
 

 

 

Vol.6 (2016) No. 4 

ISSN: 2088-5334 

Performance Comparison of  Total Variation based Image 
Regularization Algorithms 

V Kamalaveni#1,  K A Narayanankutty*, S Veni2 
# Department of  Computer Science and Engineering, Amrita School of Engineering, Coimbatore, 

Amrita Vishwa Vidyapeetham, Amrita University, India 

 
* Amrita School of Engineering, Coimbatore,  Amrita Vishwa Vidyapeetham, Amrita University,  India 

E-mail: ka_narayanankutty@yahoo.com 

 
2 Department  of  Electronics and Communication Engineering, Amrita School of Engineering, Coimbatore,  

Amrita Vishwa Vidyapeetham, Amrita University, India 
E-mail: s_veni@cb.amrita.edu 

 
1 Corresponding author: Tel.+91-956-661-8469 E-mail: v_kamalaveni@cb.amrita.edu 

 
 
Abstract— The mathematical approach calculus of variation is commonly used to find an unknown function that minimizes or 
maximizes the functional. Retrieving the original image from the degraded one, such problems are called inverse problems. The most 
basic example for inverse problem is image denoising. Variational methods are formulated as optimization problems and provides a 
good solution to image denoising. Three such variational methods Tikhonov model, ROF model and Total Variation-L1 model for 
image denoising are studied and implemented. Performance of these variational algorithms are analyzed for different values of 
regularization parameter. It is found that small value of regularization parameter causes better noise removal whereas large value of 
regularization parameter preserves well sharp edges. The Euler’s Lagrangian equation corresponding to an energy functional used in 
variational methods is solved using gradient descent method and the resulting partial differential equation is solved using Euler’s 
forward finite difference method. The quality metrics are computed and the results are compared in this paper. 
 
Keywords— total variation; Calculus of variation; Functional; gradient descent method; fidelity term 
 
 

I. INTRODUCTION 

Variational models have been sucessfully used for image 
denoising and remains an active area of research. In 
variational method it is required to define cost or energy 
functional which characterizes the image structure to be 
enhanced. The variational technique also involves the 
minimization of energy functional which can be 
implemented using calculus of variation, leading to a partial 
differential equation. The calculus of variation is concerned 
with functional which are functions whose arguments are 
functions or whose domain is functions and the range is a 
real number. Several variational regularization models have 
been proposed by the researchers. Tikhonov[1] proposed 
regularization functional which is smoothing edges 
excessively, so the edges are not preserved properly. To 
resolve this problem Rudin et al.[2] developed a new total 
variation based denoising method. Junfeng Yang et al. used 

l2 TV-norm [4]. Y.Wang et al. used l1-norm  as 
regularizer[10]. The l0-norm is used as regularizing term in 
Potts model [16]. The authors Haijuan Hu et al. used 
nonlocal total variation in their work[7]. 

Different data fidelity terms are used in variational 
models. The ROF model [2] making use of the squared l2 
fidelity term is efficient in removing gaussian noise. 
Christian Clason et al. [5]  and  Junfeng Yang et al.[4] in 
their works used l1-norm as data fidelity term. It is found 
that l02-norm as data-fidelity term shown good performance 
in eliminating impulse and gaussian noise [11]. To remove 
the impulse noise present in the images the l0-norm is used 
as data fidelity term [9] and infinity norm is used for 
uniform noise [6]. Manya V Afonse et  al. used weighted 
TV-norm in year 2015[18]. Kui-Liu et al. used H-1-norm as 
data fidelity[20]. Mazlinda Ibrahim et al. used Gaussian 
curvature as regulariser[21]. Yao Zhao et al. proposed 
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Adaptive TV based regularization algorithm for synthetic 
aperture radar image despeckling [19].   

Our paper is written as follows. In section 1, introduction 
of the topic is given. In section 2, fundamental concepts in 
Calculus of Variation is discussed. In section 3, solving a 
variational problem using Euler Lagrangian equation is 
detailed. The variational methods ROF model, Tikhonov 
model and TV-L1 are discussed in chapters four, five and six 
respectively. Performance of variational methods is 
discussed with numerical results in section 7 and the last 
section concludes the paper.  

II. CALCULUS OF VARIATION  

The calculus of variation deals with the maxima or 
minima of functionals, known as extrema. Determining the 
extrema of functionals is similar to finding minima and 
maxima of functions. The minima and maxima of a function 
can be found by finding the points where its derivative 
becomes equal to zero. The extrema of functionals can be 
found by finding functions where the derivative of functional 
is equal to zero. This gives us the Euler-Lagrange equation 
of the functional. 

Since a functional maps a function to a number, the 
functional usually makes use of  integral.  

           [ ] dxxtxtP ∫=
π

0

2)()]([                                  (1)    

is a functional. When t(x) =x then the functional value is 

3

3π

 
Another example of  functional which are used  in 
the calculus of variation is given below.
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Several engineering problems can be modeled as 

variational problems and these problems can be solved by 
finding the function that minimizes or maximizes the 
functional. Thus a variational problem becomes an 
optimization problem. 

III.  EULER LAGRANGIAN EQUATION 

The functional with higher order derivatives of  t(x) is 
below. 
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The unknown function that minimizes or maximizes P[t(x)] 
should satisfy the following Euler-Lagrange equation.   
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The functional with ith derivative of t, the  Euer-Lagrange 
equation is  
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In image processing applications we need find the 

required image t as a function of i and j, satisfying the 
following functional. 
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A different approach for denoising is to suppress 
uncorrelated random intensity variations in an  image. 
Mathematical definition of total variation (TV) is a quantity 
measuring ups and downs in the function values. The noise 
present in an image causes an increase in the total variation. 
So the denoising can be implemented by minimizing the 
total variation corresponding to an image. The anisotropic 
TV-norm of the 1-D digital signal(f)  is defined as [3][17]. 

                                    (7) 
 
 

Here fi and fi-1 are the value of function at ith  and i-1th instant 
of time. For a continuous function(f)  the total variation 
norm is defined as 
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This extends to 2-D by looking at the total jump 
horizontally and vertically. For denoising an image u(x,y), 
we want to minimize the TV-norm defined as[15].  

 
                (9) 

 
 

Here  is the gradient of the image. In addition the 
restored image u to resemble original noisy image u0, the 
second term matching or fidelity term is defined as follows.  

 
              (10) 

 
 

We should lower both TV-norm and fidelty term for 
denoising. However fully lowering TV-norm will result in 
totally blurred image and fully lowering fidelity term gives 
noisy image. For image denoising what we need is a 
compromise solution which is formulated as finding a 
function u which minimizes the following functional given 
in eqn.11. This is the core idea used in the variational 
methods  like ROF model, Tikhonov model and TV-L1 
models. 
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IV.  ROF MODEL 

ROF model is a strict convex optimization method and it 
has unique global minimizer [2][8]. Here numerical 
algorithm for finding minimizer of  ROF model is presented.  
The ROF model is described as a constrained optimization 
problem given in equation 12. 

                                
(12) 
 
 

Here u0 is given noisy image, u is denoised image and λ is a 
regularization parameter, a constant that decides the trade-
off between two terms.  

The denoised image u is found using following procedure 
[12]. Step-1. Finding Euler-lagrangian equation for the 
above functional. Step-2. Solving Euler-lagrangian equation 
using gradient descent method and obtain the solution as a 
partial differential equation. Step-3. Solving the partial 
differential equation using Euler forward method and obtain 
the solution u.  

 
Here  
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Euler Langrange Equation is given by  
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The resulting Euler Lagrangian equation is given by  
 
            
(17) 
 
 

Solving Euler Lagrangian equation using the gradient-
descent method [13],  we obtain 
 

 
Using Euler’s forward method the above equation is solved 
as follows. 
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V. TIKHONOV MODEL 

The commonly used regularization method is Tikhonov 
model. In this model regularizer term uses the square of the 
gradient and the fidelity term is l2 residual norm [15]. The 
equation 18 desc ribes this model.  
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Euler’s Equation of functional F is 
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The resulting Euler Lagrangian equation is below. 
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Solving Euler Lagrangian equation by making use of  the 
gradient-descent method, we obtain 

 
 
      
 

Using Euler’s forward method the above equation is solved 
as follows. 
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VI.  TV-L1 MODEL 

TV-L1 is not a strict convex optimization method and the 
global minimizer is not unique. TV-L1 model like ROF 
model uses same regularizing term but it uses l1-norm in 
fidelity term and  its equation is 21. 

 
 (21)  
 

The lagrangian equation of TV-L1 model is below. 
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Solving Euler Lagrangian equation using the gradient-
descent method, we obtain 

 
Using Euler’s forward method the above equation is 

solved as follows. 
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TV-L1 is efficient in removing impulse noise compare to 

ROF Model. TV-L1 method has the ability to preserve 
contrast. Contrast invariance means if u(x,y) is the denoised 
image corresponding to noisy image u0, then cu(x,y) is the 
denoised image of  noisy image cu0.  

VII.  EXPERIMENTAL RESULTS 

Salt and pepper noise having density d=0.01 is added 
synthetically and then images are denoised using variational 
models i.e ROF model, Tikhonov model and TV-L1 model. 
The quality of denoised images generated by different 
variational models are compared which is shown in Fig 1-12 
and Table.I-IV  shows the summary of PSNR & SSIM 
values computed for these methods for different values of 
regularization parameter i.e λ=0.003,0.01,0.1 and 0.2. The 
quality metrics PSNR  and SSIM are defined[14] using 
equations  (23)  and (24).                                                
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here  u and u0 are denoised  image and noisy  image and 
M:N represents the  number of pixels along the horizontal 
and vertical direction.
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μu and σu

2 are mean and variance of u respectively. The 
covariance of images u and u0 is is σuu0. C1 and C2 are two 
constants.  

In  Tables I, II, III and IV we notice that PSNRs and 
SSIMs of the denoised images in Tikhonov model are lower 
than those in the  ROF model and TV-L1. Another 
observation from the Tables I, II, III and IV is that SSIM 
value remains same for TV-L1 model for λ=0.003,0.001,0.1 
and 0.2. Third observation from Tables I-IV  is that increases 
in λ causes an increase in SSIM and PSNR values of ROF 
model and Tikhonov model. In Addition Table III and IV, 
the increase in SSIM and PSNR values is very obvious for  
ROF model.   

Figs.1-4 is for results of fruits image and Figs. 5-8 is for 
results of cameraman image. Fig.1-2 and Fig. 5-6 for 
λ=0.003 and 0.01, Tikhonov model smoothing is more and 
edges are not preserved whereas ROF model and TV-L1 is 
able to preserve edges. Fig.3-4 and Fig.7-8 for λ=0.1 and 0.2 
Tikhonov model amount of smoothing is less and is able to 
preserve strong edges and the ROF model preserves very 
well sharp edges and fine details compare to TV-L1 and 
Tikhonov model. In Fig.1-8 for λ=0.003,0.01,0.1,0.2 visual 
quality of the restored image generated by TV-L1 model is 
same. This means that contrast is invariant also  noise 
removing and edge preserving effect is same for  λ= 
0.003,0.01,0.1,0.2 in TV-L1 method.  

 
TABLE I 

PSNR AND SSIM FOR ROF MODEL, TV-L1, TIKHONOV Λ=0.003 
 
Image 

ROF TV-
L1 

TIKho ROF TV-
L1 

Tikho 

 SSIM SSIM SSIM PSNR PSNR PSNR 

lena 0.65 0.74 0.41 24.31 25.28 18.66 
fruits 0.71 0.70 0.45 23.96 24.50 18.59 

camera 0.72 0.70 0.41 24.81 24.39 13.88 
coins 0.73 0.71 0.39 23.73 23.20 16.62 
ship 0.73 0.72 0.44 25.05 22.63 18.36 
lift 0.65 0.65 0.56 25.82 25.82 23.31 

 
                                               TABLE II 
PSNR AND SSIM FOR ROF MODEL, TV-L1, TIKHONOV λ=0.01 
 
Image 

ROF TV-
L1 

TIKho ROF TV-
L1 

Tikho 

 SSIM SSIM SSIM PSNR PSNR PSNR 

lena 0.76 0.74 0.46 25.15 23.93 18.68 
fruits 0.72 0.70 0.46 24.69 24.89 18.76 

camera 0.72 0.70 0.43 24.96 23.67 13.90 
coins 0.74 0.72 0.42 23.96 22.92 16.84 
ship 0.75 0.74 0.47 25.94 24.73 18.55 
lift 0.67 0.65 0.57 26.07 25.90 23.48 
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Fig 1.  (a) noisy image    (b)denoised image    ROF model  λ=0.003   (b)  
denoised image  TV-L1 model  λ=0.003      (d) denoised image Tikhonov 
model λ=0.003 
 

 
Fig.2.  (a) noisy image    (b) denoised image    ROF model  λ=0.01   (b)  
denoised image   TV-L1 model  λ=0.01      (d) denoised image Tikhonov 
model λ=0.01 

 

 
Fig.3.  (a) noisy image    (b) denoised image    ROF model  λ=0.1   (b)  
denoised image   TV-L1 model  λ=0.1      (d) denoised image Tikhonov 
model  λ=0.1 
 

 
Fig.4.  (a) noisy image    (b) denoised image    ROF model  λ=0.2   (b)  
denoised image   TV-L1 model  λ=0.2      (d) denoised image Tikhonov 
model  λ=0.2 
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Fig 5.  (a) noisy image    (b)denoised image    ROF model  λ=0.003   (b)  
denoised image  TV-L1 model λ=0.003      (d) denoised image Tikhonov 
model λ=0.003 

 

 
 
 
Fig 6.  (a) noisy image    (b)denoised image    ROF model  λ=0.01   (b)  
denoised image  TV-L1 model λ=0.01      (d) denoised image Tikhonov 
model λ=0.01 

 
 

 
Fig 7.  (a) noisy image    (b)denoised image    ROF model  λ=0.1   (b)  
denoised image  TV-L1 model λ=0.1      (d) denoised image Tikhonov 
model λ=0.1 

 

 
 
 
Fig 8.  (a) noisy image    (b) denoised image    ROF model  λ=0.2   (b)  
denoised  image  TV-L1 model  λ=0.2      (d) denoised image Tikhonov 
model  λ=0.2 
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                                              TABLE III 
PSNR AND SSIM FOR ROF MODEL, TV-L1, TIKHONOV λ=0.1 
 
Image 

ROF TV-
L1 

TIKho ROF TV-
L1 

Tikho 

 SSIM SSIM SSIM PSNR PSNR PSNR 

lena 0.87 0.74 0.61 28.26 24.88 19.85 
fruits 0.83 0.69 0.60 26.57 24.70 19.72 

camera 0.78 0.70 0.57 24.92 24.17 17.58 
coins 0.80 0.70 0.54 25.08 21.25 17.39 
ship 0.84 0.73 0.62 26.89 23.54 19.55 
lift 0.76 0.64 0.65 27.61 25.72 24.85 
 

                                              TABLE IV 
PSNR AND SSIM FOR ROF MODEL, TV-L1, TIKHONOV λ=0.2 
 
Image 

ROF TV-
L1 

TIKho ROF TV-
L1 

Tikho 

 SSIM SSIM SSIM PSNR PSNR PSNR 

lena 0.91 0.75 0.70 30.26 24.57 21.55 
fruits 0.89 0.69 0.66 28.68 24.69 21.02 

Camera 0.83 0.69 0.65 26.85 23.61 20.02 
coins 0.85 0.72 0.63 27.01 22.66 18.15 
ship 0.88 0.72 0.70 29.38 24.36 20.40 
Lift 0.83 0.65 0.70 28.74 24.45 25.84 

 

VIII.  CONCLUSIONS 

In the ROF model and Tikhonov model smaller value of 
regularization parameter λ results in efficient noise removal, 
but lacks in preserving sharp edges. Higher value of λ 
preserves fine details very well in the processed image. The 
ROF model for λ=0.2 performs very excellent in removing 
noise as well as preserving edges. Finding the appropriate 
value for Lagrange parameter to achieve effective denoising 
is done in an ad hoc manner. The ROF model outperforms in 
preserving edges because the diffusion exactly takes place 
along the edges. For the different values of parameter λ 
(0.003, 0.01, 0.1 and 0.2) the PSNR and SSIM  remains 
almost same for TV-L1 model. In Tikhonov model strong 
image smoothing takes place compare to ROF model and 
TV-L1 model. 
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