have been set to limit the

PERFORMANCE OFARIMA MODEL FOR MULTI INPUT SOLARIRRADIANCE
WITH TUNING MODEL (PREDICT 1) WITH INPUT (T)

Given Model RMSE MAE MAPE
ARIMA(1, 0, 0) 46.630 36.340 26.115
ARIMA(1, 1, 1) 46.742 35.840 24.254
ARIMA(1, 1, 2) 46.393 35.549 24.569
ARIMA(1, 1, 3) 46.470 35.664 24.621
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training process automatically, then obtained the best model
for input data predictioft) is ARIMA(2,1,1) as in Table 1V,
while for input data predictioft-2, t-1, t)is ARIMA(1,1,2)

as in Table V, and input data predicti@+6, t-5, t-4, t-3, t-2,

t-1, t)is ARIMA(1,1,2) as in Table VI.



%o Prediction of Solar Irradiance with ARIMA(2,1,1) model given (t)
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Fig. 11 Observed against prediction for ARIMA(2,1,1) model with giyeig. 12 Plotting observed against prediction for ARIMA(2,1,1)
(t) step data model with given (t) step data

o Prediction of Solar with ARIMA(1,1,2) model given (t-2,t-1,t)
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Fig. 13 Observed against prediction for ARIMA(1,1,2) model with giyeRig. 14 Plotting observed against prediction for ARIMA(1,1,2)
(t-2, t-1, t) step data model with given (t-2, t-1, t) step data

Prediction of Solar with ARIMA(1,1,2) model given (-6,t-5,t-3,t-2,t-1,t)

wn Observed 350
== Ppredicted

Observed (W/m2)
N
-]
=]

Solar Irradiance (Wm

120 140 160 180 200 220 240
Predicted (W/m2)

o ® © @ © 00
days

Fig. 15 Observed against prediction for ARIMA(1,1,2) model with giveiig 16. Plotting observed against prediction for ARIMA(1,1,2)
(t-6, t-5, t-4, t-3, t-2, t-1, t) step data model with given (t-6, t-5, t-4, t-3, t-2, t-1, t) step data

Experimental results of the ARIMA model can be seen in using this model give optimal error result for the ARIMA
each view of the figure above. The results are shown tomodel experiment. While in Fig. 13, the experiments best
present the optimal model for each input dat@,drq input model using giver(t-2, t-1, t) steps input data is generated
for created ARIMA model. In Fig. 15, the model generated prediction by ARIMA(1,1,2) model. Error values can be
in ARIMA(1,1,2) with given (t-6, t-5, t-4, t-3, t-2, t-1, t)  seen in Table V that represent tuning model of input data.
steps in testing data, can be noted RMSE, MAE, and MAPEData spread shown in Fig. 14 is not much better than the
gives the most minimum error value among other ARIMA previous model. As well as a data inft)t observed and
model using generated tuning model. Error values areprediction data for tuning model of optimal for
represented by generating models shown in Table VI. While ARIMA(2,1,1) can be seen in Fig. 11 and error tuning model
for the spread of plotting result between observed andlike Table IV. The spread of observed against the prediction
prediction can be seen in Fig. 16. Output model represents
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of plotting data in Fig. 12 is not better than two previous Multilayer Perceptron with input) and single hidden layer
ARIMA models. compared to ARIMA (2,1,1) with input) as shown in Fig.

After experimenting on two different models of 18.Seconds the model generated by Multilayer Perceptron
Multilayer Perceptron and ARIMA, to get the prediction with input (t-2, t-1, t) which has four hidden layers
result of each model can be conducted comparing to bothcompared to ARIMA(1,1,2) which have the same input as
The experimental results compare only to two models thatseen in Fig. 17, while the best model obtained in this
are produced for inputft) and (t-2, t-1, t) because two  experiment is Multilayer Perceptron wigt) input and single
inputs produce optimal predictions and there are sliceshidden layer and ARIMA(1,1,2) witft-6,t-5, t-4, t-3, t-2, t-
between the two models. The first model generated byl, t)

Predicted of solar irradiance given input (t-2,t-1,t) of solar ir given input (t)
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Fig 17. Comparison of observed, MLP, and ARIMA data with (t-2,t-1,t) input Fig 18. Comparison of observed, MLP, and ARIMA data with (t) input

value of error. In addition, the increasing number of given
lll.  RESULT AND DISCUSSION data, reduce the performance of MSE, RMSE, ahd R

After conducting some experiments using several models  4) Hidden layer: Increased hidden layers, then error

of Multilayer Perceptron and ARIMA, several factors need values on the transfer function and the performance of the
to be observed that influence the output of each model, formodel will also decrease. In four hidden layers, the

Multilayer Perceptron: performance of model provided negative (* mark) result if
1) Transfer function that influences hidden layén use_d input (1) data. I_t seems input (t) data doesn't create an
each table (I-II-ll), the RELU function shows consistent optimal model for this hidden layer. As well as the input is

given in t-6 data not created the optimal model for 8 hidden

erformance. This function is non-linear with input x> = 0, . . .
P P layers. The optimal model has resulted for a single hidden

mean error result is smaller than the other two activations
function. It can be seen the average movement of errors@Yer:

resulting from each layer is almost similar to using this Prediction results can be seen in each view of the figure
function. above. The results are displayed to see the best model for
each hidden layer. In Fig. 4 the model generated in a single
: hidden layer experiment with the best test given dfta
determines the error value generated by the model.yegictive model is present by generating the optimal model;
Increasing the value of the neuron/layer and given input , mber of neurons = 10, activation function = RELU, MSE

data, it will increase the value of MSE and RSME. This_ v_viII = 74.88 W/ri. RMSE = 08.65 W/ and B = 0.9691, while
decrease the value of model performance for coefficientty, gistribution of plotting data between observed and
determination. prediction seen in Fig. 5. Data output using this model is
3) Input data: Data input consists of 3 categories to more likely forming a straight line on a linear equation.
predict t+1. The consecutive input combinations are given t- While in Fig. 6, the experiments using four hidden layers
6 prior seven days, t-2 for prior three days, and t for the mainwith the best test given dai&2, t-2, t) resulting in an
day consist of 1-3-7 consecutive inputs. A single hidden optimal prediction model; number of neurons = 10,
layer with single input t provides an optimal value for each activation function = SOFTPLUS, MSE = 922.49 \{/m
activation function and the hidden layer is used. The bestRMSE = 30.37 W/fy and R = 0.5555. Plotting data
coefficient of determination scores i R 0.9691with t between observed and prediction seen in Fig. 7, the
input to predict t+1. However, at given three data (-2, t-1, t), distribution of both data using this model has scattered away
the data on each model gives almost the same error value folfom the straight line because training and data testing is
each hidden layers table. It can also be taken into account agxperimented by adding a hidden layer in its neural network.
a choice of models whose performance is consistent with theFig. 8 shows the experiment using eight hidden layers is
given(t-2, t-1, t)resulting optimal prediction model; number

2) 2 Neuron layer: The number of neuron layers
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of neurons = 10, activation function = RELU, MSE = Squared Error, Root Mean Squared Error and Coefficient of
1036.10 W/, RMSE = 32.18 W/ and B = 0.5008,  Determination. The results obtained are topology with single
whereas the plotting distribution of data added more awayhidden layer regression, the number of neurons = 10,
from a linear straight line compared to four hidden layers, activation function = RELU and input data a day prior. This
with increasing hidden layer on the same activation function experiment shows the problem time series data not only lies
makes the model performance worse. in numbers of data input but the selection of its ANN
While in the ARIMA model experiments, the definition of architecture provides opportunities for many experimental
Autoregressiveép), Moving Average(q), and the parameter options including determination of weight, activation
of data se(d) are defined. The first model, to get the optimal function and the number of layers. Although ARIMA has
result conduct tuning model for the combinationpofd, q model experiment may not optimal predictive results, but
input data (t) for the predictiofi+1) obtained combination = MLP has the more minimum error in this experiment.
model is ARIMA(2,1,1), to get the second model of data However one should note that the data is compatible with
input (t-2, t-1, t) obtained combination model is the required model.
ARIMA(1,1,2) and third model with data inp(t6, t-5, t-4,

t-3, t-2, t-1, t) obtained combination model is REFERENCES
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