International Journal on Vol.8 (2018) No. 6
H ISSN: 2088-5334

Advanced Science >5N: 2088-533

Engineering

Information Technology

Blocks Correctness Evaluation Methodology for Block-Based
Software Development
Abdullah Mohd zifi*, Mustafa Almatary?, Marini Abu Bakaf*, Rodziah Latif®, Norleyza Jailarif

#Center for Software Technology and Management, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, 43600
Bangi Selangor, Malaysia
E-mail: ‘amzftsm@ukm.edu.my, 2vimdmustafa@yahoo.com, marini @ukm.edu.my, “rodziah.latih@ukm.edu.my, 3njailani @ukm.edu.my

Abstract— The term “block” in Block-Based Software Development (BBSD) refers to a software component that has the
characteristics of reusable, composition, customizable and configurable. Based on the principles of component-based software
development and end-user development, the objective of BBSD is to allow non-programmer known as end-user to build a new
application by using a set of blocks by creating composite blocks, configuring and customizing for a specific application domain. In
the current implementation, a Domain Initiator is responsible for identifying blocks’ specifications, which will be uploaded to the
block store repository. Block developers can contribute to developing blocks using the Java programming language. Blocks for a
specific domain are bundled as a JAR file. These blocks will be stored in a block store. The block store is a software repository that
provides a sharing mechanism for domain driven blocks specification, cataloging, archiving, and distribution. Before the blocks
submitted to the block store can be distributed to end-users, they are required to undergo the process of block verification and
evaluation to ensure that they conform to the requirement specification. The submitted blocks will also need to be approved by the
domain initiator before they are made available to the end users. This paper proposes the block-based evaluation methodology as well
as the software tool which helps domain initiator in the process of blocks verification and evaluation. The proposed methodology
consists of three types of validation namely Automatic Validation Approach, JSR-303 or JSR-349 standard bean Validation
Specification, and the manual testing. The proposed methodology itself was verified through a case study using a list of blocks
submitted to the block store repository.

Keywords— software reuse repository; end user development; block-based software development; component-based software
development; component evaluation.

I. INTRODUCTION

The block store repository is a domain driven software developers. Administrator is a person responsible for
blocks sharing mechanism to support the Block-Based managing the block store. Administrator is responsible for
Software Development (BBSD). BBSD is a software managing users accounts, creating of domains/subdomains,
development approach based on the principles ofmanaging users profiles, authentication information and
Component-Based Software Development (CBSD) and End-handling communication with all users through inbox
User Development (EUD) [1]. The main objective of BBSD messaging. Domain initiator is responsible for identifying a
is to allow end user programmers to develop applications bynew application domain, creating sub-domains and then
integrating blocks. End user programmers are softwareidentifing blocks required for that particular domain. Block
developers who are not trained as professional programmersjevelopers are professional programmers who are
such as teachers, accountants, scientists, engineers amagsponsible for the blocks development.
parents. A number of tools and methodologies have been

Within the context of BBSD, the term “block” refers to a developed to support the BBSD. Two of the methodologies
software component that can be reused, highly composableare Blocks Identification Methodology and Block Creation
customizable and configurable. Blocks can be combinedMethodology. Tools that have been developed include
with other blocks to form an application without going Blocks Creation Tool [3] and Blocks Integration Tool [4].
through the normal coding process [2]. Blocks Creation Tool helps block developers to develop

Apart from end user programmers, there are four otherblocks while Blocks Integration Tool helps end user
actors in BBSD as shown in Fig. 1. These actors areprogrammers to integrate blocks.
administrator, visitors, domain initiators and block Blocks submitted to the block store repository by block

2663

developers need to be managed and verified by projectJ]SR-349 standard bean Validation Specification, and the
initiator, before they can be published and distributed. This manual testing. The proposed methodology is then validated
paper describes a methodology and software tools that carthrough a case study on a list of blocks submitted to the
be used in the evaluation and verification of software blocks. block store repository.

The proposed methodology consists of three types of

validation: Automatic Validation Approach, JSR-303 or

Initiate Domain

Manage User
Account

Manage itiate Subdomajn
Domain/
bdomain Statds BrowseBlocks
Ad V " Identify Blocks)
"’ Initiator

%

\ Developer Develop Blockg
ntegrate Block: .
End User \

Upload Blocks
UpdateProfile
Manage Apps

Qownload Bloc

Visitor

Fig. 1 The Block Store Use Case diagram

[I. MATERIAL AND METHOD methods. In order to ensure that properties in JavaBeans
A block is basically a software component. Currently a have the right values in them, Java Bean Validation (JSR-

block is implemented by using JavaBeans technology. Thus303) was introduced and approved by Java Community
block evaluation is related to software component evaluation” "0c€ss (JCP) in Nov 2009. Java Bean Validation 1.1 (JSR-

In the following subsections, we will first describe works S49) iS animproved version of JSR-303 and was released in
that have been carried out in component evaluation in

May 2013. Both JSR-303 and JSR-349 specification have
general and JavaBeans evaluation in particular. The thirgMade a clear imprint to standardize the dynamic validation

subsection describes our proposed methodology for blocks2Mong different providers and open the gate for a custom
evaluation. constraints design and implementation. Most of the

frameworks for implementing JSR-303 and JSR-349 involve
A. Component Evaluation the use of annotations since annotations are easy to use,

Component evaluation is performed in order to find the create and add clarity to the code, and they also provide
best component that fit a given task and to certify properties900d type safety and increase reusability [13]. However, this
of the component [5]. The evaluation can be done in one ofkind of validation is only suitable for. a runtime validation
the three stages: during requirement analysis, design an@nd commonly used for data entry validation.
implementation, or deployment [6]. However, Alvaro etal [7] An automatic documentation annotation also can be
proposes that component evaluation can only be done during€@lized on data sharing inside a program itself [14].
certification and selection. imultaneously, software engineers are allowed to program

Component evaluation is performed based on certainthe same style used previously. However, the annotations
goals. Thus, the mechanism, methods and type of validatiof'ave been used as semantics validation and specification
is determined based on these goals. Some of the goals folechnique. In addition, the JML is designed to specify java
components evaluation are regarding components securitymodules and tools created to allow users to view the
performance, usability, reusability [8, 9] and maintainability speC|f|cat|on§ in a convenient documentanor_\ manner, such
[10, 11]. Research in software components evaluation is stillaS JMLDoc, javadoc-like, doc++, Doclet, and iDoclet [15].
immature and further research is required to develop The validation and evaluation surpass the syntax and

techniques, methods, processes and tools [12]. semantics of data content to component compatibility issues,
especially in BBSD, to help end user programmers compose
B. JavaBean Validation blocks to form an application. A number of frameworks

The JavaBean become more popular in recent years sincénplement JSR-303 and JSR-349, such as JAX-RS, JAXB,
JavaBeans specifications and conventions made it easier t§PA, CDI, Wicket, Spring, and Jface. However, these
implement changes to properties through setter/getterframeworks are mainly designed to work with JavaBeans

2664

using Plain Old Java Object (POJO). Strong assumptions can The block store repository is a distribution mechanism to
be made on the type of applications that can utilize the support the BBSD. Fig. 2 illustrates the block evaluation
frameworks. In addition, these frameworks should be easy toenvironment where the block store plays the main role.

integrate with any Java project [13]. Domain Initiator is responsible for identifying blocks
specification that is then put into the block store repository.
C. Proposed Methodology A block developer obtains the specification and then submits

A block is a type of single layer component with several the developed blocks into the block store repository. The
characteristics identified in requirement specification submitted blocks need to be approved by the domain
documents. The specification identifies the attributes andinitiator before they are made available to the end users.
behaviours to be verified. The list of behaviours and The proposed method for evaluating blocks in the block
attributes, such as block input and output attributes, and liststore repository is shown in Fig. 3. It involves three types of
of behaviours/methods required are identified in the evaluation: (i) Type 1: the validation of the standard block
specification documents. To gain more clarity and to identify specification, (ii) Type 2: the runtime validation by using
the main specification of blocks, we need to emphasize theStandard JSR, and (i) Type 3: manual method.
main characteristics of the disparity between blocks and

common components. These characteristics are mainly based st OFCOMMO-IZABBLI(_)I(E:QISDECIFICATIONS
on the interfacing and communication among the blocks and ——
other disparities. Differences between blocks and Block Specification
components are shown in Table I. Type Methods Description
TABLE |. Input get Requi redl n() Get the block
DIFFERENCES BETWEENBLOCKS AND COMPONENTS input
0 .
Component Block % Output get Provi deQut () Get the block
o output
Communicate directly with C_annot C(_)mmunicate Z |Block get Bl ockType() Get the block
another component directly with each other type
connector Gt Comnector Type) | Get e comectl
environment. the plugged block. type
. . CheckProlLi st i
Complicated (can have Single layer type of rigﬁigy 0 Grit t:r?igzto?fthe
nested component) component prop
block
; 4
(siasr:ee::]:t as a complete glﬁgt(:]é? Elt(e)((::li)mposed with .5 Action get Li st of Event - The list of
Y = |method | Method() methods handle
Can handle more than one| It complete a single task g the actions
intersection process (no tasks intersection) Task get Li st of Task- The list of
Required and provide No result processed through method | Method() methods achieves
directly affect the processeddifferent blocks some tasks
result.
Required and provided Required and provided
result may differ from one | result should be
to another. standardized for all blocks Book s
(exp 0’1' N _n) — Identify Block Specification RZ;usittt[)]rr: Gets Block Speciﬁcatmn-}

t . DevJ\nper
Submit Blocks

Gets Blocks
&

Blocks are more independent in design and Domat.nmmam, popros Hocks
implementation. These blocks have nothing to share with
each other directly other than through a connector. A
connector is just a piece of code that handles the sequence
blocks execution. Three types of connectors are available
sequential, alternative, and random.

Table Il shows the main specifications of block and
connector that need to be evaluated during blocks
verification. Blocks specifications consist of block number, End User
block type, input, and output. The block type is required to
determine the connector type. The input of the block is
required value, while the output represents the provided
value. The specification for a connector includes connector
type, number of blocks, connector number, and connector

type.

Develop Applications

Fig. 2. Block evaluation environment

2665

2.JSR Custom
Validation
(Java Tool)

avaBeans
I

la— ‘

—

1.Standard Block
Specifiation
(Servlet)

Client

3. Manual
Testing

[

Fig. 3. Block evaluation processes

The first type of evaluation involves the validation of the
standard block specification. An example of the standard
block specification is shown in Table Ill. The evaluation of
the standard block specification involves validating the main
block specifications implemented in the submitted block. It
also checks whether all attributes and behaviors identified in
a block specification are implemented in the submitted
block.

TABLE Il
LOGIN BLOCK REQUIREMENT SPECIFICATION
Block Name Login Block
Block Id B-E-C-10001
Contract Type | Sequential
Actors User
Attributes Block ID, Contract Type, Block Input,
Block Output
Behaviors Color, Font, Message, Main Label.
Use Cases Login.
Remark The user can change the color, font, main
label, and response message

In the implementation of a block, the standard block
specification should be grouped in an interface that

1. Check that the JAR JavaBean
implemented the interface BlockSpecs:
This step will ensure that all methods returning the main
specification are implemented, which can be achieved
using the following code grouped into two classes: class
finder and JAR Manager.

Check that all attributes and behaviors of the block
specifications are implemented:

This step will check whether the developed block
consists of all the behaviors listed in the specification
docs. It involves two sub-steps: parsing through the JAR
file followed by identifying all methods and attributes
that have been implemented. These methods are then
compared with required specifications if available or
missing is displayed.

main class has

TABLE IV
EXAMPLES OF BEHAVIOURS AND ATTRIBUTES OF DIFFERENT BLOCKS

Eg)ncqlé Behaviors Attributes
Login Color, Font, Message, Main| Backl D,
Label Cont r act Type,
Bl ockl npput ,
Bl ockCQut pout
Capture Change printer, change text| Backl D,
Deals color, change tax schema, gf’m fk?Ct Ty|t06,
; ; ; : ockl npput,
and switch to invoice option Bl ockQut pout
Manage | Change text color, change |Backl D,
Order background color, change | Contract Type,
order source, and change g: ggt&fpghi
customer info P
Process Change payment method, | Backl D,
Payment | change text color, and switchgf”t L?Ct TYfe'
; ockl npput ,
to offline payment Bl ockQut pout
Manage Change text color, change | Backl D,
Stock background color, report g?m L?Ct TYFe,
product shortage, and report 5 €X' npput,,
nearly expired product. Bl ockQut pout

The second type of evaluation is the validation of the
custom block specification to ensure that properties in a
block have the right values in them. In order to do this type
of validation, blocks need to be annotated by using

implements the main attributes and behaviors, as shown ingnotation method based on the standard JSR-303 & JSR-

the following code:

/** The Standard Bl ock Specifications interface */
package specs;
public interface Bl ockSpecs
t
I nt
i nt

get Bl ockl () ;
get Bl ockCont ract Type();
int getBl ockl nput();
int getBl ockQutput();
} /1 End of Bl ockSpecs interface

Since each block has different behaviours and attributes,

349. An example of how to design a custom block
specification validator is shown in the following code:

/* @ut hor Mstafa */
@rar get ({ METHOD, FI ELD, ANNOTATI ON_TYPE})
@ret ent i on(RUNTI IVE)
@onstraint(val i datedBy = Bl ockProVal i dator. cl ass)
@ocunent ed
public @nterface Bl ockPro
{
String nmessage() default "{validator. bl ockpro}";
Cl ass<?>[] groups() default {};
Cl ass<? extends Payl oad>[] payload() default {};

each of these behaviours and attributes need to be properly
specified. Examples of behaviours and attributes for some

blocks are given in Table IV.
The validation of the standard block specification is
achieved by using the following steps:

2666

The@ nt er f ace keyword is used to define an annotation
type where the attributes of an annotation type are declared
in a method. According to the API specifications, any

constraint annotation defines an attribute "message" thatbusiness transaction [16]. The specification of the block is
returns the default key for creating custom error messagesgiven in Table V.
In cases where the constraint is violated, an attribute The first type of evaluation is done by using the software
"groups” allows the specification of validation groups to tool. To verify the block, we have to select the block to be
which this constraint belongs. In addition, the annotation verified and click “verify” as shown in Fig. 5. The block is
type Meta annotations [13] specifies the class name validatotthen evaluated against the requirements analyzed in the
to be used for validating elements annotated with block specification. The implemented behaviour is stated as
@ocunent ed. “Available” while the behaviour that is not implemented is
The third type of evaluation is the manual evaluation stated as “Missing”, as shown in Fig. 6. In this example
where a block is tested for functionality and specified “textMethod” and “paymentMethod” are available while

features. “offlineMode” is missing.
D. Software Tool TABLE V
For the first type of evaluation, a specific software tool PROCESS PAYMENT BLOCK REQUIREMENT SPECIFICATION

has been designed and implemented. Fig. 4 shows the
validation service structure used to verify the submitted |BlockName | Process Payment
blocks into the block repository and illustrates main classes | Block Id B-E-C-10002

used to validate whether the Block Specification interface is
implemented. If the evaluated block has not implemented the

Contract Type| Alternative

required properties, the evaluation mechanism should |Actors Seller / Customer

display the missing properties. Moreover, the approval link | Attributes BackID, ContractType

shall r_lot be enabled and the block will not be available for Behaviors Change payment method, change text

selection by end user programmers. color, and switch to offline payment.
Use Cases Validate payment, process payment.

Service Str

Remark The switch to offline payment should be
enabled at run time.

Validator
JarManager Servlet Welcome to Block Validation Service
Java Java
Block Validation.
Viewresult

No# Block Name File Name Developer Ve

Jsp g Y
<
1 Login dev_block_jars/MyBlockTest jar developer Verify
Validatation 2 TestApp dev_block_jars/kejwkw jar dev Verify
[«Check Valid Block Service

(Servlet) 3 milon dev_block_jars/Testlar jar dev Verify
4 ProcessPaymentB dev_block_jars/ProcessPaymentBlock jar dev Verify

Fig. 5. List of blocks to be verified

Fig. 4. Block verification architecture

Block: ProcessPaymentBlock jar

Evaluation Result

The second type of evaluation is supported by NetBeans
The steps for carrying out the evaluation are listed as| sesksoecicaion iniald
follows: Required Properts Missing
Step 1: Create an application by using NetBeans IDE.

Step 2: Create the block class. The source code should b

provided. paymeniivethod @ nvaiabe
Step 3: Create the custom validator if needed.
Step 4: Generate the test cases automatically.
Step 5: Run/compile the targeted test. Fig. 6. Result of some specifications implemented
Step 6: View the test report.

textMethod ¥ Available

offiineMode & wissing

The second type of evaluation is carried out by using six

The third type of evaluation is carried out by executing steps described earlier. The custom validator is created as
the block. The output of the execution is manually checkedshown in Fig. 7. The test cases are generated automatically
to ensure Its correctness. as shown in Fig. 8. The result of the evaluation is shown in

Fig. 9.
IIl. RESULTSAND DISCUSSION

In this section, we show how the process of block
evaluation is carried out. For the purpose of the discussion,
we choose a “ProcessPayment” block that has been
identified as one of the blocks needed to support online

2667

File Edit View Mavigate Source Refactor Run Debug Profile Team Tools Window Help

IDE7.31

TP el & B @ [cefitonie>

TH DB G-

e

i)

default {}:

Projects # | Services | Files | | ..ave|[E] BockiNGTestiava [(] BlodkiTestjava][] Blockijeva 5[BlockPro.java
@ oodaldaton -] oy [BE-8-QRSEG PR
‘& BlockValidationEx 1 15| - i1mport javax.validation.Favigcad;

B--ib Source Packages 16
=[] block.evaluation. blackvalidationex | = | | 17 L5
L@ App.java 18|
& Blodkljava 15/
& BlockPro java -
[BlodkProvalidator.java 21/ *
| [TestPackages 22| r
=~ block.evaluation, blockvalidationex 23| @Target | { METHOD, FIELD, ANNOTATION TYPE
; AppTest.java 24 ERetention (RUNTIME)
[slockinGTest.java 25| @Constraint (validatedBy = BlockProValidator.class)
@ Block ITest. java 26 @Documented
G |y Other Sources 27 public @interface BlockPro {
#- g Dependencies el |

\l Ll | * 29; String message() defaulc "ival: -bl

BlockPro.java - Havigator # | Bl |30

e v;:.<empt';> ‘E 21 Class<?>[] groups() default {}:

I - = . 32 Class<? extends Payload>[] payload()

BlockPro 2l

@ groups() : Class<?=]] |)
(& message() ; String

@ payload() : Class<? extends Payload =[]

Fig. 7. Custom JSR-303 annotation specification validator

Projects ® | Services | Files | B| oavd [BodProjma)& Boderovaldator java 5t 5] Appjavai.. (111 (2](E] [patette u| =
@ Blockvalidation - | [Source | history | F-]~ | B & |7 & % | oot s
=B BlockvalidationEx1 5
& B Source Packages 12 import static jawva.lang.annotation.RetentionPol. * 8
2 block.evauation blockvalidationex1 | ||| 13| | 1®PoTT java.lang.annotation.Targec;
0 @ App imva 14 import javax.validation.Constraint;
3 @ @ Open import javax.validation.Payload;
- [@] Blod
CE ped Cu Chrl+X -
£l TestPackag Copy Ctrl+C F
= [blodk.e Paste Cri+V
! @ o0 Comypile File F2
[Bled
- Blod Shift+
B s LA @Target ({ METHOD, FIELD, ZNNGTA v 1)
Navigator % | Debug File Cird=5hift=F3 | @retention (RUNTIME)
AR Profile File gConscraint (validatedBy = BlockProValidator.clal
=) @}‘ Block1 Test File Ctrl+F& @Documented 1
& Bocki(bodd DebugTestFile CuleShiftfg PUo1ic @inverface BlockPro
B pro : booles - -
% req : booles] Profile Test File String message () default "{
Add
Clas=<?>[] groups() default {}:
Delete Delete Class<? extends Payloads[] payload() defaul
Save As Template.., —
3
Find Usages Alt+F7
Refactor Lo
Beanlnfo Editor... Apply Diff Patch... lm7| e
& MME Diff To... %
File Members Ctrl+F12 .
Add to Favorites [1t ms
- File Hierarchy Alt+F12] It
& (O)E) [~ cremeTees u| |
———— History
Analyze Javadoc | 11 |ms
Fig. 8. Create an automatic test
a =
— -EE X}
[__stmﬁ Command line test TestNG new reports x| + ‘
& @ filer/Ci jects/Bl rge P g <] A4 A B
Getting Started &3 Google Translate ¥ Al-Kahf [18:2] - Tanzil .. 3 ... soeliall &0 go
All suites =)
f Command line suite Total runsing time: 0 ms
Tafo Number Method Class Time (ms)
w [unset fils name] 0 block.evaluation 1.Block1Test 0
3 é"“Ps 1 testApp block evaluation blockvalidationex1 AppTest 0
« Reporter output
« Ipnorsd methods
« Chronologieal view
Results
© 2 methods, 2 passed
« Passed methods (hids)
Htestipp
I testSomeMethod

Fig. 9. Test report result

2668

Fig. 10 illustrates the user interface for the [3]
“ProcessPayment” block. The third type of evaluation is
done to determine the correctness of the block. The
evaluation is done by running the block “ProcessPayment”[4]
and check that the block has implemented all required
properties.

(5]
Cash Payment Block.
(6]
(7]
(8]
(9]
Fig. 10. Result of complete block specifications
V. CONCLUSION [10]

Block-Based Software Development (BBSD) approach
offers a software development environment that enables end
user programmers to make use of the available blocks to
develop applications. The Block Store repository is a place[!ll
where blocks are distributed [17]. The main purpose of the
block store is to enables software developers to share and
distribute blocks and to allow end users to browse and selec{12]
required blocks. The availability of the block store enables
end user programmers to develop applications that satisfy
their requirements.

The BBSD is supported by two methodologies: the block [13]
identification methodology and block creation methodology.
This paper describes the third methodology needed for
BBSD: block correctness evaluation methodology.

There are three types of validation that need to be carried14]
out before a block can be considered acceptable and can then
be put into the block store repository. The three types of
evaluation are (i) Standard blocks specification validation, (ii)[15]
Custom block validation and (iii) manual testing techniques.

This paper has shown the feasibility of the evaluation
methodology through a case study. Finally, the verified [16
blocks for a particular subdomain have been approved for
distribution and unqualified blocks a fault report is generated
for developers to be corrected. (7]

]

ACKNOWLEDGMENT

We would like to thank Universiti Kebangsaan Malaysia
for supporting this work through its research grant fund
UKM-GUP-TMK-07-01-032

REFERENCES

[1] A.M. Zin, “Block-Based Approach for End User Software
Development”. Asian Journal of Information Technology, 10(6), pp.
249-258, 2011.

[2] S. N. H. Mohamad, A. Patel, Y. Tew, R. Latih, and Q. Qassim,
“Principles and Dynamics of Block-based Programming Approach”,
pp. 340-345, 2011. DOI: 10.1109/ISCI1.2011.5958938

2669

M. Djasmir, S. Idris, M.A. Bakar, and A.M. Zin, “An Integrated
Development Environment for Blocks Creation”. Asian Journal of
Information Technology, 11(6), pp. 194-200, 2012. DOI:
10.3923/4jit.2012.194.200

S.N. Sarif, S. Idris, and A.M. Zin, “The Design of Blocks Integration
Tool to Support End-User Programming”. In 2011 International
Conference on Electrical Engineering and Informatics. pp. 1-5, 2011.
DOI: 10.1109/ICEEI.2011.6021657

T. Vale, I. Crnkovic, E.S.d. Almeida, P. A. da M. S. Neto, Y. C.
Cavalcanti, S.R.d.L. Meira, “Twenty-eight years of component-based
software engineering”, The Journal of Systems and Software, vol.111,
pp.128-14, 2016. http://dx.doi.org/10.1016/}.jss.2015.09.019

I. Crnkovic, M. Chaudron, and S. Larsson, “Component-Based
Development Process and Component Lifecycle”. In International
Conference on Software Engineering Advances, pp. 44-44, 2006.
DOI: 10.1109/ICSEA.2006.261300

A. Alvaro, R. Land, and I. Crnkovic, “Software Component
Evaluation: A Theoretical Study on Component Selection and
Certification”. MRTC report. Malardalen Real-Time Research Centre,
Malardalen University, 2007. ISRN: MDH-MRTC-217/2007-1-SE
A.P. Singh, and P. Tomar, “Rule-based fuzzy model for reusability
measurement of a software component”. International Journal of
Computer Aided Engineering and Technology, 9(4), 2017. DOI:
10.1504/1IJCAET.2017.086932

M. Tahir, F. Khan, M. Babar, F. Arif, and S. Khan, “Framework for
Better Reusability in Component Based Software Engineering”.
Journal of Applied Environmental and Biological Sciences, 6(4S), pp.
77-81, 2016.

F. Brosig, P. Meier, S. Becker, A. Koziolek, H. Koziolek and S.
Kounev, "Quantitative Evaluation of Model-Driven Performance
Analysis and Simulation of Component-Based Architectul&E
Transactions on Software Engineering, vol. 41(2), pp.157-175, 2015.
DOI: 10.1109/TSE.2014.2362755

de AG Saraiva, J., De Franga, M. S., Soares, S. C., Fernando Filho, J.
C. L., & de Souza, R. M., “Classifying metrics for assessing object-
oriented software maintainability: A family of metrics’
catalogs”. Journal of Systems and Software, 103, pp. 85-101, 2015.
A. Tiwari and P. S. Chakraborty, "Software Component Quality
Characteristics Model for Component Based Software
Engineering,”2015 |EEE International Conference on
Computational Intelligence & Communication Technology, pp. 47-51,
2015. DOI: 10.1109/CICT.2015.40

de Siqueira J.L., Silveira F.F., Guerra E.M., “An Approach for Code
Annotation Validation with Metadata Location Transparency”. In:
Gervasi O. et al. (eds) Computational Science and Its Applications --
ICCSA 2016. Lecture Notes in Computer Science, Springer, Cham,
2016, vol. 9789.

M. Sulir and M. Nosal', "Sharing developers' mental models through
source code annotation2015 Federated Conference on Computer
Science and Information Systems (FedCSS), pp. 997-1006, 2015.
doi: 10.15439/2015F301

Donthala, Arjun Mitra Reddy, "Design of a JMLdoclet for JIMLdoc
in OpenJML".Electronic Theses and Dissertations. 5132, 2016
Retrieved from http://stars.library.ucf.edu/etd/5132

M. Almatary, M.A. Bakar, and A.M. Zin, “Block Identification
Methodology: Case Study on Business Domain”. Journal of
Theoretical and Applied Information Technology, 60(1), pp.47-54,
2014. http://www.jatit.org/volumes/Vol60Nol/sixtyth_1_2014.php

M. Almatary, M.A. Bakar, and A.M. Zin, “The Block Store of Block-
Based Programming Approach”. Journal of Theoretical & Applied
Information ~ Technology, 60(2), pp. 237-244, 2014.
http://www.jatit.org/volumes/Vol60No2/sixtyth_2_2014.php.

