GNSS Accuracy Analysis for Efficiency of Ground Control Point (GCP) Measurement

- Khomsin (1), Ira Mutiara Anjasmara (2), Rizky Romadhon (3)
(1) Department of Geomatics Engineering, Institut Teknologi Sepuluh Nopember (ITS), Surabaya, 60111, Indonesia
(2) Department of Geomatics Engineering, Institut Teknologi Sepuluh Nopember (ITS), Surabaya, 60111, Indonesia
(3) Department of Geomatics Engineering, Institut Teknologi Sepuluh Nopember (ITS), Surabaya, 60111, Indonesia
Fulltext View | Download
How to cite (IJASEIT) :
Khomsin, -, et al. “GNSS Accuracy Analysis for Efficiency of Ground Control Point (GCP) Measurement”. International Journal on Advanced Science, Engineering and Information Technology, vol. 10, no. 2, Mar. 2020, pp. 501-6, doi:10.18517/ijaseit.10.2.7908.
Nowadays, the Global Navigation Satellite System (GNSS) has a significant role in the field of surveying and mapping, especially in determining the coordinates of ground control points for rectifying aerial photography, satellite imagery and airborne lidar. Each of these rectification processes requires a different coordinate accuracy from 5 to 20 cm. This research will conduct GNSS measurement with radial method and observation length to see how far the required accuracy will be fulfilled. This research examined ten Ground Control Points (GCPs) using the GNSS receiver in Surabaya. Each GCP was observed for 2 hours with 15” epoch and then they were processed with an interval of 15 minutes such as 15’, 30’, 45’, 60’, 75’, 90’, 105’ and 120’ with the radial method. In general, the results showed that the longer the GNSS observation the more accurate coordinates from 0.923 m (15 minutes) to 0.011 m (120 minutes) will be achieved. Measurement of GCPs for aerial photogrammetry, High-Resolution Satellite Image (HRSI), and airborne LIDAR needs 15’ observation both of radial and network method for less than or equal 10 km of baseline. For 10 - 20 km, the radial method needs 90’ observation for photogrammetry, 75’ observation for HRSI, 45’ GCPs observation of airborne LIDAR, but for network methods need 45’ observation for photo and HRSI and 30’ observation for Airborne LIDAR. 

J. Bakara. Perkembangan Sistem Satelit Navigasi Global dan Aplikasinya. Berita Dirgantara. vol. 12. pp. 38-47. 2011.

Novatel. An Introduction to GNSS. GPS, GLONASS, BeiDou and other Global Navigation Satellite System. Second Edition. Novatel Inc. 2015.

H. Z. Abidin. Penentuan Posisi GPS dan Aplikasinya. Jakarta: PT. Pradnya Paramita. 2000.

D. Prasetyaningsih. Partisipasi Indonesia dalam Pembahasan Sistem Satelit Navigasi Global (Global Navigation Satellite System). Berita Dirgantara. vol. 13, p. 123. 2012.

A. W. Hasym. Menentukan Titik Kontrol Tanah (GCP) dengan Menggunakan Teknik GPS dan Citra Satelit untuk Perencanaan Perkotaan. 2009.

K. K. Pribadi. Pengukuran dan Pengamatan Ground Control Point (GCP) dalam Misi Pemotreatan Udara di Area Pembangkit Listrik Tenaga Air Ketenger Kabupaten Banyumas. Universitas Pendidikan Indonesia. Bandung. 2016.

BIG. Modul I-VI Sumber Data dan Peta Dasar. in Modul Validasi Peta Rencana Tata Ruang. BIG. 2016.

E.D. Kaplan. Understanding GPS. Principles and Applications. Second Edition. Artech Hous. Inc. 2006

B. S. Nasional. SNI 19-6724-2002 Jaring Kontrol Horizontal. BIG. 2002.

S. Romadhon. Analisis Ketelitian Data Pengukuran Menggunakan GPS denga Metode Diferensial Statik dalam Moda Jaring dan Radial. Forum Manajemen. vol. 5. p. 43.

M. E. Rahadi. M. Awaluddin and L. M. Sabri. Analisis Ketelitian Pengukuran Baseline Panjang GNSS Dengan Menggunakan Perangkat Lunak Gamit 10.4 dan Topcon Tools V7. Jurnal Geodesi Undip. vol. 2. p. 208. 2012.

El-Rabbany. Introduction to GPS The Global Positioning. Boston: Artech House. 2002

C.D. Ghilani, Adjustment Computation: Spatial Data Analysis Fifth Edition. New Jersey: John Wiley & Sons, Inc. 2010

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).