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Abstract— We consider the shallow water equations along channels with non-uniform rectangular cross sections with source terms
due to bottom topography, channel width, and friction factor. The system of equations consist of the mass and momentum
conservation equations. We have two main goals in this paper. The first is to develop a numerical method for solving the model of
shallow water equations involving those source terms. The second is to investigate effects of friction in water flows governed by the
model. We limit our research to the flows of one-dimensional problems. The friction uses the Manning's formula. The mathematical
model is solved numerically using a finite volume numerical method on staggered grids. We propose the use of this method, because
the computation is cheap due to that no Riemann solver is needed in the flux calculation. Along with a detailed description of the
scheme, in this paper, we show a strategy to include the discretization of the friction term in the staggered-grid finite volume method.
Simulation results indicate that our strategy is successful in solving the problems. Furthermore, an obvious effect of friction is that it
slows down water flows. We obtain that great friction values lead to slow motion of water, and at the same time, large water depth.
Small friction values result in fast motion of water and small water depth.
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form of the equation can be either conservative or non-
. INTRODUCTION conservative [7], [8], [9].

One of the Saint-Venant model variations is the system of
é)ne-dimensional shallow water equations. This system or
model can be used for various types of free surface flows
ith irregular topography and irregular channel width.
ungkasiet al. [8] solved this model using a staggered-grid
finite volume method. This method has a very simple flux
alculation, which leads to cheap computation, as developed

y Stelling and Duinmeijer [10]. However, Mungkasi
al. [8] did not involve any friction in their shallow water

Water flow appears in everyday life. Flows can be in
either a closed channel or free surface channel. An exampl
of closed-channel flow is pipe flow. Examples of free
surface flows are those in rivers, lakes, seas, and reservoirs.
They can be in the forms of floods, tsunamis, and others.
This paper focuses on free surface water flows.

A large number of studies have been done by researcher
relating to water flows. One of the most famous results is the
Saint-Venant model [1]. This model can be applied to X X .
simulate shallow Wate[r Lvaves or flows. The origir?:I Saint- model. The work Qf 'V'“f?gkam al._ [3] IS exten(_jed in the
Venant model has been developed by a number ofPresent paper by including the friction factor in our water
researchers. The model has currently a number ofﬂOW prqblems. .
improvements and variations. Some improvements and In th|s paper, we have_ two goals. First, we develop a
variations involve topography, some other involve irregular numerical scheme of the finite volume method on staggered

channel width, and the rest involve friction factor [2], [3], grids o approximate solutions to the shallow water
[4], [5], [6]. Based on its form, the Saint-Venant model is a €duations with source terms due to bottom topography,

partial differential equation system. Based on physics, theChannel width, and Manning fric;io_n. Second, we investigate
the influences or effects of the friction to water flows.
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A finite volume method is chosen, as our problems admit Water flows in open channels such as rivers and canals
continuous and discontinuous solutions. Some research otan be modeled by a partial differential equation system.
finite volume methods has been reported in the literature, This system can be expressed in the forms of mass
such as [11], [12]. Based on the positions of grids for conservation equation and momentum balance equation,
evaluation of the unknown variables, finite volume methods respectively, as follows [3]:
are categorized into two types, namely, the collocated and

staggered methods. Some works on collocated-grid finite A+Q, =0, (1)
volume methods are [13], [14], [15], [16]. Some works on

staggered-grid finite volume methods are [8], [10]. An Q( Q/ A’* gAR+ 943 _SO):O' )
application of these works is, for example, in simulation of

the flood routing problem [17], [18], [19], [20]. Here, h is the surface level of water in the chanr@l,

The rest of this paper follows. Section Il recalls the represents the dischargk,denotes the wet cross-sectional
mathematical model and writes our proposed numericalarea of the flowS, is the slope of bottom of the channgl,
method. Simulation results are presented and discussed iis the friction slopeg is the gravitational acceleratiom,

section Ill. Conclusion is given in section IV. represents the longitudinal distance along the channelt and
is the time variable.
[I. MATERIAL AND METHOD The friction slopeS can be obtained from the Manning

. friction formula as:
A. Mathematical Model

We consider one-dimensional shallow water flows with S =% 3)
irregular bottom topography, irregular channel width, and AR
friction. Schematic illustrations of this flow problem are Wheren represents the Manning's friction coefficient aRd
shown in Fig.1 including the geometries of the transversalis the hydraulic radius.
cross section, the longitudinal flow, and the flow space By substituting the following expressions, that i bh,

viewed from the top. Q=bhu, and$, =-z,, to (1) and (2), then we obtain:
(a). lllustration of the Flow cross section (blat +(bhu)x =0 )
transversal cross and
section oW ( bh)r'+( bha+% gl t)x =-ghbz +% gf - gbhs (5)
- where z= z(x) is the irregular bottom topographi=b(x)
ﬁ" . .
a represents the irregular channel widtl{(x,t) denotes the
velocity, and
h(x, t) (2h+h)
¥ S =—+ n2u|u|
bh
‘ is again the Manning friction formula. Further, (4) and (5)
: : are rewritten as:

h +(hu), = —% ©6)

(b). lllustration of the Flow profile

longitudinal flow and

— = 2
P - (hd + (7 +3g7), ="~ ghz-ghs,. (@)

h(x,t) —ulxt)
In this paper, (6) and (7) are the mathematical model

which shall be solved numerically using the method with

/,I;@'\ staggered grids. The system of (6) and (7) is the shallow

water equations in one dimension that model flows along

(©). llustration of the Overview of flow channels with irregular rectangular cross section of channel
flow space viewed width and irregular bottom topography involving friction.

JJH“U— B. Numerical Method

In this subsection, we continue the work of Mungletsi
al. [8] as well as Stelling and Duinmeijer [10] in developing
the staggered-grid finite volume method, or the staggered
T e method, in short. There was no variation of channel width in
HHH ‘H HHHH HH’[ the work of Steling and Duinmeijer [10] for one-
\ ” | | || dimensional problems. There was no friction in the model
solved by Mungkaset al. [8]. The problems in the present

Fig.1. Schematics for shallow water flows along a channel with irregular Paper involve irregular topography, irregular channel width,
topography and irregular width in three different points of view. and friction.

weivs T

Tih {33 A
T

=y

953



To discretize the governing equations, without loss of  The next step is converting (9) into a semidiscrete scheme
generality, in this subsection we consider (6) and (7) with to obtain the rate of change ofwith respect tat. Based

the spatial domai® < x< L using the partition: on (8), we have the formulation:
- _ — -k —k
X2 = 0, ey Xz %o Xawzs oo Xnwj2 = L dhiviz __ G —=Q _ ¢12(8.4-h) (13)
As we work on the numerical method with staggered-grids, dt AX BiyoBX
values of deptlin are approximated at full grid points for Substituting (13) into (9), we obtain:
i=1...,N and the values of velocity are approximated at K« =k g
. . : . -qg U
half grid points X,y» for i=0,1,...,N. We consider (6) dUid+l/2 :_k}l Q41 HJZ q U
and (7) on different control volumes, as shown in Fig. 2. We t hi+1/2 X
calculate the depth using the mass conservation (6) at the K -k 1 e
control volume[x_y/5%.1/,] and the velocityu using the 1 uk, G+1~Gi _gu —h (14)
—k+1 1
momentum balance (7) at the control voluhexm]. hisw/2 Ax Ax
_n4u"4 _ k
—+> Mass —> ? Ax gSfH—l/Z.
X12=0 Yicyz X Xz Xia xnsaz =1L Hence, our mass conservative and momentum balance
N omentum equations (6) and (7) become semidiscrete schemes (8)
and (14).

Fig. 2 A configuration of one-dimensional staggered grids, in which the full To discretize (8) and (14) We can apply a discrete time

points are assigned for the mass conservation and the half points ardnt€gration using a standard solver of ordinary differential
assigned for the momentum balance. equations, such as, the first-order explicit Euler method.

Therefore, the fully discrete schemes of our staggered-grid

We denotehf = h(x,t<) and y,, = U(x.1,,t<), Where finite volume method are:

At * *
K+l _ K k k k
% = %_, +Ax andtX =t +At for all involved integers h*=h ‘&( B2 Usaro= h—l/Zui—1/2)
and k. At L. - (15)
The spatial discretization of (6) and (7) are: e hk UikM
k k H UK Ax b
dh __Gh2=Gpp W Y (Be2=Ba/2) ®) and
dt AX hAX k+1 _ ..k At —k * Kk —K * Kk
and Ustjo =Uisy2 "5 | G U =0 W
i L hi+1/2
i+1/2Uivyp _ L (ka2 (kR At -k —k
dt 2 g( 1 ) (hl ) +Wl%k+1/2(<1i+1 — G ) (16)
K e =k g &k ( ) hi+1/2
_ 94 Ya G U digeUiye(Ra—h 9) M o1 gt K
Ax 0.1/ 200X ‘9&( - )+(Z+l_ Z)]"’Atsfiﬂ,z-
k24 —Z <k g With these formulations, we have extended the work of
= ghi+y/2 A~ gh+1/2S;,,, , Mungkasiet al. [8] as well as Stelling and Duinmeijer [10].
where The strategy of involving the friction term due to Manning
B Neus + R has been shown in the above derivations.
q+1/2:* B 1yoUie1/2, hisyp =—42 1 Up to here, we have achieved the first goal of this paper.
(10) Note that our first goal is to develop a numerical scheme
= _Qe12t 012 S = !2hk +h !rF Kl K (a finite volume method on staggered grids) to approximate
9 = 2 ' f - b"\k Y ‘ui ‘ the solutions to the shallow water equations involving source

. . . terms due to bottom topography, channel width, and
The values O.h andu with asterisks must be approxmated: Manning friction. The numerical schemes (15) and (16) are
because their values are not knov:/n on the *corresponqu)ur proposed staggered method for solving the system of (6)
grid points. We calculate the valuek,,;;,, and u; using and (7).

the upwind approximation of the first-order, as follows:

X h o if U,y 20, [Il. RESULTS ANDDISCUSSION
hiyp = Rap if Uys <O, (11) In this section, we conduct five numerical tests to achieve
our second goal of this paper. That is, we want to analyze the
and influences of the friction factor with respect to water flows
o Uiy, ai >0, in the considered Saint-Venant model. The problems for the
U = L= (12) tests in this paper are taken from the paper of Mungiasi
Uz If G <O

al. [8].
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For the discussion in this section, we define two B. Case for constant topography and irregular width
additional  variables. ~ The first is the stage n this second test, the numerical method is applied to
W% 9= H(x 1)+ z(xt), thatis, the vertical position of water  simulate flow generated by the a radial dam which collapses
surface measured from the horizomtadxis reference. The instantaneously on a horizontal bottom topography. In this
second is the dischargeq x )= h(xt)u(x,t) which is case, the channel width i$(x)=27x and the bottom
actually the momentum in our one-dimensional problems topography isz(x)=0. The numerical schemes (15) and (16)
when the channel has a constant width. Here, are implemented on the spatial domain [0, 100] and a

QAx 9= HKXq(x1) numerical solution is computed for time 3. We discretize

All measured quantities are assumed to have MKS unitsthe spatial domain into 400 cells (200 cells for the flow
in the SI system. With this assumption, we omit the writing velocity and 200 cells for depth) wiffx = 025 is the cell
of units in all values of variables. In addition, the width. The time step is taken A$= 025Ax. Before the

gravitational acceleration ig = 981 vertical dam is removed, the depth has the initial condition:
10 if x<5
A. Case for constant topography and constant width h(x,0) = { 1 i x> 58 (18)

In this case, we take a dam break having widk) =1 ) - )
: and u(x,0)=0 is the initial velocity. At the boundary, we
and topography(x)=0, as studied by Stoker [20]. The

. .qave:
numerical schemes (15) and (16) are executed on the spatia u (Ot )=u 0Qt)=0
domain-100< x <100, and the simulation time &<t<5. ’
We make partition to the spatial domain into 6400 cells in
which 3200 of them are used to calculate the veloaftyt)
of water and the remaining are used to calculate the deptr}or

and

h (& F 10 h@oQt)=1
Results of this numerical simulations are shown in Fig. 4
i ) ) timet =3. We vary the Manning friction coefficients to
h(xt) of water. Herepx = 025is the defined cell width ben= 000008012 016. Similar results to the those of
and At= 001Ax is the fixed time step. The depth has the e first test are obtained. Water motion becomes slower

initial condition: . when the friction factor is larger. Slow motion of water has
h(x,0) = 10 if x=<0, (17) increased the depth. This means that the greater the friction
' 1 if x>0, factor results in the slower the water flow and the greater the
depth.

and u(x,0) =0 is the velocity initially. The left and the right
boundary are:

1a

u+{10Q)=u @0qQt)=0,

and
h ¢10Qt)=10, h@0Qt)=1
Rgsults of this pumerical simula!tiqn are shown in Fig. 3 e A e A 5 5 5 & o m
for time t =5. We investigate the friction effects to the flow x position
when the Manning coefficients ame= 000,002, 004,006, B
respectively. We observe that the motion of water becomes Bl .
slower when friction factor is greater. Slow motion of water =,1 |

has consequences in the increase of depth. This means tha =
the greater the friction factor leads to the slower the water
flow and the greater the depth. 0

% position

Fig. 4. Results of simulation for the radial dam break problerns & using
400 cells.

C. Case for irregular topography and constant width

In this third test, we have a parabolic obstacle on the
topography. Let us take the steady state case of water

flowswith constant widthb(x)=1. Due to the obstacle, we
8 have irregular bottom topography. The bottom topography is
sl assumed to be defined by:
& 02 005x-10° if 8<x<12
Z4 4)() = 5( ) . . (19)
sl 0 if otherwise.
‘ The numerical schemes (15) and (16) are applied on the
100 80

spatial domain [0, 25]. The number of the spatial cells is 800
in which a half of them are used to to calculate the velocity

u(x,t) and the others are used to calculate the dbpth).

¥ position

Fig. 3. Results of simulation for the dam break=ab using 6400 cells.
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The width of each cell idx = 003125 and the end time of
numerical simulation is =100. The velocity is assumed to
be uk,0)= 221 and w(x,0)=2 is the stage initially. The

depth in downstream ik (25t) =2 and for the discharge in

upstream ig| (Of )= 442 We take
At= 02Bx (4.42/2+1/ghnax)

as the time step, whelg,,, = 2.

Results of this numerical simulation are shown in Fig. 5

topography function, and together with the initial stage, it is
plotted in Fig. 7.

Results of this simulation is shown in Fig. 8 for the
Manning coefficientsn= 000,002,004. We observe that

our proposed numerical method is able to simulate the
steady state problem of “a lake at rest” involving irregular
bottom topography, irregular channel width, and friction. For
time t > 0, where in Fig. 8 fort =10, the water surface is

always atW(X,t)=12 and the velocity is at the order of

respectively for the values of Manning coefficients 10, which means that water is essentially at rest. Even
n= 000002004 We observe that the velocity increases though we use different values of Manning coefficients, our
when water approaches the peak of the obstacle androposed numerical method is still able to solve this test
decreases when water has passed the peak of the obstackroblem.

Figure of channel width

Our inference is the same as in the two previous tests. That
is, the water motion becomes slower when friction factor is
involved in modeling. Slow motion of water has
consequences to the increase of depth. The greater the
friction factor leads to the slower the water flow and the

2F

18+

1

greater the depth.

n=.00
— —--n=02
———n=04

=
B Topography
=
=

1 - 1 - 1 1
0 a 1 14 20

0&F — Figure houndary 1
— Figure boundary 2

ok

05+

I 1 |
0 500 1000 1500

Fig. 6. The view from the top in the steady state of “a lake at rest.”

TABLE |
TOPOGRAPHY FUNCTIONS OF THE CHANNEL BASED ON THE DATA AS IN THE
WORK OFMUNGKASI ET AL [8] TAKEN FROM GOUTAL AND MAUREL [21].

5 10 15 20 25
% position Interval Topography function
Fig. 5. Results of simulation for the steady flow over a parabolic obstacle at 0< x<50 0
t =100. 50< x <150 05— 25
D. Case for irregular topography and irregular width 150 x < 250 5
. } 250< x < 300 - 04x+15
In this fourth test, we take the steady state of “a lake at
.o . . . 300< x< 350 -04x-9
rest” with irregular channel width and irregular bottom 350< x< 200 s
topography. The numerical schemes (15) and (16) are 4002 X <25 o35
implemented on the spatial domaif x<1500. The 425; X 135 0'5( 1375
number of cells is 800 in which 400 cells are used to 435; X< 250 6667x '21
calculate the depth and the remaining are used to calculate 4502 xz475 5
. . <X
. x,0)=0
the flow velocity. We ta.k(.a. the velf)-cny( ) and the 475< X <500 DOAT 71
stagew(x,0)=12 as the initial conditions. At the boundary 500< x <505 — 0x+191
we have: 505< x <530 9
u (Ot )=u ¢500Qt)=0 530< x < 550 — 15+ 885
and 550< x <565 - 033%+ 2433
w (0 Fw (50Q)=12 565< x <575 55
Here 575< x <600 - 02x+17
) 600< x < 700 02+17
b&)= 2 1+ exg | 221000 (20) 700< x < 750 3
250 750< x <800 - 014 +135
. : L 800< x <820 - 015 +143
is the channel width. The channel profile viewed from the 820< x < 900 T ox+ 102
top is shown in Fig. 6, which is given in between the curves 9002 X< 950 — (')16(”56
of b(x)/2 and —-b(x)/2. Table 1 provides the bottom 950< x <1000 Z008x+8
1000< x <1500 0
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Initial water surface
Fixed topography

I
1} 400 1000 1500

¥ position

Fig. 7. Initial stage (water surface) and topography of “a lake at rest.”

121 B
= 12 B
£
= n=.00
=12 ———n=02
12f — — 04 |
| 1
i} 500 1000 1500
¥ position
o™
2
1 - u
X 0 ri
> 1’ =00
Ak ———n=.02 |
——-r=04
2 L 1
0 500 1000 1500
¥ position

Fig. 8. Results for the steady state of “a lake at regt=di0.

E. Simulation of irregular topography and irregular width

- Topography
n=.00
———n=.02
——-n=04

hix t)+zix)

Looeeeet ) e -
1000 1200 1400 1600 1800 2000
¥ position

800

r=.00
———n=02 .

——— ey

Ut

Ty
L.

. . . . . .
BO00 1000 1200 1400 1600 1800 2000
¥ position

2 I 1 I
0 200 400 600

Fig. 9. Results of simulation for the unsteady state case of irregular
topography and irregular width &t 90.

Fig. 9 shows our numerical results for the variations of the
Manning coefficientsn= 000,002,004. We observe once

again that water motion becomes slower when friction is
involved in the problem.

IV. CONCLUSIONS

We have achieved our two goals in this paper. First, we
have provided a numerical method for solving the shallow
water equations in one dimension involving irregular bottom
topography, irregular channel width, and friction. Second,
using our proposed numerical method we have investigated
some effects of friction to water flows along channels having
irregular bottom topography, irregular channel width, and
friction.

Our remarks are as follows. Our numerical method is able
to solve problems of steady state and unsteady one, with
horizontal topography and irregular one, with constant
channel width and irregular one, without friction and with

Here, we simulate an unsteady state case due to thgiction, as well as of combination of these all. In addition,
collapse of a dam involving irregular channel width and |arger friction factor leads to slower water motion, and
iregular bottom topography. The numerical schemes in (15) consequently due to the momentum balance, larger friction
and (16) are implemented on spatial domain [0, 2000]. Wefactor also leads to greater depth when water is in motion.

make a partition of this spatial domain to 1600 cells, so
Ax =125 is our cell width. In addition,

At= 02%x (4.42/2+ N ghnax)

is our time step, wherg,,,, = 2. We simulate this problem
until time t = 90. The bottom topography in this case is:
X_1500j2

100 (21)

Z ¥ F max 0,ex —(

Here, the channel width is the same as in the previous testy

that is, (20); and the channel width is shown in Fig. 6. The
stage is initially given by:

10 if x<100

w(x,0) = I X 9

5 if x>100Q
and u(x,0) =0 is given as the initial velocity. The conditions
at the right boundary ares 00Qt)=5 andu @00Qt)=0.
The conditions at the left boundary ave(0t)=10 and
u(ot)=0.

(22)
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This research is limited to one-dimensional problems with
the friction due to Manning. Future research could be
directed to work on higher dimensional problems and/or
other friction formulations.
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