Random Forest Weighting based Feature Selection for C4.5 Algorithm on Wart Treatment Selection Method

Handoyo Widi Nugroho (1), Teguh Bharata Adji (2), Noor Akhmad Setiawan (3)
(1) Universitas Gadjah Mada
(2) Universitas Gadjah Mada
(3) Universitas Gadjah Mada
Fulltext View | Download
How to cite (IJASEIT) :
Nugroho, Handoyo Widi, et al. “Random Forest Weighting Based Feature Selection for C4.5 Algorithm on Wart Treatment Selection Method”. International Journal on Advanced Science, Engineering and Information Technology, vol. 8, no. 5, Oct. 2018, pp. 1858-63, doi:10.18517/ijaseit.8.5.6504.
Research in the field of health, especially treatment of wart disease has been widely practiced. One of the research topics related to the treatment of wart disease is in order to provide the most appropriate treatment method recommendations. Treatment methods are widely used by doctors for treatment of patients with wart disease that is the method of cryotherapy and immunotherapy. Previous research has been done on  cryotherapy and immunotherapy datasets which resulted in two different prediction methods, but the accuracy level has not been satisfactory. In this study, two datasets are combined to produce a single prediction method. The method uses C4.5 algorithm combined with  Random Forest Feature Weighting (C4.5+RFFW) used to select the relevant features to improve accuracy. Experimental results show that the proposed method can improve performance with accuracy and informedness are 87.22% and 71.24%, respectively. These results further facilitate physicians in determining treatment methods for patients with a single predictive method and better-predicted performance.

L. Verma, S. Srivastava, and P. C. Negi, “A Hybrid Data Mining Model to Predict Coronary Artery Disease Cases Using Non-Invasive Clinical Data,” J. Med. Syst., vol. 40, no. 7, 2016.

C. S. Tucker, I. Behoora, H. B. Nembhard, M. Lewis, N. W. Sterling, and X. Huang, “Machine learning classification of medication adherence in patients with movement disorders using non-wearable sensors,” Comput. Biol. Med., vol. 66, pp. 120-134, 2015.

N. Memarian, S. Kim, S. Dewar, J. Engel, and R. J. Staba, “Multimodal data and machine learning for surgery outcome prediction in complicated cases of mesial temporal lobe epilepsy,” Comput. Biol. Med., vol. 64, pp. 67-78, 2015.

H. Mirzaalian, T. K. Lee, and G. Hamarneh, “Skin lesion tracking using structured graphical models,” Med. Image Anal., vol. 27, pp. 84-92, 2016.

V. K. Shrivastava, N. D. Londhe, R. S. Sonawane, and J. S. Suri, “Exploring the color feature power for psoriasis risk stratification and classification: A data mining paradigm,” Comput. Biol. Med., vol. 65, pp. 54-68, 2015.

D. M. Farid, L. Zhang, C. M. Rahman, M. A. Hossain, and R. Strachan, “Hybrid decision tree and naí¯ve Bayes classifiers for multi-class classification tasks,” Expert Syst. Appl., vol. 41, no. 4 PART 2, pp. 1937-1946, 2014.

F. Khozeimeh, R. Alizadehsani, M. Roshanzamir, A. Khosravi, P. Layegh, and S. Nahavandi, “An expert system for selecting wart treatment method,” Comput. Biol. Med., vol. 81, no. August 2016, pp. 167-175, 2017.

F. Khozeimeh et al., “Intralesional immunotherapy compared to cryotherapy in the treatment of warts,” Int. J. Dermatol., vol. 56, no. 4, pp. 474-478, 2017.

C. Barbieri et al., “A new machine learning approach for predicting the response to anemia treatment in a large cohort of End Stage Renal Disease patients undergoing dialysis,” Comput. Biol. Med., vol. 61, pp. 56-61, 2015.

A. J. Masino, R. W. Grundmeier, J. W. Pennington, J. A. Germiller, and E. Bryan Crenshaw, “Temporal bone radiology report classification using open source machine learning and natural langue processing libraries,” BMC Med. Inform. Decis. Mak., vol. 16, no. 1, pp. 1-10, 2016.

J. Arevalo, F. A. Gonzí¡lez, R. Ramos-Pollí¡n, J. L. Oliveira, and M. A. Guevara Lopez, “Representation learning for mammography mass lesion classification with convolutional neural networks,” Comput. Methods Programs Biomed., vol. 127, pp. 248-257, 2016.

C. Bergmeir and M. Ben, “frbs : Fuzzy Rule-Based Systems for Classification,” J. Stat. Softw., vol. 65, no. 6, pp. 1-30, 2015.

A. Wijaya and A. Bisri, “Hybrid decision tree and logistic regression classifier for email spam detection,” Proc. 2016 8th Int. Conf. Inf. Technol. Electr. Eng. Empower. Technol. Better Futur. ICITEE 2016, pp. 5-8, 2017.

J. Ross, Q. Morgan, and K. Publishers, “Book Review : C4 . 5 : Programs for Machine Learning,” vol. 240, pp. 235-240, 1994.

J. Ali, R. Khan, N. Ahmad, and I. Maqsood, “Random forests and decision trees,” IJCSI Int. J. Comput. Sci. Issues, vol. 9, no. 5, pp. 272-278, 2012.

E. Vigneau, P. Courcoux, R. Symoneaux, L. Guí©rin, and A. Villií¨re, “Random forests: A machine learning methodology to highlight the volatile organic compounds involved in olfactory perception,” Food Qual. Prefer., vol. 68, no. February, pp. 135-145, 2018.

N. V. Chawla, “C4. 5 and imbalanced data sets: investigating the effect of sampling method, probabilistic estimate, and decision tree structure,” Proc. Int. Conf. Mach. Learn. Work. Learn. from Imbalanced Data Set II, 2003.

H. K. Sok, M. P. L. Ooi, Y. C. Kuang, and S. Demidenko, “Multivariate alternating decision trees,” Pattern Recognit., vol. 50, pp. 195-209, 2016.

J. R. Taylor, An Introduction to Error Analysis, Second. Clifornia: University Science Books, 1999.

D. M. W. Powers, “Evaluation: From Precision, Recall and F-Measure To Roc, Infor

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).