Electrical Conductivity Improvement of Polyvinyl Alcohol Nanofiber by Solvent Vapour Treatment

- Chotimah (1), Aditya Rianjanu (2), Bimo Winardianto (3), Misbachul Munir (4), Indriana Kartini (5), Kuwat Triyana (6)
(1) Universitas Gadjah Mada
(2) Universitas Gadjah Mada
(3) Universitas Gadjah Mada
(4) Universitas Gadjah Mada
(5) Universitas Gadjah Mada
(6) Universitas Gadjah Mada
Fulltext View | Download
How to cite (IJASEIT) :
Chotimah, -, et al. “Electrical Conductivity Improvement of Polyvinyl Alcohol Nanofiber by Solvent Vapour Treatment”. International Journal on Advanced Science, Engineering and Information Technology, vol. 6, no. 5, Oct. 2016, pp. 675-81, doi:10.18517/ijaseit.6.5.1055.
The electrical conductivity of polyvinyl alcohol (PVA) electrospun nanofibers is naturally low. For an electrical device application, it requires high enough conductivity. The objective of this study is to improve the electrical conductivity of electrospun PVA nanofibers with and without poly (3,4-ethylenedioxytriophene): polystyrene sulfonate (PEDOT:PSS) by exposure polar solvent of dimethyl sulfoxide (DMSO). For this purpose, the nanofibers were deposited on a substrate with patterned electrodes. The distance between two electrodes is 2 mm. The sheet resistance of the PVA nanofibers was measured by using two-point probe connected to a source measurement unit of Keithley SMU-2400.  As a result, the conductivity of PVA electrospun nanofibers increases from 0.03 μS/cm to 1.20 μS/cm by increasing the PVA concentration from 8 to 10 wt%. More significant improvement is also achieved by mixing PVA and PEDOT:PSS to be 110 μS/cm after being exposure DMSO. This improvement has been confirmed using the scanning electron microscopy (SEM) images, where a  solvent-induced fusion occurs at the nanofiber junction points after DMSO treatment. The stability of electrical conductivity, however, of electrospun PVA nanofibers is better than that of electrospun PVA/PEDOT:PSS nanofibers after exposure DMSO

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).