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Abstract— This paper presents a study of a modified event grouping based algorithm (MEGB) for university course timetabling 
problem (UCTP). Multiple models to describe the problem and multiple approaches to solving it are pointed out. The main idea of the 
modification is that through reduction on the generated solutions the execution time of the standard event grouping based algorithm 
(EGB) will be reduced, too. Also, an implementation of the modified algorithm based on the described approach is presented. The 
methodology, conditions and the aims of the experiment are described. The experimental results are analyzed and conclusions are 
made. When increasing the number of the groups, the execution time of the MEGB algorithm increases and equates with the 
execution time of the EGB algorithm. The best results are obtained with the first 30% of the groups formed. In these groupings, the 
execution time of the MEGB algorithm is much less than the execution time of the EGB algorithm. This is because, in the EGB 
algorithm, every change in the event ordinance creates a new timetable, and all events are repositioned on it. This process is optimized 
by creating a partial timetable, whereby the ordinance of events in groups before the current does not change. In addition, a 
comparative analysis between the MEGB algorithm and two other algorithms for UCTP, respectively a genetic algorithm with the 
local search method (GALS) and a local search algorithm based on chromatic classes (CCLS) is made as well. The obtained results 
show that the MEGB algorithm and the CCLS algorithm generate better solutions for smaller input data sets, while the GALS 
algorithm generates better solutions for larger input data sets. However, in terms of the execution time, it was ascertained that the 
GALS algorithm runs slowest among the others.  
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I. INTRODUCTION 

The University Course Timetabling Problem (UCTP) is a 
combinatorial optimization problem [1]. It is NP-hard [2], 
but it has been intensively studied [3], [4]. The heuristic 
approaches (meta-heuristic, hyper-heuristic, and population-
based approaches) give better results than the other 
approaches (based on constructive heuristics) [5], [6]. With 
this problem, if e events and t time slots are defined, (e–
1)!.e2.t checks for positioning the events on the timetable 
must be made [7].  

Many algorithms solve approximately the UCTP and 
other problems [8] and [9]. The constraint-based algorithms 
are these algorithms where additional techniques are used, 
such as trees and graphs, "depth-first search," population-
based approaches combined with "backtracking," and others 
[10]. The knowledge-based and case-based reasoning 
algorithms are the ones where the techniques used are sets of 
rules and graphs with edges associated with events [11]. The 

group of hyper heuristic and metaheuristic based algorithms 
includes approaches such as: local search [12], [13], great 
deluge [14], variable neighborhood search [15], ant colony 
optimization [16], [17], simulated annealing [18], [19] and 
other [20]. The aim is to find the most appropriate approach 
for a specific problem. The group of population-based 
algorithms includes genetic and mimetic approaches [21]. 
The results obtained with these methods are good [22]. In 
the graph-based and graph coloring based algorithms, the 
described problem is transformed into a graph coloring 
problem (GCP) [23]. 

A UCTP model based on constraints and weights of 
resources (including events, students, lecturers, and rooms) 
is presented in [7]. The UCTP is formulated as an 
optimization problem with an objective function. A genetic 
algorithm – GA respectively with quadratic complexity and 
a mimetic algorithm – MA respectively with cubic 
complexity have been described in [22]. The experimental 
results have shown that MA generates better solutions from 
GA. 
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The relationship between the UCTP and the GCP can be 
presented by an undirected graph G (Fig. 1). 

 

 
Fig. 1 The graph G with 26 vertices and 90 edges 

 
Edges represent the conflicts between the different events 

in graph G. Each edge connects two vertices (events) and 
shows that there is a conflict between them. This conflict can 
be caused by the use of one or more common resources – 
students, lecturer, and room. 

 

 
Fig. 2 The colored graph G with 6 chromatic classes 

 
The vertices (events) without conflicts between them form 

independent sets. These independent sets are groups of 
vertices in graph G. There are no connecting edges between 
the vertices from an independent set. In the graph theory, 
these independent sets are called chromatic classes, but in 
[24] the term "groups" is used. The vertices of the same 
chromatic class (corresponding to one group of events) are 
colored in the same color Fig. 2. 

Thus, the individual events in a given group (forming a 
chromatic class) can be positioned into every time slot on the 
timetable independently of each other. This is because these 

events do not use common (shared) resources, so they are 
not in conflict with each other. For clarity, each chromatic 
class of vertices is presented in a separate column (Fig. 3). 

 

 

Fig. 3 The chromatic classes arranged in columns 
 

The presented approach has been successfully used to 
solve UCTP and the results obtained were good [23]. A 
variable neighborhood search based algorithm – VNS is 
presented [15]. The results show that the neighborhood 
structures (of events) influence on the precision of the 
solution. An event grouping based algorithm [24] – EGB 
using the model is described [7]. In this algorithm, the events 
were combined into sets called groups. The precision of the 
solution depends on the location of the events into the input 
sequence. All groupings of the events are generated. The 
algorithm searched for a solution with the best precision for 
each sequence of events in each group. This algorithm has a 
cubic complexity that depends on the number of events. 
Therefore, searching for ways for reducing the 
computational complexity (respectively the execution time) 
of the algorithm is further needed. 

II. MATERIAL AND METHOD 

A modified event grouping based algorithm (MEGB) for 
UCTP will be presented. As with the original EGB algorithm, 
the MEGB algorithm will search for the best solution for 
each order of events in each group. For large input data sets 
(for instance thousands of events), the performance of the 
EGB algorithm will take more execution time (because 
many solutions should be generated and evaluated) [24]. 

Definition . Let V is a set of k events (vertices), i.e. V = 
{ v1, v2, ..., vk}, k ∈ Z

+, k ≥ 4, and D is a set of g different 
distributions of these events, i.e. D = {d1, d2, ..., dg}, 2 ≤ g ≤ 
abs(k/2), where abs(k/2) = |k/2|. The union of all distributions 
of events is equal to the set V, i.e. union (di) = V, 1 ≤ i ≤ k. 
This means that each event is distributed exactly in one 
group. According to the definition, the cardinality of any two 
groups will not differ by more than one event, i.e. ||dp|–|dq|| = 
0, if (k mod g) = 0, or ||dp|–|dq|| = 1, if (k mod g) ≠ 0, 1 ≤ p, q ≤ 
g. This requires that the following be met: exactly (k mod g) 
groups should contain floor (k/g) + 1 events, where floor (k/g) 
= k/g. There are other techniques for grouping resources, 
such as those presented in [24]–[26]. 
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An example for the distribution of 11 events into 2, 3, 4 
and 5 groups is presented [24]. 

TABLE I 
DISTRIBUTION OF 11 EVENTS INTO GROUPS 

g k/g k mod g k/g+1 Groups Cardinality 

2 5 1 6 |d1| = 6; |d2| = 5 

3 3 2 4 |d1| = 4; |d2| = 4; |d3| = 3 

4 2 3 3 |d1|, |d2|, |d3| = 3; |d4| = 2 

5 2 1 3 |d1| = 3; |d2|, |d3|, |d4|, |d5| = 2 

 
The main idea of the MEGB algorithm will be presented 

by an input data set with 11 events, respectively divided into 
2, 3 and 4 groups. The grouping of events into 5 groups will 
not be presented, but the result will be given. The algorithm 
trace table is shown in Fig. 4. 

 

g = 2  1 2 3 4 5 6 7 8 9 10 11 
 
Best Id Shift 

|d1|= 6  2 3 4 5 6 1 7 8 9 10 11  
1.54 2 1 

 
 3 4 5 6 1 2 7 8 9 10 11 

    
 

 4 5 6 1 2 3 7 8 9 10 11 
    

 
 5 6 1 2 3 4 7 8 9 10 11 

    
 

 6 1 2 3 4 5 7 8 9 10 11 
    

|d2|= 5  2 3 4 5 6 1 7 8 9 10 11 
    

 
 2 3 4 5 6 1 8 9 10 11 7 

    
 

 2 3 4 5 6 1 9 10 11 7 8 
 
Best Id Shift 

 
 2 3 4 5 6 1 10 11 7 8 9  1.32 10 3 

 
 2 3 4 5 6 1 11 7 8 9 10 

    
 

g = 3  1 2 3 4 5 6 7 8 9 10 11 
 
Best Id Shift 

|d1|= 4  2 3 4 1 5 6 7 8 9 10 11 
 
1.54 2 1 

 
 3 4 1 2 5 6 7 8 9 10 11 

    
 

 4 1 2 3 5 6 7 8 9 10 11 
 

   

|d2|= 4  2 3 4 1 5 6 7 8 9 10 11 
 

   

 
 2 3 4 1 6 7 8 5 9 10 11 

 
Best Id Shift 

  2 3 4 1 7 8 5 6 9 10 11  
1.41 7 2 

 
 2 3 4 1 8 5 6 7 9 10 11 

    
|d3|= 3  2 3 4 1 7 8 5 6 9 10 11 

 
   

 
 2 3 4 1 7 8 5 6 10 11 9 

 
Best Id Shift 

 
 2 3 4 1 7 8 5 6 11 9 10  1.27 11 2 

 

g = 4  1 2 3 4 5 6 7 8 9 10 11 
 
Best Id Shift 

|d1|= 3  2 3 1 4 5 6 7 8 9 10 11 
 
1.54 2 1 

 
 3 1 2 4 5 6 7 8 9 10 11 

    
|d2|= 3  2 3 1 4 5 6 7 8 9 10 11 

 
   

 
 2 3 1 5 6 4 7 8 9 10 11 

 
Best Id Shift 

 
 2 3 1 6 4 5 7 8 9 10 11 

 
1.48 6 2 

|d3|= 3  2 3 1 6 4 5 7 8 9 10 11 
 

   

 
 2 3 1 6 4 5 8 9 7 10 11 

 
Best Id Shift 

 
 2 3 1 6 4 5 9 7 8 10 11 

 1.36 9 2 

|d4|= 2  2 3 1 6 4 5 9 7 8 10 11 
 

   

 
 2 3 1 6 4 5 9 7 8 11 10 

 
1.42 11 2 

 

Fig. 4 The MEGB algorithm trace table with an input data set containing 11 
events, respectively divided into 2, 3 and 4 groups 

The range of the possible distributions can be reduced 
only to the first 33% of all distributions [24]. In addition, the 
initial order of events is also important. For example, the 
events may be sorted by duration or weight (in descending 
order). In this way, the events that have more impact on the 
evaluation of a timetable will be positioned earlier. Once the 
initial order of the events has been determined (and the 
specific distributions are selected), the process of grouping 
events, positioning them, and evaluating the generated 
solution (timetable) may start. 

The eleven events from the input data set can be grouped 
into 2, 3, 4 and 5 groups (because 11 div 2 = 5, i.e. 11 events 
can be up to 5 groups so that in each group so that there are 
at least two events in each group). Once the best solution is 
found by rearranging the events in the first group, the 
algorithm begins searching for a better solution by 
rearranging the events in the second group. After the cyclical 
rearrangement of the events in the first group, it can be seen 
that the best solution found (which has a value of 1.54) is 
when an event with index 2 (Id = 2) is placed in the first 
position in the group. This is achieved when all events in the 
group are moved one position to the left (Shift = 1). Now the 
algorithm begins searching for a better solution by 
rearranging the events in the second group. The events 
already ordered in the first group are no longer considered, 
their positions in the group (respectively in the timetable) 
remain unchanged until the end of the algorithm execution 
(for the current distribution: g = 2). 

In the second group, the best solution found has a value of 
1.32 and it is generated when an event with index 10 (Id = 
10) is placed in the first position in this group. This is 
achieved when all events in the group are moved 3 positions 
to the left (Shift = 3). The example shows that for each new 
group, the algorithm generates a solution that is not worse 
than the last best found. As it can be seen from the example, 
the best order of events where the solution has a score of 
1.54 (when grouping in two groups) is respectively: 2, 3, 4, 5, 
6, 1, 7, 8, 9, 10, and 11. This is the order of events with 
which the algorithm starts processing the second group. The 
solution with this order of events is generated (and evaluated 
accordingly) in the previous step of the algorithm execution. 
Therefore, for each new group, the algorithm "misses" every 
first order of events because it is the order of events in which 
the best solution is generated in the previous group. In this 
way, the number of generated solutions is reduced by g – 1 
(where g is the total number of groups in the current 
distribution). The already-positioned events (at the previous 
step) are no longer considered. This greatly improves the 
algorithm execution. For example, when grouping events 
into two groups, the total number of orders that are required 
to be checked is 121, but the MEGB algorithm checks only 
86 of them. When grouping the events into three groups (i.e., 
g = 3), the reduction is even higher, because of 121 possible 
orders, the algorithm checks only 71. Note that the solution 
found in this grouping has a value of 1.27 and is the best 
found so far. When grouping the events into four groups (i.e., 
g = 4), the reduction is increased as well. Of 121 possible 
orders, the algorithm checks only 61 (that is almost half the 
number of all possible orders). The best solution found at g = 
4 is 1.36, but it is worse than the best one found, which has a 
value of 1.27 (at g = 3). The situation is similar when the 
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events are grouped into five groups (i.e., g = 5). Of 121 
possible orders, the algorithm checks only 53 of them, but 
the quality of the generated solutions is getting worse. 

It should be noted that the generated solutions from the 
MEGB algorithm are identical to those generated by the 
standard EGB algorithm. However, the MEGB algorithm 
finds the best solutions much faster than the EGB algorithm. 
For input data sets that contain a small number of events, the 
number of possible groupings is relatively small. Therefore, 
the range of distributions can be expanded to groups with 
less cardinality. 

The code of the GetGroupRange procedure is presented in 
Fig. 5 (in Delphi language). 
 
01 procedure GetGroupRange 
02 │(AK, AG, AD: Integer; var AFrom, ATo: Integer); 
03 var 
04 │ X, Y: Integer; 
05 begin 
06 │ if ((AG >= AK) or (AD > AG)) then 
07 │ begin 
08 │ │ AFrom := -1; 
09 │ │ ATo := AFrom; 
10 │ │ Exit; //incorrect parameters 
11 │ end; 
12 │ X := AK div AG; //the integer part 
13 │ Y := AK mod AG; //the remainder 
14 │ if (AD <= Y) then 
15 │ begin 
16 │ │ AFrom := (AD - 1) * (X + 1) + 1; 
17 │ │ ATo := AFrom + X; 
18 │ end else 
19 │ begin 
20 │ │ AFrom := (Y*(X+1)) + (((AD-Y)-1)* X) + 1; 
21 │ │ ATo := AFrom + (X - 1); 
22 │ end; 
23 end; 

Fig. 5 The source code of the GetGroupRange procedure 
 

The GetGroupRange procedure has constant complexity. 
This procedure requires 3 input parameters, respectively: AK 
(the number of the events), AG (the number of the groups), 
and AD (an index of the group from the current distribution). 
As a result, the procedure will send back AFrom and ATo 
positions of the events that form this group (lines 20 and 21) 
to the output parameters.  

The code of the MEGB procedure is presented in Fig. 6 
(again in Delphi language). 

For the algorithm's execution, it is necessary to declare 
and initialize some variables and data structures (dynamic 
arrays) as shown in Fig. 6, lines 3÷12. The variables K (the 
input parameter of the MEGB procedure), G and D 
correspond to those of the definition. The variables I, Col 
and Row (lines 5 and 6) are local variables for managing the 
computation process. The variables “From” and “&To” will 
be passed as input-output parameters of the GetGroupRange 
procedure. The Cost and BestCost variables will store the 
evaluation of the current solution and the best solution found 
so far. The ArrR, ArrB, and ArrF dynamic arrays (which are 
declared on lines 10÷12) will store respectively: the new 
order of events in the current group (ArrR), the order in 
which the best solution for the current group is generated 
(ArrB), and the pre-positioned events on the timetable 
(ArrF). 

Initially (lines 14÷16), the MEGB procedure allocates the 
necessary memory for the three dynamic arrays - ArrR, ArrB 

and ArrF. This is done by calling the standard SetLength 
procedure. The second parameter of this procedure specifies 
the size of the corresponding dynamic array. In this case, this 
is the value of the variable K (corresponding to the number 
of events). 

 
01 procedure MEGB(K, Min, Max: Integer); 
02 var 
03 │ G: Integer; //as defined 
04 │ D: Integer; //as defined 
05 │ I: Integer; 
06 │ Col, Row: Integer; 
07 │ From, &To: Integer; 
08 │ Index: Integer; 
09 │ Cost, BestCost: Single; 
10 │ ArrR: array of Integer; //new distributions 
11 │ ArrB: array of Integer; //best distributions 
12 │ ArrF: array of Boolean; //the fixed events 
13 begin 
14 │ SetLength(ArrR, K); 
15 │ SetLength(ArrB, K); 
16 │ SetLength(ArrF, K); 
17 │ for G := Min to Max do //from minG to maxG  
18 │ begin 
19 │ │ for Col := 1 to K do //for each event 
20 │ │ begin 
21 │ │ │ ArrR[Col] := Col; 
22 │ │ │ ArrB[Col] := Col; 
23 │ │ │ ArrF[Col] := False; 
24 │ │ end; 
25 │ │ BestCost := MaxInt; 
26 │ │ for D := 1 to G do //for each D in G 
27 │ │ begin 
28 │ │ │ GetGroupRange(K, G, D, From, &To); 
29 │ │ │ for Row := From to &To do //for each event 
30 │ │ │ begin 
31 │ │ │ │ Index := Row - 1; 
32 │ │ │ │ //every first row is omitted 
33 │ │ │ │ if (From>1)and(From=Row) then Continue; 
34 │ │ │ │ for Col := From to &To do 
35 │ │ │ │ begin 
36 │ │ │ │ │ if (Col <= &To) then 
37 │ │ │ │ │ begin 
38 │ │ │ │ │ │ Index := Index + 1; 
39 │ │ │ │ │ │ if (Index > &To) then Index := From; 
40 │ │ │ │ │ │ ArrR[Col] := Index; 
41 │ │ │ │ │ end else 
42 │ │ │ │ │ begin 
43 │ │ │ │ │ │ ArrR[Col] := Col; 
44 │ │ │ │ │ end; 
45 │ │ │ │ end;  
46 │ │ │ │ for I:=From to &To do ArrF[I] := False; 
47 │ │ │ │ if (From > 1) then 
48 │ │ │ │ │ for I := 1 to (From - 1) do 
49 │ │ │ │ │ │ ArrR[I] := ArrB[I]; 
50 │ │ │ │ Cost := LocalSearch(ArrR); 
51 │ │ │ │ if (Cost < BestCost) then 
52 │ │ │ │ begin 
53 │ │ │ │ │ BestCost := Cost; 
54 │ │ │ │ │ for Col := From to &To do 
55 │ │ │ │ │ │ ArrB[Col] := ArrR[Col]; 
56 │ │ │ │ end; 
57 │ │ │ │ for I := From to &To do ArrF[I] := True; 
58 │ │ │ end; //for Row := From to &To do 
59 │ │ end; //for D := 1 to G do 
60 │ end; //for G := Min to Max do 
61 end; 

Fig. 6 The source code of the MEGB procedure 
 
In the body of the MEGB procedure, a primary cycle 

(loop) of G steps is executed. The input parameters Min and 
Max determines the number of these steps. After initializing 
the dynamic arrays with initial values (lines 19÷24), a nested 
cycle is started (line 26). This cycle passes through each 
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group of the current distribution. For each group of this 
distribution, the GetGroupRange procedure is called (line 
28). As mentioned, this procedure calculates the range of 
events to be analyzed. After the events move one position to 
the left, the LocalSearch method searches for a new solution 
(line 50). If an acceptable solution with this order of events 
cannot be generated, the LocalSearch method will return the 
MaxInt value. Then, the process will continue with a new 
rearrangement of events in the current group. If the last 
generated solution is the best found so far, it is stored (lines 
51÷56). These steps are repeated until all events in the 
current group are positioned in the first position.  

III.  RESULTS AND DISCUSSION 

Two experiments will be made in this study. First, the 
performance between the MEGB and the EGB algorithms in 
terms of the execution time will be checked. Second, a 
comparative analysis between three algorithms for UCTP, 
respectively: the GALS [22], the CCLS [23], and the MEGB 
(i.e. the modified EGB [24]) will be made. An analysis of 
the quality of the found solutions and the time to find them 
will be made as well. 

A. The Methodology of the Experiments 

In the current study, nine input data sets, respectively with 
18, 42, 66, 90, 104, 130, 171, 211 and 242 events were used. 
These data sets are shown in Table II. 

TABLE II 
INPUT DATA SETS INFORMATION  

DS Events Students Groups Lecturers Rooms 

DS 1 18 52 4 10 10 

DS 2 42 100 8 18 12 

DS 3 66 142 11 25 16 

DS 4 90 175 14 29 18 

DS 5 104 225 18 30 21 

DS 6 130 274 21 37 22 

DS 7 171 369 29 46 30 

DS 8 211 445 35 53 34 

DS 9 242 499 39 60 37 

 
Each event is characterized by the resources involved - 

students, lecturers, and rooms. When two events use one 
common resource (or more than one), there is a conflict 
between them. These dependencies are shown in Table III. 

TABLE III 
THE NUMBER OF CONFLICTS BETWEEN THE EVENTS  

DS S L A S+L S+A L+A S+L+A 

DS 1 102 10 10 107 106 12 107 

DS 2 289 50 77 325 342 91 352 

DS 3 468 91 176 540 606 194 622 

DS 4 635 159 301 770 892 324 910 

DS 5 730 224 384 928 1062 418 1089 

DS 6 857 278 557 1100 1344 618 1398 

DS 7 1185 385 664 1528 1772 743 1840 
DS 8 1485 553 849 1960 2224 936 2292 
DS 9 1709 628 1024 2255 2611 1125 2697 

The conflicts between the different events can be 
triggered by a shared lecturer and a shared student and a 
shared room, or all of them together.  

B. Experimental Conditions 

The experimental conditions are 64–bit OS Windows 10 
and hardware configuration: Processor: Intel (R) Core (TM) 
i7–7700HQ at 2.80 – 3.80 GHz; RAM: 8GB DDR4. 

C. Experimental results 

In Table IV, the results of the EGB and MEGB algorithms 
execution for input data set DS1 (with 18 events; 52 students; 
10 lecturers and 10 rooms) are shown. The events are 
ordered by weight and duration. The results of all possible 
groupings are presented. 

TABLE IV 
RESULTS FOR DS1 (E=18; S=52; L=10; R=10) 

m Groups Sort by 
Weight 

Sort by 
Duration 

EGB 
time 

MEGB 
time 

1 1x18 0.722 0.806 375 47 

2 2x9 0.694 0.750 297 78 

3 3x6 0.611 0.639 313 94 

4 2x5; 2x4 0.639 0.611 313 141 

5 3x4; 2x3 0.694 0.694 312 172 

6 6x3 0.722 0.722 297 203 

7 4x3; 3x2 0.722 0.722 313 234 

8 2x3; 6x2 0.722 0.750 312 266 

9 9x2 0.750 0.750 297 313 

 
The diagram of Fig. 6 shows the execution times of the 

algorithms (in milliseconds) for input data set DS1. When 
increasing the distributions, the execution time of the MEGB 
algorithm becomes commensurate with that of the EGB 
algorithm. However, the best results are found in the first 
40% of the distributions. In this range, the execution time of 
the MEGB algorithm is less than that of the EGB algorithm 
(3 times when the events are sorted by weight and 2 times 
when the events are sorted by duration – Table IV). 

 

 
Fig. 7  Influence of the group number (the x-axis) on the execution time (the 
y-axis (in milliseconds)) for EGB and MEGB algorithms 

 
In Table V, the results of the EGB and MEGB algorithms 

execution for input data set DS2 (respectively with 42 events; 
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100 students; 18 lecturers and 12 rooms) are shown. The 
events are ordered by weight and duration. Again, the events 
are sorted in order by weight and duration. The results for 
the first 40% of all possible groupings are presented. For 42 
events, the possible groupings are: 42/2 = 21; 40% * 21 ≈ 8. 

TABLE V 
RESULTS FOR DS2 (E = 42; S = 100; L = 18; R = 12) 

m Distribution 
by groups 

Sort by 
weight 

Sort by 
duration 

EGB 
time 

MEGB 
time 

1 1x42 1.452 1.417 2313 78 

2 2x21 1.298 1.250 2187 172 

3 3x14 1.262 1.286 2016 250 

4 2x11; 2x10 1.250 1.298 1875 329 

5 2x9; 3x8 1.452 1.310 2063 406 

6 6x7 1.536 1.357 2032 562 

7 7x6 1.560 1.369 1797 578 

8 2x6; 6x5 1.571 1.405 1719 718 

 
The results in Table V show that the best solution has a 

value of 1.250. When the events are sorted by weight, this 
result is obtained by grouping the events into 4 groups, and 
when the events are sorted by duration, this result is obtained 
by grouping the events into 2 groups. In terms of the 
execution time, it is better for the MEGB algorithm than for 
the EGB algorithm. For example, when the events are sorted 
by weight, the execution time of the MEGB algorithm is 
5.69 times less than that of the EGB algorithm, and when the 
events are sorted by duration, this time is 12.7 times less. 
Therefore, in the next experiments, only the results of the 
MEGB algorithm will be presented. 

A comparative analysis in terms of the performance and 
quality of the generated solutions from the GALS, CCLS 
and MEGB algorithms will be made. The best results of the 
three algorithms are shown in Table VI. 

TABLE VI 
THE BEST RESULTS OF THE GALS, CCLS AND MEGB ALGORITHMS 

DS GALS Time CCLS Time MEGB Time 

DS 1 4.28 872 4.25 279 4.22 312 

DS 2 13.58 2869 12.87 840 13.21 683 

DS 3 21.83 8865 21.64 2444 21.41 1449 

DS 4 26.85 25619 25.29 6867 25.74 3013 

DS 5 31.92 67635 32.43 18678 31.63 6207 

DS 6 39.18 165030 39.42 49311 38.26 12662 

DS 7 49.16 374618 49.92 118839 49.64 25450 

DS 8 73.21 775459 72.11 272142 72.38 50391 

DS 9 88.26 1465617 91.54 568777 90.62 95744 

 
From the results in Table VI, it can be seen that the three 

algorithms generated commensurate solutions (in terms of 
quality). For smaller input data sets (those with a small 
number of events, for instance up to 100), the better 
solutions are generated by the CCLS and MEGB algorithms. 
However, for large input data sets, the GALS algorithm 
generates better solutions (Fig. 8). 

The influence of the size of the input data on the quality 
of the generated solutions is presented in Fig. 8. 

 
Fig. 8 Influence of the size of the input data (the y-axis) on the quality of the 
generated solutions (the x-axis) for GALS, CCLS and MEGB algorithms 

 
In terms of the execution time, it can be seen that it is 

acceptable except for the GALS algorithm. The Influence of 
the size of the input data on the execution time for GALS, 
CCLS, and MEGB algorithms is presented in Fig. 9. 

 

 
Fig. 9  Influence of the size of the input data (the x-axis) on the execution 
time (the y-axis (in seconds)) for GALS, CCLS, and MEGB algorithms 

 
If the parameters of the GALS algorithm – the population 

size and the number of reproductions are set more precisely, 
the algorithm execution time can be reduced. However, it 
will still be longer than the other two algorithms. 

IV.  CONCLUSION 

A study of the MEGB algorithm for UCTP was presented 
in this paper. Multiple models to describe the problem and 
multiple approaches to solve it was pointed out. An 
implementation of the MEGB algorithm based on the 
described approach was presented. The methodology, 
conditions and the aims of the experiment were described. In 
this study, nine input data sets were used. The results were 
analyzed, and the relevant conclusions were made: with 
increasing the number of groups, the execution time of the 
MEGB algorithm increases as well and equate with the 
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execution time of the EGB algorithm; the best results are 
obtained with the first 30% of the groups formed. In these 
groupings, the execution time of the MEGB algorithm is 
much less than the execution time of the EGB algorithm. 
The process is optimized by creating a partial timetable and 
the ordinance of the events in groups before the current 
event does not change. In addition, a comparative analysis 
between the MEGB algorithm and two other algorithms for 
UCTP, respectively GALS and CCLS, is made as well. The 
obtained results show that the MEGB algorithm and the 
CCLS algorithm generate better solutions for smaller input 
data sets, while the GALS algorithm generates better 
solutions for larger input data sets. However, in terms of 
execution time, it has been found that the GALS algorithm is 
running slowest. 

The complexity of the MEGB algorithm is cubic, i.e. 
Θ(k3), where k is the number of events in the timetable. This 
is because for each distribution g and each group d (total g*d) 
all events k are analyzed. For each event, the LocalSearch 
method is called. This method has quadratic complexity. 
Therefore, the algorithm has a cubic complexity, depending 
on the number of events k. 
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