Low Temperature Catalytic-Transfer Hydrogenation of Candlenut Oil

Fitri Hadiah (1), Tatang Hernas Soerawidjaja (2), - Subagjo (3), Tirto Prakoso (4)
(1) Chemical Engineering Universitas Sriwijaya
(2) Chemical Engineering Department, Institute Technology of Bandung
(3) Chemical Engineering Department, Institute Technology of Bandung
(4) Chemical Engineering Department, Institute Technology of Bandung
Fulltext View | Download
How to cite (IJASEIT) :
Hadiah, Fitri, et al. “Low Temperature Catalytic-Transfer Hydrogenation of Candlenut Oil”. International Journal on Advanced Science, Engineering and Information Technology, vol. 7, no. 3, June 2017, pp. 843-9, doi:10.18517/ijaseit.7.3.2216.
Fatty acids containing more than one double bond (polyunsaturated fatty acids) indicated by high iodine value (more than 120 g I2/100 g oil) are prone either to oxidative degradation or thermal degradation leading to the appearance of undesirable compounds or to thermal oligo-/polymerization causing gum formation. Therefore, polyunsaturated bonds in the fatty acid chains should be hydrogenated into monounsaturated ones. The conventional method using hydrogen (direct hydrogenation) at relatively high temperature and pressure with the aid of nickel as catalyst, which prone to explosion due to the presence of free gaseous hydrogen at high temperature and pressure. Catalytic transfer-hydrogenation (CTH) therefore is proposed as a promising alternative method, enabling CTH at room condition without the presence of free hydrogen. This research is focused to explore effects of temperature and reaction time to iodine value reduction on CTH of candlenut oil, including kinetics of its methyl ester. The hydrogenation utilizes Ag-Ni/silica 150 í… as catalyst and potassium formate (6M) as hydrogen donor. Three reaction temperatures were selected (40oC, 60oC and 78oC), where each reactions were performed for 4, 8, 12 and 16 hours. Hydrogenation was performed in batch reactor using isopropyl alcohol as solvent. Results showed that iodine values decreased with the increase of temperature and longer reaction time. The iodine value was still decreasing at 16 hours reaction time, indicating the possibility of longer reaction time. However, at 16 hours time, the iodine value yield has been within biodiesel standard range (Indonesian National Standard). The hydrogenation was first order reaction towards methyl ester double bonds concentration. Ko and E for candlenut methyl ester were 163.15/hour and 25.26 kJ/mol.
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).