Evaluation of Backpropagation Neural Network Models for Early Prediction of Student’s Graduation in XYZ University
How to cite (IJASEIT) :
S. Haryati, A. Sudarsono, and E. (2015) Suryana, “Implementasi Data Mining untuk Memprediksi Masa Studi Mahasiswa Menggunakan Algoritma C4.5,” J. Media Infotama, vol. 11, no. 2, pp. 130-138, 2015.
V. Riyanto, A. Hamid and Ridwansyah, “Prediction of Student Graduation Time Using The Best Algorithm” IJAIDM Indonesian Journal of Artificial Intelligence and Data Mining., vol. 2, no. 1, pp. 1-9, 2019.
A. Nurhuda and D. Rosita, “Prediction Student Graduation on Time Using Artificial Neural Network on Data Mining Students STMIK Widya Cipta Dharma Samarinda,” pp. 86-89, 2017.
A. S. Kurniawansyah, “Implementasi Metode Artificial Hasil Ujian Kompetensi Kebidanan,” J. Pseudocode, vol. V, no. 1, 2018.
S. Asthana, D. Goyal, and A. Pandit, “Analysis on Multiple Hidden Layer Complexity of BPNN,” Int. J. Appl. Eng. Res., vol. 12, no. 14, pp. 4723-4728, 2017.
C. Ahmad, “Implementasi Neural Network Untuk Memprediksi Jumlah Penderita Tuberculosis,” Emit. J. Tek. Elektro, vol. 16, no. 01, pp. 43-50, 2015.
E. Priyanti, “Implementasi Neural Network Pada Prediksi Pendapatan Rumah Tangga,” Swabumi, vol. 6, no. 1, pp. 18-26, 2018.
Efrem Yohannes Obsie and S. A. Adem, “Prediction of Student Academic Performance using Neural Network, Linear Regression and Support Vector Regression: A Case Study,” Int. J. Comput. Appl., vol. 180, no. 40, pp. 39-47, 2018.
MA. Umar, “Student Academic Performance Prediction using Artificial Neural Networks: A Case Study,” International Journal of Computer Applications., vol. 178, no. 48, pp. 24-29, 2019.
Y. T. Samuel, J. J. Hutapea, and B. Jonathan, “Predicting the timeliness of student graduation using decision tree c4.5 algorithm in universitas advent Indonesia,” Proc. 2019 Int. Conf. Inf. Commun. Technol. Syst. ICTS 2019, pp. 276-280, 2019.
S. Wibowo, R. Andreswari, and M. A. Hasibuan, “Analysis and design of decision support system dashboard for predicting student graduation time,” Int. Conf. Electr. Eng. Comput. Sci. Informatics, vol. 2018-Octob, pp. 684-689, 2018.
S. Agatonovic-Kustrin and R. Beresford, “Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research,” J. Pharm. Biomed. Anal., vol. 22, no. 5, pp. 717-727, 2000.
G. Florin, Data Mining:Concepts, Models and Techniques. Romania: Springer, 2011.
D. Puspitaningrum, Pengantar Jaringan Syaraf Tiruan. Yogyakarta: Andi, 2006.
A. Hasim, “Prakiraan Beban Listrik Kota Pontianak Dengan Jaringan Syaraf Tiruan (Artificial Neural Network),” Cent. Libr. Bogor Agric. Univ., p. 1, 2008.
M. T. Hagan, Neural Network Design. USA: PWS Publishing Co, 1996.
F. L, Fundamentals of Neural Networks Architectures, Algorithms and Applications. London: Prantice-Hall, Inc, 1994.
W. J. Stevenson and S. Chee Chuong, Manajemen Operasi Perspektif Asia. Jakarta: Salemba Empat, 2014.
S. B, Data Mining: Teknik Pemanfaatan Data untuk Keperluan Bisnis. Yogyakarta: Graha Ilmu, 2007.
J. Han, J, Kamber, M, & Pei, Data Mining: Concept and Techniques, Second Edition. Waltham: Morgan Kaufmann Publishers, 2006.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).