A Temperature Total Fourier Series Solution For a Hollow Sphere

Mehdi Mahmudi Mehrizi (1)
(1) Department of Mechanical Engineering, Islamic Azad University, Iran
Fulltext View | Download
How to cite (IJASEIT) :
Mehrizi, Mehdi Mahmudi. “A Temperature Total Fourier Series Solution For a Hollow Sphere”. International Journal on Advanced Science, Engineering and Information Technology, vol. 1, no. 5, Oct. 2011, pp. 554-9, doi:10.18517/ijaseit.1.5.112.
In the following pages, we exhibit an analytical solution of a two-dimensional temperature field in a hollow sphere under total periodic boundary condition. The material is assumed to be homogeneous and isotropic with time-independent thermal properties. Till now periodic boundary condition was derived with a harmonic vibration, whereas there is a noticeable difference in the practical conditions with harmonic vibration. In this essay, by means of Fourier analysis, we imagine the outside total periodic boundary condition, as aggregate of harmonic vibrations . To solve the problem, first we imagine the boundary condition as constant values and with separation of variables; we can obtain temperature distribution in the  sphere. Then Duhamel's theorem is used to calculate temperature field under fully periodic boundary condition. For confirmation of accurate solution, we can compare the result for a harmonic vibration and those reported by others. Also, solutions for a hollow sphere were compared with other present references. At last we can obtain thermal stresses which is caused by temperature field in the hollow sphere.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).