
 

 

 

Vol.10 (2020) No. 5 

ISSN: 2088-5334 

Asynchronous Non-Blocking Algorithm to Handle Straggler Reduce 
Tasks in Hadoop System 

Arwan A. Khoiruddina,1, Nordin Zakariaa,2, Hitham Alhussiana,3 
a High Performance Cloud Computing Center, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, 32610, Malaysia  

 E-mail: 1arwa003@lipi.go.id; 2nordinzakaria@utp.edu.my; 3seddig.alhussian@utp.edu.my 

 
 
Abstract— Hadoop is widely adopted as a big data processing application as it can run on commercial hardware at a reasonable time. 
Hadoop uses asynchronous blocking concurrency using Thread and Future class. Therefore, in some cases such as network link or 
hardware failure, a running task may block other tasks from running (the task becomes straggler). Hadoop releases are equipped 
with algorithms to handle straggler tasks problem. However, the algorithms manage Map and Reduce task similarly, while the 
straggler root cause might be different for both tasks. In this paper, the Asynchronous Non-Blocking (ANB) method is proposed to 
improve the performance and avoid the blocking of Reduce task in Hadoop. Instead of using the single queue, our approach uses two 
queues, i.e. task queue and callback queue. When a task is not ready or detected as a straggler, it is removed from the main task 
queue and temporarily sent to the callback queue. When the task is ready to run, it will be sent back to the main task queue for 
running. The performance of the algorithm is compared with rTuner, the latest paper found on handling straggler task in Reduce 
task. From the comparison, it is shown that ANB consistently gives faster time to complete because any unready tasks will be directly 
put into the callback queue without blocking other tasks. Furthermore, the overhead time in rTuner is high as it needs to check the 
straggler status and to find the reason for a task to become straggler. 

Keywords—Hadoop; scheduler; reduce task; asynchronous; non-blocking. 
 
 

I. INTRODUCTION 

Recently, human digital activities generate an 
overwhelming amount of data. Based on data reported by 
Seagate, in 2018, there are about 18 zettabytes of data in the 
world [1]. The data is collected in either semi-structured, 
structured, or unstructured format. It is characterized by 4 
(four) Vs, namely Volume, Variety, Velocity and Value, 
hence named as Big Data [2]. Volume means the scale of the 
size of the data is increasingly massive. Variety indicates 
that the data is diverse, which may include structured, semi-
structured, or even unstructured data. The types are also 
varied, such as audio, video, webpage, and text. Velocity 
means that the data need to be acquired swiftly, but also 
processed at a quick rate. 

The vast amount of data becomes invaluable if it is only 
stored. However, when ones do mining on the data, they will 
get information, knowledge and wisdom from the data. In 
other words, the data will become valuable. Thus, the 4th 
characteristic of the big data, i.e. value, can be defined as a 
business benefit that gives an organization a compelling 
advantage due to the ability to decide based on the 
information acquired from the data. As the data volume in 
big data is collected at a fast velocity, the data must be 
processed in a reasonable time. When the processing time is 

too lengthy, the information acquired might be no longer 
relevant for the organization. 

For this purpose, a specific type of application is needed. 
Hadoop is one of the applications widely adopted to process 
big data. Hadoop is renowned because it can run on 
commercial hardware, thus can be adopted by nearly all 
organizations. In addition to that, the MapReduce 
programming framework adopted by Hadoop is simple yet 
powerful. Moreover, scaling up/down Hadoop is simple and 
straightforward, hence able to adapt to the performance 
needed by the company.  

Aside from scaling up/down the cluster, to achieve a 
certain performance level, Hadoop can also be optimized at 
the application level by managing the file placement [3], or 
by managing the jobs [4]. In this paper, the authors improve 
Hadoop performance by optimizing the job concurrency. To 
deal with the concurrency of the tasks, Hadoop uses 
synchronized Thread and java.util.concurrent.Future class. It 
should be noted that synchronized Thread and Future class 
have several limitations. One of the limitations is that they 
cannot be attached to a callback function which will call a 
task automatically when the results are available. In other 
words, though both can run a task asynchronously, both will 
block the channel until the task has finished running. Note 
that a task running in the asynchronous channel can block 
the channel when it becomes a straggler task. A task 

1913



becomes straggler when it submits the result slow due to 
numerous reasons stated below [5]: 

• Network link failures, network traffic and network 
bandwidth  

• Hardware failures and crashes  
• Fault at a data block level 
• Low computational power as compared to other 

computers  
• Misconfiguration of the job  
• Heavy background noise, e.g. the CPU is busy with 

other tasks 
Straggler task may constitute a severe impact on task 

allocation and scheduling. Especially when the data is 
skewed, and the processing efficiency of the node is low, 
there will be a particular type of task that runs at a 
significantly slower speed than other tasks. In some cases, 
some tasks run at five times slower than the average duration 
of other tasks. Thus, it is mentioned in. Thus, it is mentioned 
in [5] that straggler task may delay average job completion 
time by 47% in Hadoop cluster. Moreover, because the 
straggler task may block the channel, there might be a 
chance where the resources are allocated but not utilized.  

In this paper, a method to handle straggler tasks using 
asynchronous non-blocking method is proposed. Instead of 
using a single task queue, our method incorporates two 
queues, i.e. task queue and callback queue. The nature of 
Map and Reduce tasks are both different. Thus, our method 
focusses on managing Reduce Tasks. The main contribution 
of this paper is on dealing with straggler tasks, especially 
during Reduce phase in the Hadoop system in a non-
blocking manner. Though in this paper, the method is 
simulated and not implemented in real Hadoop yet, it can be 
a proof of concept that changing the concurrency method in 
Hadoop will tremendously increase the performance. Note 
that the Hadoop and MapReduce version referred in this 
paper is Hadoop 1.1.2.  

The paper is organized as follows. Section II presents the 
related works, while Section III discusses the proposed 
method named Asynchronous Non-blocking Scheduler 
(ANB Scheduler). Section IV shows the setup and the results 
of the implementation of ANB Scheduler compared to other 
schedulers. Section V concludes the paper. 

II.  MATERIALS AND METHOD 

In this section, the basic concept of Hadoop will be 
discussed, including the architecture and the default 
schedulers. The straggler problem and schedulers that handle 
the straggler tasks problem are also reviewed. The next 
subsection discusses the existing schedulers that handle 
straggler reduce tasks. The last subsection addresses the 
method proposed.  

A. Hadoop Architecture 

In general, Hadoop consists of two layers, i.e. MapReduce 
and Hadoop Distributed File System (HDFS) layer (Fig 1). 
MapReduce layer is used for distributed data processing, 
while HDFS is used for distributed data storage. Both 
MapReduce and HDFS occur in master and slaves. HDFS is 
a distributed file system that manages big data running on 
commercial hardware. HDFS is designed to promote fast 
recovery from failures, streaming access to data, 

accommodation of any size of big data and compatibility 
with various operating systems. In HDFS, the data is split 
into blocks then stored across multiple machines. Before 
spreading, the blocks are replicated to avoid data loss due to 
either hardware or network failures. The original and the 
replicated blocks are spread into different nodes in the 
cluster. 

By default, the size of the block is 64 MB. The size is 
chosen because having a much smaller size will cause high 
seek overhead. On the other side, the significantly larger 
block size will reduce the parallelism [6]. The blocks are 
replicated and spread into nodes. NameNode keeps tracks on 
the block ID and the ID of the node having the block.  

When an application is submitted, the job is initialized on 
the job queue, and JobTracker creates the corresponding 
Map and Reduce tasks. Each task needs a particular data 
block. JobTracker talks to the NameNode to determine the 
location of the data. Sending the job to the node that has the 
data needed is cheaper than transferring the data. Thus, 
JobTracker locates TaskTracker nodes with available slots at 
or near the data then submits the jobs to the chosen node. 
The TaskTracker nodes are then monitored using a 
mechanism called heartbeat.  

The heartbeat signal carries information like total storage 
capacity, the fraction of storage in use and the number of 
data transfer. If the node does not send a heartbeat signal 
during a specified time interval, the node is considered as 
failed. JobTracker follows up the information by 
determining whether the task will be submitted to a different 
node, identify the specific record as something to avoid, or 
blacklist the TaskTracker as unreliable. 

As mentioned earlier, to achieve the best performance, 
instead of moving the block into the node having the job, the 
job is copied into the node having the data. In addition to 
that, to avoid the data collision in the network switch, 
Hadoop schedulers should minimize the data transfer. 
Nevertheless, it is challenging because Hadoop is data-
intensive. The blocks of data are spread in different nodes. 
On the other hand, a job can only run when it is in the same 
node with the data block needed by the job. To handle the 
problem, Hadoop allocates the jobs at the nodes at the node 
having the block needed or near to it. The closeness between 
the data and the task requiring the data is called data locality  
[7]–[10].  

There are three levels of data locality in Hadoop, i.e.: 
• First level locality, occurs when data and task are in 

the same node 
• Second level locality, when task and data are in the 

different node but in the same rack 
• Third level locality, when data are in different node 

and different rack. 

To improve the data locality and to reduce network traffic, 
the scheduler should be equipped with data-locality 
awareness policy. Intuitively, the best locality is the first 
level data locality, where the jobs are in the node holding the 
required input data. When a job cannot attain the first level 
data locality, the scheduler moves the jobs into the node 
having the data required by the job. The job will be moved 
to a different node in a similar rack (second-level data 
locality). If all nodes in similar racks are busy, it will be sent 
to a node in a different rack (third-level data locality). 

1914



 

 
Fig. 1  Hadoop Architecture 

 
An example of data locality problem in Hadoop system is 

presented in Fig 2. The system contains two racks, while 
each rack contains three nodes. In order to simplify, each 
node holds a block of data and a container with a particular 
job. Job X will only run if it is in the same node with data 
block X, needed by the job. If both are not in similar node, 
the job will be transferred to the node having the block 
required before it can be executed. Accordingly, as job A and 
F have data block needed, both achieve first-level data 
locality. Job C and job E attain second-level data locality 
since the data required are in another node but still in a 
similar rack. Job D and job B gain the third-level data 
locality as the data needed are in a different node in a 
separate rack. 

B. Hadoop Scheduler 

Hadoop is designed to process an immense amount of 
data. In order to acquire the value, the data needs to be 
processed in the specific time frame. Thus, one should 
ensure that Hadoop achieves a certain level of performance. 
The performance is mainly defined by the scheduler used. 
Consequently, the scheduler needs to be properly chosen and 
configured. Hadoop is shipped along with three (3) default 
scheduling algorithms that support data locality, i.e. FIFO, 
Fair and Capacity Scheduler [11]. 

The schedulers allocate the incoming tasks into the 
available resources. As mentioned in subsection A, resource 
availability is monitored through a heartbeat mechanism sent 
from slave nodes to master nodes. The Hadoop job 
scheduling problem is a multi-objective, as well as an NP-
hard problem.  

FIFO is the original and the default Hadoop scheduler. 
The main goal is to schedule jobs based on the job arrival in 
the queue (First-in First-out) [11], [12]. Resources will be 
allocated to the job in the frontmost of the queue. It does not 
consider job size and priority. Consequently, it may have 
some limitations, such as poor response times for small jobs 
and low performance on running multiple types of jobs. 
Furthermore, the scheduler is not suitable for a shared 
cluster as large jobs will utilise all the available resources. 

Fair Scheduler is a method for assigning resources to jobs 
such that all jobs get a nearly equal share of resources [11], 
[12]. Fair scheduler organises jobs employing resource pools 
and fairly shares resources between these pools. The Fair 

Scheduler manages the allocation of resources to pools or 
queue and also handles the distribution of jobs to pools. Jobs 
can also be explicitly submitted to pools. When there is a 
conflict for resources, high priority jobs or jobs waiting too 
long can run. By default, the fairness decision is based only 
on memory. However, the scheduler can be configured to 
decide based on both memory and CPU in the form of (x 
MB, y vCores). 

By default, all users share a single queue, named “default.” 
If an app specifically lists a queue in a container resource 
request, the request is submitted to that queue. The queue 
can also be allocated based on the user name included 
through configuration. Within each queue, a scheduling 
policy is employed to share resources among the apps. 
Queues can be organized in a hierarchy to distribute 
resources and configured with weights. 

When only a single job is submitted, it will utilize the 
entire cluster. When there are other jobs submitted, they will 
be allocated to the free task slots. This policy will guarantee 
that each job will get a similar amount of resources. It allows 
small jobs to complete within a reasonable time while not 
starving long jobs. The scheduler can work well in both 
small and large jobs, which is the limitation in FIFO. The 
Fair Scheduler is more flexible and allows jobs to consume 
unused resources in the cluster, thus maximizing resource 
utilization. The scheduler is a good default for small to 
medium-sized clusters. 

 
Fig. 2 Example of Data Locality in Hadoop 

 
The CapacityScheduler is a pluggable scheduler designed 

to run Hadoop applications as a shared, multi-tenant cluster 
in an operator-friendly manner while maximising the 
throughput and the utilisation of the cluster. The scheduler 
uses the concept of queues. Each queue is allocated to an 
organisation or user, and resources are divided among these 
queues [13], [14]. Jobs are distributed in multiple queues 
according to their conditions and allocate specific capacity 
for each queue. The scheduler allows the priority-based 

1915



scheduling of jobs  [15]. Moreover, by supporting parallel 
execution of multiple jobs and cluster sharing among 
multiple users or organisation, it can improve the utilisation 
of the cluster resource. However, the scheduler does not 
consider the user and job heterogeneity. In addition to that, 
because capacity scheduler uses the concept of queue 
capacity, queues may have less capacity to take more time to 
process the job [16].  

The CapacityScheduler is designed to allow sharing a 
large cluster while giving each organization capacity 
guarantee. The fundamental concept is that the resources in 
the Hadoop cluster are shared among multiple organizations 
based on their computing needs. The CapacityScheduler 
provides a robust set of limits to ensure that a single 
application or user or queue cannot consume an excessive 
amount of resources in the cluster. Additionally, the 
CapacityScheduler provides boundaries on initialized and 
pending applications from a single user and queue to ensure 
fairness and stability of the cluster. Moreover, the Capacity 
Scheduler supports hierarchical queues to guarantee that 
resources are shared among the sub-queues of an 
organization before other queues are allowed to use free 
resources. 

C. Straggle-aware Scheduler 

As mentioned in Section I, several factors can make a task 
to become a straggler task. One of them is a network link 
problem, where the network throughput degrades due to 
collision in a network switch. The problem happens because 
the round trip time in the data center is two or three 
magnitudes higher than the default Retransmission Timeouts 
(RTO) Timer used in Transmission Control Protocol (TCP) 
[17]. The problem is called TCP Incast problem and is 
illustrated in Fig 3. 

Fig 3 shows a case when some nodes send data at the 
same time, and the switch cannot handle the flow. 
Consequently, the throughput degrades to a small percentage 
of the actual link capacity. When this problem occurs, the 
task resides in the other node will be late in sending the 
result to the master node, thus resulting in straggler tasks. 

 
Fig. 3 TCP Incast Problem 

 
Hardware failures may also cause straggler tasks. In 

Yahoo cluster, there are 2-3 nodes failures per 1000 nodes 
per day [18], [19].  Google also reports that in each cluster’s 
first year, around 1,000 machines will fail [20] and there is 
about a 50% chance that the cluster will overheat that will 
take down most of the servers and take about 1 to 2 days to 

recover. Both examples show that even in a big company, 
the failures are inevitable.  

The hardware failure will bring the next source of 
straggler task problem, i.e. the low computational power 
compared to other nodes. This problem occurs because 
during the replacement, sometimes it is difficult to find 
similar hardware to replace the failed one(s). In this case, the 
latest hardware will have better computing capacity 
compared to the existing ones. The constant replacement 
will cause further heterogeneity in the cluster. On the other 
hand, Hadoop assumes that the cluster is homogeneous [12]. 

When a cluster is not dedicated to run the specific 
application (in this case, Hadoop), it may drain the CPU and 
RAM resources to work on other tasks (heavy background 
noise). In this case, the tasks allocated by Hadoop may have 
less priority to run by the busy CPU. If this occurs, the task 
assigned to run in the node may become straggler. 

Straggler task may also happen when the job is 
misconfigured. This may happen especially on the capacity 
scheduler, where detail configurations are needed for the 
tasks and the Hadoop users. Finally, the fault on the data 
block may also lead to the straggler task problem where the 
disk where the block is copied is corrupted. If this case is not 
handled, the task will run forever as it waits for the input 
from the corrupted block.  

Several methods have been proposed to handle straggler 
tasks in Hadoop. The methods can be categorized into three 
categories, i.e. reduce skewness, dynamic resource allocation 
and speculative execution strategy. 

Methods that falls into the category of Reduce skewness 
include [21], [22]. The fundamental conception of the 
method is that in some cases, the distribution of nodes 
running tasks is not balanced. For example, due to 
speculative tasks, a node having lower specification will 
always be killed because most of the time, it processes the 
data slower than the other counterparts. The advantage of the 
methods is the balance data distribution across nodes using a 
user-defined cost function. Moreover, it takes advantage of 
idle nodes freed by short tasks. 

The methods that belong to dynamic resource allocation 
are [23]–[25] and [26]. The methods focus on the cluster 
running above groups of virtual machines (VMs). The idea 
of the method is to dynamically perform the tuning of the 
cluster when Hadoop is running. The advantage of the 
method is that it will dynamically allocate overall capacity 
among VMs based on their demand. The method will 
automatically tune the Hadoop cluster that will reduce 
straggler task problem. However, the disadvantages are that 
the methods focus on VM Management and less effective for 
grid nor cloud setup. Moreover, as it may repartition the VM, 
moving repartitioned data requires extra I/O operation. 

The methods that fall into the next category, i.e. 
speculative execution strategy are [27]–[31]. The idea is to 
speculate tasks if they are detected as a straggler. The 
advantage of the methods is that it will mitigate hardware 
failures by running the straggler tasks in different nodes 
(hoping that the tasks can run faster thus will finish on the 
desired time). Despite that, sometimes the speculative 
execution is performed at the finishing stage of the job, so it 
cannot address the straggler task problem promptly. 

1916



D.  Straggler-aware Reduce Task Schedulers 

Zaharia et al. proposed the Longest Approximated Time 
to End (LATE). The basic idea of the algorithm is that all 
tasks predicted to finish farthest into the future will always 
be speculated [32]. The idea is developed to overcome 
performance problem due to the following assumptions in 
default Hadoop schedulers: 

• Nodes are homogeneous and can perform tasks at 
about the same speed 

• Throughout time, all tasks run at a constant rate 
• No cost on performing a speculative task on any node 

in the cluster having an idle slot 
• A task’s progress score can be represented as a 

fraction of its total work done.  
• Tasks in Hadoop tends to finish in waves 
• A task with a low progress score is likely to become a 

straggler. 
• The same amount of works is required for tasks that 

fall in the same category (map or reduce) 
 
LATE calculates the progress using Equation (1) 
 

 ����������	� 

��
�������
��

�
 (1) 

 
Where T is the time spent by the task. Using the equation, 

LATE can calculate the time for a task to complete as shown 
in Equation 2 

 

 timeToComplete 

�-� !" #$$%&! #

� !" #$$'()#
 (2) 

 
However, because LATE always speculate straggler tasks 

without knowing the reason, it may cause misjudgment. 
Furthermore, in some cases, the time to end approximation is 
inaccurate. Due to these problems, the scheduler may waste 
the resources. The calculation of the approximation is also 
too long. Thus, some tasks already run for several times 
longer than it should before it is detected as straggler task. 

It is important to note that Map and Reduce tasks have 
different characteristics presented in Table I. Despite that, 
the default Hadoop schedulers (FIFO, Fair and Capacity), as 
well as LATE algorithm, assume that both tasks are similar 
[33]. 

TABLE I 
COMPARISON BETWEEN MAP AND REDUCE TASKS 

Map Task Reduce Task 

Independent task Dependent on Map Task 

Contains only a single phase 
Contains three phases, i.e. 
sort, shuffle and reduce 

 
To deal with the inaccuracy of the approximation time in 

Reduce tasks, Huang et al. [29] proposed Estimate 
Remaining time Using Linear relationship (ERUL) and 
extensional Maximum Cost Performance (exMCP) 
algorithm. The algorithms consider loads of each slot in 
Hadoop (slot-aware strategy). However, misjudgment can 
still occur on the estimation of the progress of Reduce tasks.  

Other work to improve LATE on Reduce Tasks 
scheduling was done by Patgiri et al. [22]. In the proposed 

method, named rTuner, the calculation of the straggler tasks 
is based on LATE calculation. However, the algorithm 
checks the reason for straggler and the speculation is based 
on the reason. Despite that, until the tasks are detected as a 
straggler, the container will be occupied by straggler tasks 
and cannot be allocated to other tasks in the queue. The 
pseudo-code for rTuner algorithm is presented in Algorithm 
1. 
 
Algorithm 1 The rTuner Algorithm [22] 
1: procedure rTuner(TaskTracker T) 
2:   for RT in T do 
3:   if RT in reduce then 
4:      flag = CheckForStraggler(RT) 
5:      reasonForStraggler(RT) 
6:      decision = CheckForSpeculation(RT) 
7:      if decision=true and crossSpeculativeLimit=false then 
8: speculate (RT) 

E. Proposed Method 

As discussed in the previous sections, in the current 
Hadoop schedulers, when straggler tasks exist, the container 
handling the task will be blocked so it can be used for other 
tasks. In other fields such as CPU scheduling discussed in 
the previous sections, in the current Hadoop schedulers, 
when straggler tasks exist, the container handling the task 
will be blocked so it can be used for other tasks. In other 
fields such as CPU scheduling [34], the blocking problem is 
handled by removing the blocking tasks from the main 
queue and sending them into a temporary place (a callback). 
However, the method has not been implemented in Hadoop, 
especially in Reduce task scheduling. 

In this paper, we adopt the non-blocking method and 
name our algorithm as asynchronous non-blocking scheduler 
(ANB Scheduler). In ANB, instead of having a single queue 
for tasks, it incorporates two queues, i.e. tasks and callback 
queue. When a task is not ready or detected as a straggler, it 
is removed from the primary task queue and temporarily sent 
to the callback queue. We do not want to detect the cause of 
the straggler because we only want to move the long-run 
task to callback queue. Thus, the calculation for straggler 
detection uses the equation used by LATE. When the task is 
ready to run, it will be sent back to the main task queue for 
running. The pseudo-code for ANB Scheduler is presented 
in Algorithm 2. An example of ANB Scheduler is illustrated 
in Fig 4. 

System model: In our system, a job is divided into k tasks. 
The tasks are allocated into m number of node n through x 
number of link l. Because the node may have different 
hardware specification, the nodes can be defined as 

. The link may also have different 
capacity. Thus, the link should also be defined as 

. 
A straggler task kn may be likely to happen when the 

hardware specification of nm is lower with nm-1 or when the 
link capacity or throughput ly is lower than ly-1. When kn is 
straggler, the task is removed from the task queue and put 
into callback queue. In this case, Hadoop can run kn+1 
without interrupted. When kn is ready, a callback function 

1917



will put the task back in task queue and remove from the 
callback queue. 
 
Algorithm 2 Asynchronous Non-blocking Scheduler 
1: procedure ANBScheduler(TaskTracker T) 
2:  FOR RT in T 
3:  IF RT in reduce THEN 
4:    IF RT is waiting or straggler THEN 
5:      remove RT from task queue 
6:      put RT to callback queue 
7:    IF RT is ready THEN 
8:      put RT to task queue 
 

 
Fig. 4 An Example of ANB Scheduler 

III.  RESULTS AND DISCUSSION 

We implement our algorithm in Vultr cloud service using 
containernet. Containernet is a network function 
virtualisation (NFV) tool based on mininet [36] and Docker 
container. Containernet is chosen because it can be used to 
simulate network in any size and condition. In addition to 
that, using containernet, it is also possible to vary the CPU 
power between nodes thus can simulate the condition that 
can trigger a straggler task problem. 

TABLE II 
SIMULATION SETUP 

Item Specification 

CPU Core 4 
RAM 8 MB 
Number of nodes 3 
CPU Variation 2 same, 1 lower spec 

(10% of the power of the 
other two CPUs) 

Network link 10 Mbps 
5ms delay 
2% loss 
1000 packet queue 

Number of experiments run 10 runs 

 
The details of the setup of the experiment conducted are 

shown in Table II. A total of 10 experiments are conducted 
to compare rTuner and ANB Scheduler. The algorithms are 
run on three (3) nodes to measure the time-to-complete on 
running Reduce tasks using ANB and rTuner scheduler. The 
results are shown in Fig 5. 

From the result, it is shown that from 10 experiments, the 
time-to-complete to run all tasks using ANB scheduler (in 
blue) is faster than when rTuner is used. In average, the time 
needed to complete all tasks using rTuner is 1,386.8 ms 
while the average time using ANB is 717.5 ms. It means that 
the average time in our algorithm is 51.89% less than the 
time needed to complete tasks run using rTuner. The 
standard deviation for the time-to-complete in ANB is 54.99% 
while the standard deviation for the time-to-complete in 
rTuner is 84.29%. From the standard deviation, it is shown 
that our algorithm gives a more consistent result than rTuner. 

 

 
Fig. 5 Comparison of Time To Complete (in milliseconds) using rTuner 
(read) vs ANB Scheduler (blue) 
 

In general, our algorithm performs better than rTuner, 
mainly because of at least two reasons. First, using ANB, 
when a task is not ready to run, it is directly put into the 
callback queue without blocking other tasks. Once it is ready, 
a callback mechanism will put the task back into the task 
queue for execution. Secondly, the overhead time of rTuner 
is high as it needs to check the straggler status of all tasks. In 
addition to that, the algorithm needs to find the reason for 
straggler before speculating the tasks. While finding the 
reason is good because it will decrease the possibility for 
speculating near-to-complete task and the finished task that 
detected as straggler due to network problem, the procedure 
will consequently increase the overhead time. 

IV.  CONCLUSION 

In this paper, the algorithm to handle straggler Reduce 
Tasks in Hadoop has been presented, namely Asynchronous 
NonBlocking Scheduler (ANB Scheduler). The scheduler 
uses the callback queue as a temporary queue for blocking 
tasks. Thus, the other ready tasks can run on the cluster. The 
algorithm has been compared to the latest algorithm found in 
the same area, i.e. rTuner. Our simulation shows that our 
algorithm performs better than rTuner. 

In this paper, we implement our method in a simulated 
Hadoop system based on the concept of Hadoop 1.1.2. In the 
future, we will implement this concept in Apache Hadoop 
and perform some experiments in a heterogeneous 
environment using Containernet. Containernet is used as it 
can simulate the network with various hardware 
specifications as well as the link capacity between nodes. 
We will also experiment with our real cluster with some old 
and problematic hardware installed. By implementing our 
algorithm in Hadoop, and performing the experiments in 

1918



both containernet and real cluster to run various tasks, we 
will be able to ensure that our algorithm can increase the 
performance of Hadoop system, especially under 
heterogeneous setup. 

REFERENCES 
[1] D. Reinsel, J. Gantz, and J. Rydning, “The digitisation of the world: 

from edge to core,” IDC White Paper, 2018. 
[2] Y. Sun, Y. Shi, and Z. Zhang, “Finance Big Data: Management, 

Analysis, and Applications,” Int. J. Electron. Commer., vol. 23, pp. 
9–11, 2019. 

[3] M. Nakagami, J. A. B. Fortes, and S. Yamaguchi, “Job-Aware 
Optimization of File Placement in Hadoop,” 2019 IEEE 43rd Annual 
Computer Software and Applications Conference (COMPSAC), vol. 
2, pp. 664–669, 2019. 

[4] X. Luo and X. Fu, “Configuration optimisation method of Hadoop 
system performance based on genetic simulated annealing algorithm,” 
Cluster Computing, pp. 1–9, 2018. 

[5] P. Garraghan, X. Ouyang, R. Yang, D. McKee, and J. Xu, “Straggler 
Root-Cause and Impact Analysis for Massive-scale Virtualized 
Cloud Datacenters,” IEEE Transactions on Services Computing, vol. 
12, pp. 91–104, 2019. 

[6] H.-G. Kim, “Effects of Design Factors of HDFS on I/O Performance,” 
J. Comput. Sci., vol. 14, pp. 304–309, 2018. 

[7] D. Choi, M. Jeon, N. Kim, and B.-D. Lee, “An Enhanced Data-
Locality-Aware Task Scheduling Algorithm for Hadoop 
Applications,” IEEE Systems Journal, vol. 12, pp. 3346–3357, 2018. 

[8] X. Du, Y. Liu, and C. Zhao, “A Hadoop Yarn Scheduling Based on 
Node Computing Capability and Data Locality in Heterogeneous 
Environments,” 2018. 

[9] K. Midoun, W.-K. Hidouci, M. Loudini, and D. Belayadi, “RTSBL: 
Reduce Task Scheduling Based on the Load Balancing and the Data 
Locality in Hadoop,” 2018. 

[10] P. Zhang, C. Li, and Y. Zhao, “An Improved Task Scheduling 
Algorithm Based on Cache Locality and Data Locality in Hadoop,” 
2016 17th International Conference on Parallel and Distributed 
Computing, Applications and Technologies (PDCAT), pp. 244–249, 
2016. 

[11] K. Kalia and N. Gupta, “A Review on Job Scheduling for Hadoop 
Mapreduce,” 2017 International Conference on Next Generation 
Computing and Information Systems (ICNGCIS), pp. 75–79, 2017. 

[12] A. Sharma and G. Singh, “A Review of Scheduling Algorithms in 
Hadoop,” 2020. 

[13] A. M. S. Lakshmi, N. S. Chandra, and M. BalRaju, “Optimised 
Capacity Scheduler for MapReduce Applications in Cloud 
Environments,” 2019. 

[14] H. Chen and D. Cui, “SLA-based Hadoop Capacity Scheduler 
Algorithm,” 2015. 

[15] J. A. Murali and T. Brindha, “Analysis of Scheduling Algorithms in 
Hadoop,” 2018. 

[16] J. V. Gautam, H. B. Prajapati, V. K. Dabhi, and S. Chaudhary, 
“Empirical Study of Job Scheduling Algorithms in Hadoop 
MapReduce,” Cybernetics and Information Technologies, vol. 17, pp. 
146–163, 2017. 

[17] Y. Xu et al., “RAPID: Avoiding TCP Incast Throughput Collapse in 
Public Clouds With Intelligent Packet Discarding,” IEEE Journal on 
Selected Areas in Communications, vol. 37, pp. 1911–1923, 2019. 

[18] P. Pandey, S. Singh, and S. Singh, “Cloud computing,” in ICWET, 
2010. 

[19] B. T. Rao, N. V. Sridevi, V. K. Reddy, and L. S. S. Reddy, 
“Performance Issues of Heterogeneous Hadoop Clusters in Cloud 
Computing,” ArXiv, vol. abs/1207.0894, 2012. 

[20] S. Shankland, “Google spotlights data center inner workings,” CNET. 
https://www.cnet.com/news/google-spotlights-data-center-inner-
workings/ (accessed Jun. 07, 2020). 

[21] M. Liroz-Gistau, R. Akbarinia, D. Agrawal, and P. Valduriez, “FP-
Hadoop: Efficient processing of skewed MapReduce jobs,” 
Information Systems, vol. 60, pp. 69–84, 2016. 

[22] R. Patgiri and R. Das, “rTuner: A Performance Enhancement of 
MapReduce Job,” in ICCMS 2018, 2018. 

[23] S. Ghemawat et al., “Performance Tuning and Scheduling of Large 
Data Set Analysis in Map Reduce Paradigm by Optimal 
Configuration using Hadoop,” 2019. 

[24] X. Hua, M. C. Huang, and P. Liu, “Hadoop Configuration Tuning 
with Ensemble Modeling and Metaheuristic Optimization,” IEEE 
Access, vol. 6, pp. 44161–44174, 2018. 

[25] M. A. Rahman, A. Hossen, J. Hossen, C. Venkataseshaiah, T. 
Bhuvaneswari, and A. Sultana, “Towards machine learning-based 
self-tuning of Hadoop-Spark system,” Indonesian Journal of 
Electrical Engineering and Computer Science, vol. 15, p. 1076, 2019. 

[26] W. Wang, Y. Shi, X. Liu, Y. Feng, and N. Tao, “Hadoop 
Performance Tuning based on Parameter Optimization,” 2018. 

[27] Y. Guo, J. Rao, C. Jiang, and X. Zhou, “Moving Hadoop into the 
cloud with flexible slot management and speculative execution,” 
IEEE Transactions on Parallel and Distributed systems, vol. 28, no. 
3, pp. 798–812, 2016. 

[28] Y. Guo, J. Rao, C. Jiang, and X. Zhou, “Moving Hadoop into the 
Cloud with Flexible Slot Management and Speculative Execution,” 
IEEE Transactions on Parallel and Distributed Systems, vol. 28, pp. 
798–812, 2017. 

[29] X. Huang, L. Zhang, R. Li, L. Wan, and K. Li, “Novel heuristic 
speculative execution strategies in heterogeneous distributed 
environments,” Computers & Electrical Engineering, vol. 50, pp. 
166–179, 2016. 

[30] D. C. Vinutha and G. T. Raju, “Evolutionary Approach based 
Scheduler for Speculative Task Execution,” 2019 1st International 
Conference on Advances in Information Technology (ICAIT), pp. 
485–490, 2019. 

[31] Q. Liu, W. Cai, J. Shen, Z. Fu, X. Liu, and N. Linge, “A speculative 
execution strategy based on node classification and hierarchy index 
mechanism for heterogeneous Hadoop systems,” 2017 19th 
International Conference on Advanced Communication Technology 
(ICACT), pp. 889–894, 2017. 

[32] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica, 
“Improving MapReduce Performance in Heterogeneous 
Environments,” in OSDI, 2008. 

[33] S. R. Pakize, “A Comprehensive View of Hadoop MapReduce 
Scheduling Algorithms,” 2014. 

[34] M. Beckert and R. Ernst, “Response time analysis for sporadic 
server-based budget scheduling in real time virtualisation 
environments,” ACM Transactions on Embedded Computing Systems 
(TECS), vol. 16, no. 5s, pp. 1–19, 2017. 

[35] F. Kaltenberger, C. Roux, M. Buczkowski, and M. Wewior, “The 
OpenAirInterface application programming interface for schedulers 
using Carrier Aggregation,” in 2016 International Symposium on 
Wireless Communication Systems (ISWCS), 2016, pp. 497–500. 

[36] M. Peuster, J. Kampmeyer, and H. Karl, “Containernet 2.0: A Rapid 
Prototyping Platform for Hybrid Service Function Chains,” 2018 4th 
IEEE Conference on Network Softwarization and Workshops 
(NetSoft), pp. 335–337, 2018. 

 

1919




