The Monitoring System of Soil PH Factor Using IoT-Webserver-Android and Machine Learning: A Case Study

Sumarsono (1), Fatma Ayu Nuning Farida Afiatna (2), Nur Muflihah (3)
(1) Department of Industrial Engineering, University of Hasyim Asy’ari Tebuireng Jombang, Jombang, East Java, 61471, Indonesia
(2) Department of Industrial Engineering, University of Hasyim Asy’ari Tebuireng Jombang, Jombang, East Java, 61471, Indonesia
(3) Department of Industrial Engineering, University of Hasyim Asy’ari Tebuireng Jombang, Jombang, East Java, 61471, Indonesia
Fulltext View | Download
How to cite (IJASEIT) :
Sumarsono, et al. “The Monitoring System of Soil PH Factor Using IoT-Webserver-Android and Machine Learning: A Case Study”. International Journal on Advanced Science, Engineering and Information Technology, vol. 14, no. 1, Feb. 2024, pp. 118-30, doi:10.18517/ijaseit.14.1.18745.
In Indonesia, the agriculture industry has been more reluctant than other sectors to adopt IoT, IT, and AI technology. Utilizing this technology will enable precision agriculture. This research aims to make and implement an IoT-Webserver-Android and Machine Learning-based soil PH factor monitoring tool system. The steps for making the tool system are divided into three subsystems. The first is a multiple sensors data acquisition subsystem, consisting of sensors for soil PH-Moisture, Temperature-Humidity, and Sunlight. The sensors are connected to the Arduino Uno microcontroller for serial communication with the ESP 8266 microcontroller for the Wi-Fi module. The second part is the monitoring subsystem with the local web application, which contains a MySQL database and a local web page. The third part is the monitoring subsystem with the Android application, which includes a real-time Firebase database and the application for real-time and mobile data display. The results have been implemented and display the expected outcomes. It is clear from the performance of the three subsystems. The outcomes of the tool system's data evaluation provide precise statistical values. Then, Machine Learning analysis generates accurate soil PH prediction models. It has been demonstrated that the monitoring system is applicable and has a favorable impact on data soil PH factor. The implication for the future is that this monitoring system should be added with Nitrogen-Phosphorus-Potassium sensors to measure soil nutrients. Also, the system added edge-analysis to be integrated in monitoring and analyzing soil nutrients.

T. Tambunan, “Recent evidence of the development of micro, small and medium enterprises in Indonesia,” J. Glob. Entrep. Res., vol. 9, no. 1, pp. 1–15, 2019, doi: 10.1186/s40497-018-0140-4.

Asian Development Bank, Policies to support investment requierements of Indonesia’s food and agriculture development during 2020-2045, no. October 2019. 2020. doi: 10.22617/TCS190447-2.

E. Calderón-Monge and D. E. Ribeiro-Soriano, “The role of digitalization in business and management: a systematic literature review,” Rev. Manag. Sci., pp. 1–43, 2023, doi:10.1007/s11846-023-00647-8.

E. Endris and A. Kassegn, “The role of micro, small and medium enterprises (MSMEs) to the sustainable development of sub-Saharan Africa and its challenges: a systematic review of evidence from Ethiopia,” J. Innov. Entrep., vol. 11, no. 1, 2022, doi: 10.1186/s13731-022-00221-8.

P. Saha, V. Kumar, S. Kathuria, A. Gehlot, V. Pachouri, and A. S. Duggal, “Precision Agriculture Using Internet of Things and Wireless Sensor Networks,” in 2023 International Conference on Disruptive Technologies (ICDT), 2023, pp. 519–522. doi:10.1109/ICDT57929.2023.10150678.

S. H. Awan, S. Ahmad, Y. Khan, N. Safwan, and ..., “A Combo Smart Model of Blockchain with the Internet of Things (IoT) for the Transformation of Agriculture Sector,” Wirel. Pers., 2021, doi:10.1007/s11277-021-08820-6.

F. Akhter, “Design and development of an IoT-enabled portable phosphate detection system in water for smart agriculture,” Sensors Actuators, A Phys., vol. 330, 2021, doi: 10.1016/j.sna.2021.112861.

M. Dhanaraju, P. Chenniappan, K. Ramalingam, S. Pazhanivelan, and R. Kaliaperumal, “Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture,” Agriculture, vol. 12, no. 10. 2022. doi:10.3390/agriculture12101745.

V. R. Pathmudi, N. Khatri, S. Kumar, A. S. H. Abdul-Qawy, and A. K. Vyas, “A systematic review of IoT technologies and their constituents for smart and sustainable agriculture applications,” Sci. African, vol. 19, p. e01577, 2023, doi: 10.1016/j.sciaf.2023.e01577.

D. Xue and W. Huang, “Smart Agriculture Wireless Sensor Routing Protocol and Node Location Algorithm Based on Internet of Things Technology,” IEEE Sens. J., vol. 21, no. 22, pp. 24967–24973, 2021, doi: 10.1109/JSEN.2020.3035651.

A. Degada, H. Thapliyal, and S. P. Mohanty, “Smart Village: An IoT Based Digital Transformation,” 2021 IEEE 7th World Forum Internet Things, pp. 459–463, 2021, doi: 10.1109/WF-IoT51360.2021.9594980.

M. E. Karar, F. Alotaibi, A. Al-Rasheed, and O. A. Reyad, “A Pilot Study of Smart Agricultural Irrigation using Unmanned Aerial Vehicles and IoT-Based Cloud System,” ArXiv, vol. abs/2101.0, 2021, doi:

Q. T. Minh, V. GIa, S. N. Tan, P. N. Huu, and T. Tsuchiya, “Fog Computing Enabled Hydroponic Farming Systems,” J. Mob. Multimed., vol. 18, pp. 981–1008, 2022, doi: 10.13052/jmm1550-4646.1842.

A. D. Boursianis, “Smart Irrigation System for Precision Agriculture - The AREThOU5A IoT Platform,” IEEE Sens. J., vol. 21, no. 16, pp. 17539–17547, 2021, doi: 10.1109/JSEN.2020.3033526.

M. Zhu and J. Shang, “Remote Monitoring and Management System of Intelligent Agriculture under the Internet of Things and Deep Learning,” Wirel. Commun. Mob. Comput., vol. 2022, 2022, doi:10.1155/2022/1206677.

R. K. Singh, R. BERKVENS, and M. WEYN, “AgriFusion: An Architecture for IoT and Emerging Technologies Based on a Precision Agriculture Survey,” IEEE Access, vol. 9. pp. 136253–136283, 2021. doi: 10.1109/access.2021.3116814.

R. Akhter and S. A. Sofi, “Precision agriculture using IoT data analytics and machine learning,” Journal of King Saud University - Computer and Information Sciences. 2021. doi:10.1016/j.jksuci.2021.05.013.

M. Goudarzi, H. Wu, M. S. Palaniswami, and R. Buyya, “An Application Placement Technique for Concurrent IoT Applications in Edge and Fog Computing Environments,” IEEE Trans. Mob. Comput., vol. 20, pp. 1298–1311, 2021, doi: 10.1109/TMC.2020.2967041.

Z. Han, “Research on Big Data Mining Application of Internet of Things Based on Artificial Intelligence Technology,” in 2022 International Conference on Computing, Robotics and System Sciences (ICRSS), 2022, pp. 74–77. doi:10.1109/ICRSS57469.2022.00025.

S. Garg, P. Pundir, H. Jindal, H. Saini, and S. Garg, “Towards a Multimodal System for Precision Agriculture using IoT and Machine Learning,” 2021 12th International Conference on Computing Communication and Networking Technologies, ICCCNT 2021. 2021. doi: 10.1109/ICCCNT51525.2021.9579646.

R. Akhter and S. A. Sofi, “Precision agriculture using IoT data analytics and machine learning,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 8. pp. 5602–5618, 2022. doi: 10.1016/j.jksuci.2021.05.013.

S. Suhag, N. Singh, S. Jadaun, and P. Johri, “IoT based Soil Nutrition and Plant Disease Detection System for Smart Agriculture,” in Proceedings - 2021 IEEE 10th International Conference on Communication Systems and Network Technologies, CSNT 2021, 2021, pp. 478–483. doi: 10.1109/CSNT51715.2021.9509719.

I. T. J. Swamidason, S. Pandiyarajan, K. Velswamy, and P. L. Jancy, “Futuristic IoT based Smart Precision Agriculture: Brief Analysis,” J. Mob. Multimed., vol. 18, no. 3, pp. 935–956, 2022, doi:10.13052/jmm1550-4646.18323.

F. Alrowais, “Hybrid leader based optimization with deep learning driven weed detection on internet of things enabled smart agriculture environment,” Comput. Electr. Eng., vol. 104, 2022, doi:10.1016/j.compeleceng.2022.108411.

K. Phasinam, T. Kassanuk, and P. P. Shinde, “Application of IoT and Cloud Computing in Automation of Agriculture Irrigation,” J. Food Qual., vol. 2022, 2022, doi: 10.1155/2022/8285969.

V. Viswanatha, R. V. S. Reddy, and R. Ac, “Implementation of IoT in Agriculture: A Scientific Approach for Smart Irrigation,” MysuruCon 2022 - 2022 IEEE 2nd Mysore Sub Section International Conference. 2022. doi: 10.1109/MysuruCon55714.2022.9972734.

A. Rehman, T. Saba, M. Kashif, and S. M. Fati, “A Revisit of Internet of Things Technologies for Monitoring and Control Strategies in Smart Agriculture,” Agronomy, vol. 12, no. 1. 2022. doi:10.3390/agronomy12010127.

V. K. Quy et al., “IoT-Enabled Smart Agriculture: Architecture, Applications, and Challenges,” Applied Sciences (Switzerland), vol. 12, no. 7. 2022. doi: 10.3390/app12073396.

H. Yin, Y. Cao, B. Marelli, and X. Zeng, “Soil Sensors and Plant Wearables for Smart and Precision Agriculture,” Advanced Materials, vol. 33, no. 20. 2021. doi: 10.1002/adma.202007764.

A. Sengupta, B. Debnath, A. Das, and D. De, “FarmFox: A Quad-Sensor-Based IoT Box for Precision Agriculture,” IEEE Consum. Electron. Mag., vol. 10, no. 4, pp. 63–68, 2021, doi:10.1109/MCE.2021.3064818.

H. M. Rai, M. Chauhan, H. Sharma, N. Bhardwaj, and L. Kumar, “AgriBot: Smart Autonomous Agriculture Robot for Multipurpose Farming Application Using IOT,” Lect. Notes Electr. Eng., vol. 875, pp. 491–503, 2022, doi: 10.1007/978-981-19-0284-0_36.

D. Dey, N. S. Sizan, and M. S. Mia, “GreenFarm: An IoT-Based Sustainable Agriculture with Automated Lighting System,” in Lecture Notes in Networks and Systems, 2023, pp. 517–528. doi: 10.1007/978-981-19-3679-1_43.

K. Kour, D. Gupta, K. Gupta, D. Anand, and D. H. Elkamchouchi, “Monitoring Ambient Parameters in the IoT Precision Agriculture Scenario: An Approach to Sensor Selection and Hydroponic Saffron Cultivation,” Sensors, vol. 22, no. 22, 2022, doi: 10.3390/s22228905.

N. N. Thilakarathne, M. S. A. Bakar, P. E. Abas, and H. Yassin, “Towards making the fields talks: A real-time cloud enabled IoT crop management platform for smart agriculture,” Front. Plant Sci., vol. 13, 2023, doi: 10.3389/fpls.2022.1030168.

D. Alghazzawi, O. Bamasaq, S. Bhatia, A. Kumar, P. Dadheech, and A. Albeshri, “Congestion Control in Cognitive IoT-Based WSN Network for Smart Agriculture,” IEEE Access, vol. 9, pp. 151401–151420, 2021, doi: 10.1109/access.2021.3124791.

I. M. Kulmány, Á. Bede-Fazekas, A. Beslin, and Z. Giczi, “Calibration of an Arduino-based low-cost capacitive soil moisture sensor for smart agriculture,” J. Hydrol. Hydromechanics, vol. 70, no. 3, pp. 330–340, 2022, doi: 10.2478/johh-2022-0014.

A. P. Atmaja, A. E. Hakim, A. P. A. Wibowo, and L. A. Pratama, “Communication systems of smart agriculture based on wireless sensor networks in IoT,” J. Robot. Control, vol. 2, no. 4, pp. 297–301, 2021, doi: 10.18196/jrc.2495.

K. Ramana, R. Aluvala, M. R. Kumar, G. Nagaraja, A. V. Krishna, and P. Nagendra, “Leaf Disease Classification in Smart Agriculture using Deep Neural Network Architecture and IoT,” J. Circuits, Syst. Comput., 2022, doi: 10.1142/S0218126622400047.

K. A. Jani and N. K. Chaubey, “A Novel Model for Optimization of Resource Utilization in Smart Agriculture System Using IoT (SMAIoT),” IEEE Internet Things J., vol. 9, no. 13, pp. 11275–11282, 2022, doi: 10.1109/jiot.2021.3128161.

R. A. Abdelouahid, O. Debauche, and A. Marzak, “Internet of of Things : Things : a new Interoperable IoT Platform . Application to a Smart Building,” Procedia Comput. Sci., vol. 191, no. 2019, pp. 511–517, 2021, doi: 10.1016/j.procs.2021.07.066.

A. Rio and F. Brito e Abreu, “PHP code smells in web apps: Evolution, survival and anomalies,” J. Syst. Softw., vol. 200, p. 111644, 2023, doi:10.1016/j.jss.2023.111644.

S. Tangwannawit and P. Tangwannawit, “An optimization clustering and classification based on artificial intelligence approach for internet of things in agriculture,” IAES Int. J. Artif. Intell., vol. 11, no. 1, pp. 201–209, 2022, doi: 10.11591/ijai.v11.i1.pp201-209.

Y. Mekonnen, S. Namuduri, L. Burton, A. Sarwat, and S. Bhansali, “Review - Machine Learning Techniques in Wireless Sensor Network Based Precision Agriculture,” Journal of the Electrochemical Society, vol. 167, no. 3. 2020. doi: 10.1149/2.0222003JES.

W. Zheng, Y. Zhao, H. Xu, Y. Yuan, W. Wang, and L. Gao, “Stretchable Iontronic Pressure Sensor Array With Low Crosstalk and High Sensitivity for Epidermal Monitoring,” IEEE Electron Device Lett., vol. 44, no. 3, pp. 516–519, 2023, doi:10.1109/led.2023.3240764.

K. Murugan, S. L. Reddy, B. S. Prasad, and P. Ramprasad, “Integration of pH and Temperature Sensor for Biomedical Applications,” 2022 7th Int. Conf. Commun. Electron. Syst., pp. 354–361, 2022, doi:10.1109/icces54183.2022.9835719.

J. Hrisko, “Capacitive Soil Moisture Sensor Theory , Calibration , and Testing,” no. July, 2020, doi: 10.13140/RG.2.2.36214.83522.

C. Hirsch, E. Bartocci, and R. Grosu, “Capacitive Soil Moisture Sensor Node for IoT in Agriculture and Home,” 2019 IEEE 23rd International Symposium on Consumer Technologies, ISCT 2019. pp. 97–102, 2019. doi: 10.1109/ISCE.2019.8901012.

S. Chowdhury, S. Sen, and J. Sreekanth, “Comparative Analysis and Calibration of Low Cost Resistive and Capacitive Soil Moisture Sensor,” ArXiv, vol. abs/2210.0, 2022, doi:10.48550/arXiv.2210.03019.

T. L. Maxwell, L. Augusto, Y. Tian, W. Wanek, and N. Fanin, “Water availability is a stronger driver of soil microbial processing of organic nitrogen than tree species composition,” Eur. J. Soil Sci., vol. 74, 2023, doi: 10.1111/ejss.13350.

H. Pal and S. Tripathi, “A survey on IoT-based smart agriculture to reduce vegetable and fruit waste,” Journal of Physics: Conference Series, vol. 2273, no. 1. 2022. doi: 10.1088/1742-6596/2273/1/012009.

Riaman, Sukono, S. Supian, and N. F. Ismail, “Mathematical Modeling for Estimating the Risk of Rice Farmers’ Losses Due to Weather Changes,” Comput., vol. 10, p. 140, 2022, doi:10.3390/computation10080140.

M. L. Jat et al., “Chapter Three - Conservation agriculture for regenerating soil health and climate change mitigation in smallholder systems of South Asia,” vol. 181, D. L. B. T.-A. in A. Sparks, Ed., Academic Press, 2023, pp. 183–277. doi:10.1016/bs.agron.2023.05.003.

M. K. Dharani, M. Bharathi, K. Praveena, and K. M. T. Venkata, “Intelligent IoT-based greenhouse monitoring and control system,” i-manager’s J. Electron. Eng., 2022, doi: 10.26634/jele.12.4.19061.

J. Park and H. Na, “Changes in Evapotranspiration and Growth of Gold Mound, Japanese Spurge, and Ivy Plants According to Wind Speed,” J. Bio-Environment Control, vol. 30, no. 1, pp. 72–76, 2021, doi:10.12791/ksbec.2021.30.1.072.

J. Nithyashri, R. Kumar, S. Balakrishnan, M. A. Kumar, P. Prabu, and S. Nandhini, “Measurement : Sensors IOT based prediction of rainfall forecast in coastal regions using deep reinforcement model,” Meas. Sensors, vol. 29, no. February, p. 100877, 2023, doi:10.1016/j.measen.2023.100877.

Sivagami, A. Vaishali, R. Ramakrishnan, and A. Subasini, “Weather Prediction Model using Savitzky-Golay and Kalman Filters,” Procedia Comput. Sci., vol. 165, pp. 449–455, 2019, doi:10.1016/j.procs.2020.01.005.

M. Alom, Y. Ali, T. Islam, A. Hasib, and W. Rahman, “Species classification of brassica napus based on flowers , leaves , and packets using deep neural networks,” J. Agric. Food Res., vol. 14, no. November 2022, p. 100658, 2023, doi: 10.1016/j.jafr.2023.100658.

R. N. Singh, P. Krishnan, C. Bharadwaj, and B. Das, “Improving prediction of chickpea wilt severity using machine learning coupled with model combination techniques under field conditions,” Ecol. Inform., vol. 73, pp. 1574–9541, 2023, doi:10.1016/j.ecoinf.2022.101933.

K. Azizi, S. Ayoubi, and J. A. M. Demattê, “Controlling factors in the variability of soil magnetic measures by machine learning and variable importance analysis,” J. Appl. Geophys., vol. 210, p. 104944, 2023, doi:

S. Rodríguez, G. Tatiana, and G. Carlos, “A System for the Monitoring and Predicting of Data in Precision Agriculture in a Rose Greenhouse Based on Wireless Sensor Networks,” Procedia Computer Science, vol. 121. pp. 306–313, 2017. doi: 10.1016/j.procs.2017.11.042.

V. Bachuwar, S. A.D, and D. L.P, “Monitoring the soil parameters using IoT and Android based application for smart agriculture,” AIP Conference Proceedings, vol. 1989. 2018. doi: 10.1063/1.5047679.

A. Nayyar, “Smart farming: Iot based smart sensors agriculture stick for live temperature and moisture monitoring using arduino, cloud computing & solar technology,” Communication and Computing Systems - Proceedings of the International Conference on Communication and Computing Systems, ICCCS 2016. pp. 673–680, 2017. doi: 10.1201/9781315364094-121.

C. Nicolas, B. Naila, and R.-C. Amar, “TinyML Smart Sensor for Energy Saving in Internet of Things Precision Agriculture platform,” International Conference on Ubiquitous and Future Networks, ICUFN, vol. 2022. pp. 256–259, 2022. doi:10.1109/icufn55119.2022.9829675.

H. Yin, Y. Cao, B. Marelli, X. Zeng, A. J. Mason, and C. Cao, “Soil Sensors and Plant Wearables for Smart and Precision Agriculture,” Advanced Materials, vol. 33, no. 20. 2021. doi:10.1002/adma.202007764.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).