

Vol.9 (2019) No. 1

ISSN: 2088-5334

A Modified Event Grouping Based Algorithm for the University
Course Timetabling Problem

Velin Kralev#1, Radoslava Kraleva#2, Sachin Kumar*
Department of Informatics, South-West University "Neofit Rilski," 66 Ivan Michailov Str., Blagoevgrad, 2700, Bulgaria

 E-mail: 1velin_kralev@swu.bg; 2rady_kraleva@swu.bg

* College of Information Business Systems, NUST MISIS, Leninsky Prosp. 4, 119049 Moscow, Russia
E-mail: sachinagnihotri16@gmail.com

Abstract— This paper presents a study of a modified event grouping based algorithm (MEGB) for university course timetabling
problem (UCTP). Multiple models to describe the problem and multiple approaches to solving it are pointed out. The main idea of the
modification is that through reduction on the generated solutions the execution time of the standard event grouping based algorithm
(EGB) will be reduced, too. Also, an implementation of the modified algorithm based on the described approach is presented. The
methodology, conditions and the aims of the experiment are described. The experimental results are analyzed and conclusions are
made. When increasing the number of the groups, the execution time of the MEGB algorithm increases and equates with the
execution time of the EGB algorithm. The best results are obtained with the first 30% of the groups formed. In these groupings, the
execution time of the MEGB algorithm is much less than the execution time of the EGB algorithm. This is because, in the EGB
algorithm, every change in the event ordinance creates a new timetable, and all events are repositioned on it. This process is optimized
by creating a partial timetable, whereby the ordinance of events in groups before the current does not change. In addition, a
comparative analysis between the MEGB algorithm and two other algorithms for UCTP, respectively a genetic algorithm with the
local search method (GALS) and a local search algorithm based on chromatic classes (CCLS) is made as well. The obtained results
show that the MEGB algorithm and the CCLS algorithm generate better solutions for smaller input data sets, while the GALS
algorithm generates better solutions for larger input data sets. However, in terms of the execution time, it was ascertained that the
GALS algorithm runs slowest among the others.

Keywords— university course timetabling problem; local search; genetic algorithm; modified event grouping based algorithm.

I. INTRODUCTION

The University Course Timetabling Problem (UCTP) is a
combinatorial optimization problem [1]. It is NP-hard [2],
but it has been intensively studied [3], [4]. The heuristic
approaches (meta-heuristic, hyper-heuristic, and population-
based approaches) give better results than the other
approaches (based on constructive heuristics) [5], [6]. With
this problem, if e events and t time slots are defined, (e–
1)!.e2.t checks for positioning the events on the timetable
must be made [7].

Many algorithms solve approximately the UCTP and
other problems [8] and [9]. The constraint-based algorithms
are these algorithms where additional techniques are used,
such as trees and graphs, "depth-first search," population-
based approaches combined with "backtracking," and others
[10]. The knowledge-based and case-based reasoning
algorithms are the ones where the techniques used are sets of
rules and graphs with edges associated with events [11]. The

group of hyper heuristic and metaheuristic based algorithms
includes approaches such as: local search [12], [13], great
deluge [14], variable neighborhood search [15], ant colony
optimization [16], [17], simulated annealing [18], [19] and
other [20]. The aim is to find the most appropriate approach
for a specific problem. The group of population-based
algorithms includes genetic and mimetic approaches [21].
The results obtained with these methods are good [22]. In
the graph-based and graph coloring based algorithms, the
described problem is transformed into a graph coloring
problem (GCP) [23].

A UCTP model based on constraints and weights of
resources (including events, students, lecturers, and rooms)
is presented in [7]. The UCTP is formulated as an
optimization problem with an objective function. A genetic
algorithm – GA respectively with quadratic complexity and
a mimetic algorithm – MA respectively with cubic
complexity have been described in [22]. The experimental
results have shown that MA generates better solutions from
GA.

229

The relationship between the UCTP and the GCP can be
presented by an undirected graph G (Fig. 1).

Fig. 1 The graph G with 26 vertices and 90 edges

Edges represent the conflicts between the different events

in graph G. Each edge connects two vertices (events) and
shows that there is a conflict between them. This conflict can
be caused by the use of one or more common resources –
students, lecturer, and room.

Fig. 2 The colored graph G with 6 chromatic classes

The vertices (events) without conflicts between them form

independent sets. These independent sets are groups of
vertices in graph G. There are no connecting edges between
the vertices from an independent set. In the graph theory,
these independent sets are called chromatic classes, but in
[24] the term "groups" is used. The vertices of the same
chromatic class (corresponding to one group of events) are
colored in the same color Fig. 2.

Thus, the individual events in a given group (forming a
chromatic class) can be positioned into every time slot on the
timetable independently of each other. This is because these

events do not use common (shared) resources, so they are
not in conflict with each other. For clarity, each chromatic
class of vertices is presented in a separate column (Fig. 3).

Fig. 3 The chromatic classes arranged in columns

The presented approach has been successfully used to
solve UCTP and the results obtained were good [23]. A
variable neighborhood search based algorithm – VNS is
presented [15]. The results show that the neighborhood
structures (of events) influence on the precision of the
solution. An event grouping based algorithm [24] – EGB
using the model is described [7]. In this algorithm, the events
were combined into sets called groups. The precision of the
solution depends on the location of the events into the input
sequence. All groupings of the events are generated. The
algorithm searched for a solution with the best precision for
each sequence of events in each group. This algorithm has a
cubic complexity that depends on the number of events.
Therefore, searching for ways for reducing the
computational complexity (respectively the execution time)
of the algorithm is further needed.

II. MATERIAL AND METHOD

A modified event grouping based algorithm (MEGB) for
UCTP will be presented. As with the original EGB algorithm,
the MEGB algorithm will search for the best solution for
each order of events in each group. For large input data sets
(for instance thousands of events), the performance of the
EGB algorithm will take more execution time (because
many solutions should be generated and evaluated) [24].

Definition . Let V is a set of k events (vertices), i.e. V =
{ v1, v2, ..., vk}, k ∈ Z

+, k ≥ 4, and D is a set of g different
distributions of these events, i.e. D = {d1, d2, ..., dg}, 2 ≤ g ≤
abs(k/2), where abs(k/2) = |k/2|. The union of all distributions
of events is equal to the set V, i.e. union (di) = V, 1 ≤ i ≤ k.
This means that each event is distributed exactly in one
group. According to the definition, the cardinality of any two
groups will not differ by more than one event, i.e. ||dp|–|dq|| =
0, if (k mod g) = 0, or ||dp|–|dq|| = 1, if (k mod g) ≠ 0, 1 ≤ p, q ≤
g. This requires that the following be met: exactly (k mod g)
groups should contain floor (k/g) + 1 events, where floor (k/g)
= k/g. There are other techniques for grouping resources,
such as those presented in [24]–[26].

230

An example for the distribution of 11 events into 2, 3, 4
and 5 groups is presented [24].

TABLE I
DISTRIBUTION OF 11 EVENTS INTO GROUPS

g k/g k mod g k/g+1 Groups Cardinality

2 5 1 6 |d1| = 6; |d2| = 5

3 3 2 4 |d1| = 4; |d2| = 4; |d3| = 3

4 2 3 3 |d1|, |d2|, |d3| = 3; |d4| = 2

5 2 1 3 |d1| = 3; |d2|, |d3|, |d4|, |d5| = 2

The main idea of the MEGB algorithm will be presented

by an input data set with 11 events, respectively divided into
2, 3 and 4 groups. The grouping of events into 5 groups will
not be presented, but the result will be given. The algorithm
trace table is shown in Fig. 4.

g = 2 1 2 3 4 5 6 7 8 9 10 11

Best Id Shift

|d1|= 6 2 3 4 5 6 1 7 8 9 10 11
1.54 2 1

 3 4 5 6 1 2 7 8 9 10 11

 4 5 6 1 2 3 7 8 9 10 11

 5 6 1 2 3 4 7 8 9 10 11

 6 1 2 3 4 5 7 8 9 10 11

|d2|= 5 2 3 4 5 6 1 7 8 9 10 11

 2 3 4 5 6 1 8 9 10 11 7

 2 3 4 5 6 1 9 10 11 7 8

Best Id Shift

 2 3 4 5 6 1 10 11 7 8 9 1.32 10 3

 2 3 4 5 6 1 11 7 8 9 10

g = 3 1 2 3 4 5 6 7 8 9 10 11

Best Id Shift

|d1|= 4 2 3 4 1 5 6 7 8 9 10 11

1.54 2 1

 3 4 1 2 5 6 7 8 9 10 11

 4 1 2 3 5 6 7 8 9 10 11

|d2|= 4 2 3 4 1 5 6 7 8 9 10 11

 2 3 4 1 6 7 8 5 9 10 11

Best Id Shift

 2 3 4 1 7 8 5 6 9 10 11
1.41 7 2

 2 3 4 1 8 5 6 7 9 10 11

|d3|= 3 2 3 4 1 7 8 5 6 9 10 11

 2 3 4 1 7 8 5 6 10 11 9

Best Id Shift

 2 3 4 1 7 8 5 6 11 9 10 1.27 11 2

g = 4 1 2 3 4 5 6 7 8 9 10 11

Best Id Shift

|d1|= 3 2 3 1 4 5 6 7 8 9 10 11

1.54 2 1

 3 1 2 4 5 6 7 8 9 10 11

|d2|= 3 2 3 1 4 5 6 7 8 9 10 11

 2 3 1 5 6 4 7 8 9 10 11

Best Id Shift

 2 3 1 6 4 5 7 8 9 10 11

1.48 6 2

|d3|= 3 2 3 1 6 4 5 7 8 9 10 11

 2 3 1 6 4 5 8 9 7 10 11

Best Id Shift

 2 3 1 6 4 5 9 7 8 10 11

 1.36 9 2

|d4|= 2 2 3 1 6 4 5 9 7 8 10 11

 2 3 1 6 4 5 9 7 8 11 10

1.42 11 2

Fig. 4 The MEGB algorithm trace table with an input data set containing 11
events, respectively divided into 2, 3 and 4 groups

The range of the possible distributions can be reduced
only to the first 33% of all distributions [24]. In addition, the
initial order of events is also important. For example, the
events may be sorted by duration or weight (in descending
order). In this way, the events that have more impact on the
evaluation of a timetable will be positioned earlier. Once the
initial order of the events has been determined (and the
specific distributions are selected), the process of grouping
events, positioning them, and evaluating the generated
solution (timetable) may start.

The eleven events from the input data set can be grouped
into 2, 3, 4 and 5 groups (because 11 div 2 = 5, i.e. 11 events
can be up to 5 groups so that in each group so that there are
at least two events in each group). Once the best solution is
found by rearranging the events in the first group, the
algorithm begins searching for a better solution by
rearranging the events in the second group. After the cyclical
rearrangement of the events in the first group, it can be seen
that the best solution found (which has a value of 1.54) is
when an event with index 2 (Id = 2) is placed in the first
position in the group. This is achieved when all events in the
group are moved one position to the left (Shift = 1). Now the
algorithm begins searching for a better solution by
rearranging the events in the second group. The events
already ordered in the first group are no longer considered,
their positions in the group (respectively in the timetable)
remain unchanged until the end of the algorithm execution
(for the current distribution: g = 2).

In the second group, the best solution found has a value of
1.32 and it is generated when an event with index 10 (Id =
10) is placed in the first position in this group. This is
achieved when all events in the group are moved 3 positions
to the left (Shift = 3). The example shows that for each new
group, the algorithm generates a solution that is not worse
than the last best found. As it can be seen from the example,
the best order of events where the solution has a score of
1.54 (when grouping in two groups) is respectively: 2, 3, 4, 5,
6, 1, 7, 8, 9, 10, and 11. This is the order of events with
which the algorithm starts processing the second group. The
solution with this order of events is generated (and evaluated
accordingly) in the previous step of the algorithm execution.
Therefore, for each new group, the algorithm "misses" every
first order of events because it is the order of events in which
the best solution is generated in the previous group. In this
way, the number of generated solutions is reduced by g – 1
(where g is the total number of groups in the current
distribution). The already-positioned events (at the previous
step) are no longer considered. This greatly improves the
algorithm execution. For example, when grouping events
into two groups, the total number of orders that are required
to be checked is 121, but the MEGB algorithm checks only
86 of them. When grouping the events into three groups (i.e.,
g = 3), the reduction is even higher, because of 121 possible
orders, the algorithm checks only 71. Note that the solution
found in this grouping has a value of 1.27 and is the best
found so far. When grouping the events into four groups (i.e.,
g = 4), the reduction is increased as well. Of 121 possible
orders, the algorithm checks only 61 (that is almost half the
number of all possible orders). The best solution found at g =
4 is 1.36, but it is worse than the best one found, which has a
value of 1.27 (at g = 3). The situation is similar when the

231

events are grouped into five groups (i.e., g = 5). Of 121
possible orders, the algorithm checks only 53 of them, but
the quality of the generated solutions is getting worse.

It should be noted that the generated solutions from the
MEGB algorithm are identical to those generated by the
standard EGB algorithm. However, the MEGB algorithm
finds the best solutions much faster than the EGB algorithm.
For input data sets that contain a small number of events, the
number of possible groupings is relatively small. Therefore,
the range of distributions can be expanded to groups with
less cardinality.

The code of the GetGroupRange procedure is presented in
Fig. 5 (in Delphi language).

01 procedure GetGroupRange
02 │(AK, AG, AD: Integer; var AFrom, ATo: Integer);
03 var
04 │ X, Y: Integer;
05 begin
06 │ if ((AG >= AK) or (AD > AG)) then
07 │ begin
08 │ │ AFrom := -1;
09 │ │ ATo := AFrom;
10 │ │ Exit; //incorrect parameters
11 │ end;
12 │ X := AK div AG; //the integer part
13 │ Y := AK mod AG; //the remainder
14 │ if (AD <= Y) then
15 │ begin
16 │ │ AFrom := (AD - 1) * (X + 1) + 1;
17 │ │ ATo := AFrom + X;
18 │ end else
19 │ begin
20 │ │ AFrom := (Y*(X+1)) + (((AD-Y)-1)* X) + 1;
21 │ │ ATo := AFrom + (X - 1);
22 │ end;
23 end;

Fig. 5 The source code of the GetGroupRange procedure

The GetGroupRange procedure has constant complexity.
This procedure requires 3 input parameters, respectively: AK
(the number of the events), AG (the number of the groups),
and AD (an index of the group from the current distribution).
As a result, the procedure will send back AFrom and ATo
positions of the events that form this group (lines 20 and 21)
to the output parameters.

The code of the MEGB procedure is presented in Fig. 6
(again in Delphi language).

For the algorithm's execution, it is necessary to declare
and initialize some variables and data structures (dynamic
arrays) as shown in Fig. 6, lines 3÷12. The variables K (the
input parameter of the MEGB procedure), G and D
correspond to those of the definition. The variables I, Col
and Row (lines 5 and 6) are local variables for managing the
computation process. The variables “From” and “&To” will
be passed as input-output parameters of the GetGroupRange
procedure. The Cost and BestCost variables will store the
evaluation of the current solution and the best solution found
so far. The ArrR, ArrB, and ArrF dynamic arrays (which are
declared on lines 10÷12) will store respectively: the new
order of events in the current group (ArrR), the order in
which the best solution for the current group is generated
(ArrB), and the pre-positioned events on the timetable
(ArrF).

Initially (lines 14÷16), the MEGB procedure allocates the
necessary memory for the three dynamic arrays - ArrR, ArrB

and ArrF. This is done by calling the standard SetLength
procedure. The second parameter of this procedure specifies
the size of the corresponding dynamic array. In this case, this
is the value of the variable K (corresponding to the number
of events).

01 procedure MEGB(K, Min, Max: Integer);
02 var
03 │ G: Integer; //as defined
04 │ D: Integer; //as defined
05 │ I: Integer;
06 │ Col, Row: Integer;
07 │ From, &To: Integer;
08 │ Index: Integer;
09 │ Cost, BestCost: Single;
10 │ ArrR: array of Integer; //new distributions
11 │ ArrB: array of Integer; //best distributions
12 │ ArrF: array of Boolean; //the fixed events
13 begin
14 │ SetLength(ArrR, K);
15 │ SetLength(ArrB, K);
16 │ SetLength(ArrF, K);
17 │ for G := Min to Max do //from minG to maxG
18 │ begin
19 │ │ for Col := 1 to K do //for each event
20 │ │ begin
21 │ │ │ ArrR[Col] := Col;
22 │ │ │ ArrB[Col] := Col;
23 │ │ │ ArrF[Col] := False;
24 │ │ end;
25 │ │ BestCost := MaxInt;
26 │ │ for D := 1 to G do //for each D in G
27 │ │ begin
28 │ │ │ GetGroupRange(K, G, D, From, &To);
29 │ │ │ for Row := From to &To do //for each event
30 │ │ │ begin
31 │ │ │ │ Index := Row - 1;
32 │ │ │ │ //every first row is omitted
33 │ │ │ │ if (From>1)and(From=Row) then Continue;
34 │ │ │ │ for Col := From to &To do
35 │ │ │ │ begin
36 │ │ │ │ │ if (Col <= &To) then
37 │ │ │ │ │ begin
38 │ │ │ │ │ │ Index := Index + 1;
39 │ │ │ │ │ │ if (Index > &To) then Index := From;
40 │ │ │ │ │ │ ArrR[Col] := Index;
41 │ │ │ │ │ end else
42 │ │ │ │ │ begin
43 │ │ │ │ │ │ ArrR[Col] := Col;
44 │ │ │ │ │ end;
45 │ │ │ │ end;
46 │ │ │ │ for I:=From to &To do ArrF[I] := False;
47 │ │ │ │ if (From > 1) then
48 │ │ │ │ │ for I := 1 to (From - 1) do
49 │ │ │ │ │ │ ArrR[I] := ArrB[I];
50 │ │ │ │ Cost := LocalSearch(ArrR);
51 │ │ │ │ if (Cost < BestCost) then
52 │ │ │ │ begin
53 │ │ │ │ │ BestCost := Cost;
54 │ │ │ │ │ for Col := From to &To do
55 │ │ │ │ │ │ ArrB[Col] := ArrR[Col];
56 │ │ │ │ end;
57 │ │ │ │ for I := From to &To do ArrF[I] := True;
58 │ │ │ end; //for Row := From to &To do
59 │ │ end; //for D := 1 to G do
60 │ end; //for G := Min to Max do
61 end;

Fig. 6 The source code of the MEGB procedure

In the body of the MEGB procedure, a primary cycle

(loop) of G steps is executed. The input parameters Min and
Max determines the number of these steps. After initializing
the dynamic arrays with initial values (lines 19÷24), a nested
cycle is started (line 26). This cycle passes through each

232

group of the current distribution. For each group of this
distribution, the GetGroupRange procedure is called (line
28). As mentioned, this procedure calculates the range of
events to be analyzed. After the events move one position to
the left, the LocalSearch method searches for a new solution
(line 50). If an acceptable solution with this order of events
cannot be generated, the LocalSearch method will return the
MaxInt value. Then, the process will continue with a new
rearrangement of events in the current group. If the last
generated solution is the best found so far, it is stored (lines
51÷56). These steps are repeated until all events in the
current group are positioned in the first position.

III. RESULTS AND DISCUSSION

Two experiments will be made in this study. First, the
performance between the MEGB and the EGB algorithms in
terms of the execution time will be checked. Second, a
comparative analysis between three algorithms for UCTP,
respectively: the GALS [22], the CCLS [23], and the MEGB
(i.e. the modified EGB [24]) will be made. An analysis of
the quality of the found solutions and the time to find them
will be made as well.

A. The Methodology of the Experiments

In the current study, nine input data sets, respectively with
18, 42, 66, 90, 104, 130, 171, 211 and 242 events were used.
These data sets are shown in Table II.

TABLE II
INPUT DATA SETS INFORMATION

DS Events Students Groups Lecturers Rooms

DS 1 18 52 4 10 10

DS 2 42 100 8 18 12

DS 3 66 142 11 25 16

DS 4 90 175 14 29 18

DS 5 104 225 18 30 21

DS 6 130 274 21 37 22

DS 7 171 369 29 46 30

DS 8 211 445 35 53 34

DS 9 242 499 39 60 37

Each event is characterized by the resources involved -

students, lecturers, and rooms. When two events use one
common resource (or more than one), there is a conflict
between them. These dependencies are shown in Table III.

TABLE III
THE NUMBER OF CONFLICTS BETWEEN THE EVENTS

DS S L A S+L S+A L+A S+L+A

DS 1 102 10 10 107 106 12 107

DS 2 289 50 77 325 342 91 352

DS 3 468 91 176 540 606 194 622

DS 4 635 159 301 770 892 324 910

DS 5 730 224 384 928 1062 418 1089

DS 6 857 278 557 1100 1344 618 1398

DS 7 1185 385 664 1528 1772 743 1840
DS 8 1485 553 849 1960 2224 936 2292
DS 9 1709 628 1024 2255 2611 1125 2697

The conflicts between the different events can be
triggered by a shared lecturer and a shared student and a
shared room, or all of them together.

B. Experimental Conditions

The experimental conditions are 64–bit OS Windows 10
and hardware configuration: Processor: Intel (R) Core (TM)
i7–7700HQ at 2.80 – 3.80 GHz; RAM: 8GB DDR4.

C. Experimental results

In Table IV, the results of the EGB and MEGB algorithms
execution for input data set DS1 (with 18 events; 52 students;
10 lecturers and 10 rooms) are shown. The events are
ordered by weight and duration. The results of all possible
groupings are presented.

TABLE IV
RESULTS FOR DS1 (E=18; S=52; L=10; R=10)

m Groups Sort by
Weight

Sort by
Duration

EGB
time

MEGB
time

1 1x18 0.722 0.806 375 47

2 2x9 0.694 0.750 297 78

3 3x6 0.611 0.639 313 94

4 2x5; 2x4 0.639 0.611 313 141

5 3x4; 2x3 0.694 0.694 312 172

6 6x3 0.722 0.722 297 203

7 4x3; 3x2 0.722 0.722 313 234

8 2x3; 6x2 0.722 0.750 312 266

9 9x2 0.750 0.750 297 313

The diagram of Fig. 6 shows the execution times of the

algorithms (in milliseconds) for input data set DS1. When
increasing the distributions, the execution time of the MEGB
algorithm becomes commensurate with that of the EGB
algorithm. However, the best results are found in the first
40% of the distributions. In this range, the execution time of
the MEGB algorithm is less than that of the EGB algorithm
(3 times when the events are sorted by weight and 2 times
when the events are sorted by duration – Table IV).

Fig. 7 Influence of the group number (the x-axis) on the execution time (the
y-axis (in milliseconds)) for EGB and MEGB algorithms

In Table V, the results of the EGB and MEGB algorithms

execution for input data set DS2 (respectively with 42 events;

233

100 students; 18 lecturers and 12 rooms) are shown. The
events are ordered by weight and duration. Again, the events
are sorted in order by weight and duration. The results for
the first 40% of all possible groupings are presented. For 42
events, the possible groupings are: 42/2 = 21; 40% * 21 ≈ 8.

TABLE V
RESULTS FOR DS2 (E = 42; S = 100; L = 18; R = 12)

m Distribution
by groups

Sort by
weight

Sort by
duration

EGB
time

MEGB
time

1 1x42 1.452 1.417 2313 78

2 2x21 1.298 1.250 2187 172

3 3x14 1.262 1.286 2016 250

4 2x11; 2x10 1.250 1.298 1875 329

5 2x9; 3x8 1.452 1.310 2063 406

6 6x7 1.536 1.357 2032 562

7 7x6 1.560 1.369 1797 578

8 2x6; 6x5 1.571 1.405 1719 718

The results in Table V show that the best solution has a

value of 1.250. When the events are sorted by weight, this
result is obtained by grouping the events into 4 groups, and
when the events are sorted by duration, this result is obtained
by grouping the events into 2 groups. In terms of the
execution time, it is better for the MEGB algorithm than for
the EGB algorithm. For example, when the events are sorted
by weight, the execution time of the MEGB algorithm is
5.69 times less than that of the EGB algorithm, and when the
events are sorted by duration, this time is 12.7 times less.
Therefore, in the next experiments, only the results of the
MEGB algorithm will be presented.

A comparative analysis in terms of the performance and
quality of the generated solutions from the GALS, CCLS
and MEGB algorithms will be made. The best results of the
three algorithms are shown in Table VI.

TABLE VI
THE BEST RESULTS OF THE GALS, CCLS AND MEGB ALGORITHMS

DS GALS Time CCLS Time MEGB Time

DS 1 4.28 872 4.25 279 4.22 312

DS 2 13.58 2869 12.87 840 13.21 683

DS 3 21.83 8865 21.64 2444 21.41 1449

DS 4 26.85 25619 25.29 6867 25.74 3013

DS 5 31.92 67635 32.43 18678 31.63 6207

DS 6 39.18 165030 39.42 49311 38.26 12662

DS 7 49.16 374618 49.92 118839 49.64 25450

DS 8 73.21 775459 72.11 272142 72.38 50391

DS 9 88.26 1465617 91.54 568777 90.62 95744

From the results in Table VI, it can be seen that the three

algorithms generated commensurate solutions (in terms of
quality). For smaller input data sets (those with a small
number of events, for instance up to 100), the better
solutions are generated by the CCLS and MEGB algorithms.
However, for large input data sets, the GALS algorithm
generates better solutions (Fig. 8).

The influence of the size of the input data on the quality
of the generated solutions is presented in Fig. 8.

Fig. 8 Influence of the size of the input data (the y-axis) on the quality of the
generated solutions (the x-axis) for GALS, CCLS and MEGB algorithms

In terms of the execution time, it can be seen that it is

acceptable except for the GALS algorithm. The Influence of
the size of the input data on the execution time for GALS,
CCLS, and MEGB algorithms is presented in Fig. 9.

Fig. 9 Influence of the size of the input data (the x-axis) on the execution
time (the y-axis (in seconds)) for GALS, CCLS, and MEGB algorithms

If the parameters of the GALS algorithm – the population

size and the number of reproductions are set more precisely,
the algorithm execution time can be reduced. However, it
will still be longer than the other two algorithms.

IV. CONCLUSION

A study of the MEGB algorithm for UCTP was presented
in this paper. Multiple models to describe the problem and
multiple approaches to solve it was pointed out. An
implementation of the MEGB algorithm based on the
described approach was presented. The methodology,
conditions and the aims of the experiment were described. In
this study, nine input data sets were used. The results were
analyzed, and the relevant conclusions were made: with
increasing the number of groups, the execution time of the
MEGB algorithm increases as well and equate with the

234

execution time of the EGB algorithm; the best results are
obtained with the first 30% of the groups formed. In these
groupings, the execution time of the MEGB algorithm is
much less than the execution time of the EGB algorithm.
The process is optimized by creating a partial timetable and
the ordinance of the events in groups before the current
event does not change. In addition, a comparative analysis
between the MEGB algorithm and two other algorithms for
UCTP, respectively GALS and CCLS, is made as well. The
obtained results show that the MEGB algorithm and the
CCLS algorithm generate better solutions for smaller input
data sets, while the GALS algorithm generates better
solutions for larger input data sets. However, in terms of
execution time, it has been found that the GALS algorithm is
running slowest.

The complexity of the MEGB algorithm is cubic, i.e.
Θ(k3), where k is the number of events in the timetable. This
is because for each distribution g and each group d (total g*d)
all events k are analyzed. For each event, the LocalSearch
method is called. This method has quadratic complexity.
Therefore, the algorithm has a cubic complexity, depending
on the number of events k.

ACKNOWLEDGMENTS

We would like to express our sincere gratitude to Assoc.
Prof. Dafina Kostadinova, Ph.D. from the South-West
University in Bulgaria, for her suggestions regarding this
paper.

REFERENCES
[1] H. Babaei, J. Karimpour, and A. Hadidi, "A survey of approaches for

university course timetabling problem," Computers and Industrial
Engineering, vol. 86, pp. 43-59, 2015.

[2] S. Even, A. Itai, and A. Shamir, "On the complexity of timetable and
multicommodity flow problems," SLAM Journal of computing, vol.
5(4), pp. 691-703, 1976.

[3] K. Y. Junn, J. H. Obit, and R. Alfred, "The Study of Genetic
Algorithm Approach to Solving University Course Timetabling
Problem," Lecture Notes in Electrical Engineering, vol. 488, pp. 454-
463, 2018.

[4] A. R. Komijan, and M. N. Koupaei, "A mathematical model for
university course scheduling: a case study," International Journal of
Technical Research and Applications, vol. 19, pp. 20-25, 2015.

[5] R. Chen, and H. Shih, "Solving university course timetabling
problems using constriction particle swarm optimization with local
search," Algorithms, vol. 6, pp. 227-244, 2013.

[6] M. S. Kohshori, and M. S. Abadeh, "Hybrid genetic algorithms for
university course timetabling," International Journal of Computer
Science Issues, vol. 9(2), pp. 446-455, 2012.

[7] V. Kralev, "A model for the university course timetabling problem,"
International Journal "Information technologies & knowledge," vol.
3(3), pp. 276-289, 2009.

[8] M. Traykov, S. Angelov, and N. Yanev, "A New Heuristic Algorithm
for Protein Folding in the HP Model," Journal of Computational
Biology, vol. 23(8), pp. 662-668, Aug. 2016.

[9] F. I. Sapundzhi and M. S. Popstoilov, "Optimization algorithms for
finding the shortest paths," Bulgarian Chemical Communications, vol.
50, special issue B, pp. 115-120, 2018.

[10] K. Y. Junn, J. H. Obit, and R. Alfred, "A constraint programming
approach to solving university course timetabling problem (UCTP),"
Advanced Science Letters, vol. 23(11), pp. 11023-11026, 2017.

[11] H. S. Theng, A. B. Bin Md Sultan, and N. Mohd Ali, "Multiple-
hybrid case-based reasoning approach for university course
timetabling problem," Journal of Theoretical and Applied
Information Technology, vol. 72(2), pp. 164-178, 2015.

[12] T. Song, S. Liu, X. Tang, X. Peng, and M. Chen, "An iterated local
search algorithm for the University Course Timetabling Problem,"
Applied Soft Computing Journal, vol. 68, pp. 597-608, 2018.

[13] J. A. Soria-Alcaraz, E. Özcan, J. Swan, G. Kendall, and M. Carpio,
"Iterated local search using an add and delete hyper-heuristic for
university course timetabling," Applied Soft Computing Journal, vol.
40, pp. 581-593, 2016.

[14] J. H. Obit, K. Y. Junn, and R. Alfred, "Performance comparison of
linear and non-linear great deluge algorithms in solving university
course timetabling problems," Advanced Science Letters, vol. 23(11),
pp. 11027-11030, 2017.

[15] V. Kralev, and R. Kraleva, "Variable neighborhood search based
algorithm for university course timetabling problem," Proceedings of
the Fifth international scientific conference, FMNS-2013, pp. 202-
214, 2013.

[16] K. Patrick, and Z. Godswill, "Greedy ants colony optimization
strategy for solving the curriculum based university course
timetabling problem," British Journal of Mathematics & Computer
Science, vol. 14(2), pp. 1-10, 2016.

[17] M. Mazlan, M. Makhtar, A. F. K. A. Khairi, M. A. Mohamed, and M.
N. A. Rahman, "Ant colony optimization for solving university
course timetabling problems," International Journal of Engineering
and Technology (UAE), vol. 7(2), pp. 139-141, 2018.

[18] K. Y. Junn, J. H. Obit, and R. Alfred, "Comparison of simulated
annealing and great deluge algorithms for university course
timetabling problems (UCTP)," Advanced Science Letters, vol.
23(11), pp. 11413-11417, 2017.

[19] S. Zheng, L. Wang, Y. Liu, and R. Zhang, "A simulated annealing
algorithm for university course timetabling considering traveling
distances," International Journal of Computing Science and
Mathematics, vol. 6(2), pp. 139-151, 2015.

[20] M. X. Zhang, B. Zhang, and N. Qian, "University course timetabling
using a new ecogeography-based optimization algorithm," Natural
Computing, vol. 16(1), pp. 61-74, 2017.

[21] S. E. Soliman and A. E. Keshk, "Memetic algorithm for solving
university course timetabling problem," International Journal of
Mechanical Engineering and Information Technology, vol. 3(8), pp.
1476-86, 2015.

[22] V. Kralev, "A genetic and memetic algorithm for solving the
university course timetabling problem," International Journal
"Information theories & applications," vol. 16(3), pp. 291-299, 2009.

[23] V. Kralev, and R. Kraleva, "A local search algorithm based on
chromatic classes for university course timetabling problem,"
International Journal of Advanced Computer Research, vol. 7(28), pp.
1-7, 2017.

[24] V. Kralev, R. Kraleva, and B. Yurukov, "An event grouping based
algorithm for university course timetabling problem," International
Journal of Computer Science and Information Security, vol. 14(6), pp.
222-229, 2016.

[25] R. P. Badoni, D. K. Gupta, and P. Mishra, "A new hybrid algorithm
for university course timetabling problem using events based on
groupings of students," Computers & industrial engineering, vol.78,
pp. 12–25, 2014.

[26] V. Kralev, R. Kraleva, and N. Siniagina, "An integrated system for
university course timetabling," Proceedings of the third international
scientific conference – FMNS2009, vol. 1, pp. 99-105, 2009.

235

