Multidimensional Indicator for Data Quality Assessment in Wireless Sensor Networks: Challenges and Opportunities

Nurul Aqilah Zamri (1), M. Izham Jaya (2), Siti Salwani Yaakob (3), Hidra Amnur (4), Shahreen Kasim (5)
(1) Faculty of Computing, Universiti Malaysia Pahang Al-Sultan Abdullah, Pekan, Malaysia
(2) Faculty of Computing, Universiti Malaysia Pahang Al-Sultan Abdullah, Pekan, Malaysia
(3) Faculty of Computing, Universiti Malaysia Pahang Al-Sultan Abdullah, Pekan, Malaysia
(4) Department of Information Technology, Politeknik Negeri Padang, Padang, Indonesia
(5) Soft Computing and Data Mining Centre (SMC), Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, Parit Raja, Johor, Malaysia
Fulltext View | Download
How to cite (IJASEIT) :
[1]
N. A. Zamri, M. I. Jaya, S. S. Yaakob, H. Amnur, and S. Kasim, “Multidimensional Indicator for Data Quality Assessment in Wireless Sensor Networks: Challenges and Opportunities”, Int. J. Adv. Sci. Eng. Inf. Technol., vol. 14, no. 5, pp. 1663–1672, Oct. 2024.
Wireless Sensor Networks (WSN) are equipped with numerous sensors that generate vast quantities of data, essential for operational efficiency and informed decision-making. However, the value of this data is contingent upon its suitability for the specific applications it serves. A significant challenge in WSNs is the selection of appropriate data quality dimensions and metrics necessary to construct robust Data Quality Indicators (DQI) and comprehensively assess data quality in various contexts. This systematic literature review seeks to identify the key data quality dimensions and the corresponding measurement metrics within WSNs, while exploring the use of multi-dimensional data quality criteria in developing DQI. A thorough search of SCOPUS and Web of Science databases yielded 475 potential research articles, from which 64 primary studies were selected for in-depth analysis. The findings highlight four key data quality dimensions in WSN: accuracy, timeliness, completeness, and consistency. However, choosing measurement metrics for each dimension requires an in-depth understanding of the data's context. Various approaches for obtaining DQI in WSN research were identified, including weighted linear average models and application-specific contextual information. Effective DQI incorporates weights to each dimension, reflecting the priorities of specific data users, and leverages contextual information pertinent to the sensors’ data. It is crucial to evaluate whether the data collected by WSNs meets established quality standards, a key aspect of WSN operation. These insights will aid in developing more robust and reliable WSNs, ensuring the provision of high-quality data essential for effective operation and decision-making.

A. Karkouch, H. Mousannif, H. Al Moatassime, and T. Noel, “Data quality in internet of things: A state-of-the-art survey,” Journal of Network and Computer Applications, vol. 73, pp. 57–81, Sep. 2016, doi: 10.1016/j.jnca.2016.08.002.

H. Y. Teh, A. W. Kempa-Liehr, and K. I.-K. Wang, “Sensor data quality: a systematic review,” Journal of Big Data, vol. 7, no. 1, Feb. 2020, doi: 10.1186/s40537-020-0285-1.

J. H. Buelvas, D. Múnera, and N. Gaviria, “DQ-MAN: A tool for multi-dimensional data quality analysis in IoT-based air quality monitoring systems,” Internet of Things, vol. 22, p. 100769, Jul. 2023, doi: 10.1016/j.iot.2023.100769.

R. Perez-Castillo et al., “DAQUA-MASS: An ISO 8000-61 Based Data Quality Management Methodology for Sensor Data,” Sensors, vol. 18, no. 9, p. 3105, Sep. 2018, doi: 10.3390/s18093105.

J. Buelvas, D. Múnera, D. P. Tobón V., J. Aguirre, and N. Gaviria, “Data Quality in IoT-Based Air Quality Monitoring Systems: a Systematic Mapping Study,” Water, Air, & Soil Pollution, vol. 234, no. 4, Apr. 2023, doi: 10.1007/s11270-023-06127-9.

R. Y. Wang and D. M. Strong, “Beyond Accuracy: What Data Quality Means to Data Consumers,” Journal of Management Information Systems, vol. 12, no. 4, pp. 5–33, Mar. 1996, doi:10.1080/07421222.1996.11518099.

R. Y. Wang, "A product perspective on total data quality management", Commun. ACM, vol. 41, no. 2, pp. 58-66, 1998.

D. Kuemper, T. Iggena, R. Toenjes, and E. Pulvermueller, “Valid.IoT,” Proceedings of the 9th ACM Multimedia Systems Conference, Jun. 2018, doi: 10.1145/3204949.3204972.

M. Ahmed, C. Taconet, M. Ould, S. Chabridon, and A. Bouzeghoub, “IoT Data Qualification for a Logistic Chain Traceability Smart Contract,” Sensors, vol. 21, no. 6, p. 2239, Mar. 2021, doi:10.3390/s21062239.

B. Kitchenham, ‘‘Procedures for performing systematic reviews,’ Softw. Eng. Group; Nat. ICT Aust., Keele; Eversleigh, Keele Univ., Keele, U.K., Tech. Rep. TR/SE-0401; NICTA Tech. Rep. 0400011T.1, 2004.

C. Liu, P. Nitschke, S. P. Williams, and D. Zowghi, “Data quality and the Internet of Things,” Computing, vol. 102, no. 2, pp. 573–599, Jul. 2019, doi: 10.1007/s00607-019-00746-z.

H. Cheng, D. Feng, X. Shi, and C. Chen, “Data quality analysis and cleaning strategy for wireless sensor networks,” EURASIP Journal on Wireless Communications and Networking, vol. 2018, no. 1, Mar. 2018, doi: 10.1186/s13638-018-1069-6.

S. Sicari, C. Cappiello, F. De Pellegrini, D. Miorandi, and A. Coen-Porisini, “A security-and quality-aware system architecture for Internet of Things,” Information Systems Frontiers, vol. 18, no. 4, pp. 665–677, Nov. 2014, doi: 10.1007/s10796-014-9538-x.

J. Byabazaire, G. O’Hare, and D. Delaney, “Data Quality and Trust : A Perception from Shared Data in IoT,” 2020 IEEE International Conference on Communications Workshops (ICC Workshops), Jun. 2020, doi: 10.1109/iccworkshops49005.2020.9145071.

J. Guo and F. Liu, “Automatic Data Quality Control of Observations in Wireless Sensor Network,” IEEE Geoscience and Remote Sensing Letters, vol. 12, no. 4, pp. 716–720, Apr. 2015, doi:10.1109/lgrs.2014.2359685.

L. Zhang, D. Jeong, and S. Lee, “Data Quality Management in the Internet of Things,” Sensors, vol. 21, no. 17, p. 5834, Aug. 2021, doi:10.3390/s21175834.

G. D’Aniello, M. Gaeta, and T.-P. Hong, “Effective Quality-Aware Sensor Data Management,” IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 2, no. 1, pp. 65–77, Feb. 2018, doi:10.1109/tetci.2017.2782800.

J. Byabazaire, G. M. P. O’Hare, R. Collier, and D. Delaney, “IoT Data Quality Assessment Framework Using Adaptive Weighted Estimation Fusion,” Sensors, vol. 23, no. 13, p. 5993, Jun. 2023, doi:10.3390/s23135993.

K. Fizza, P. P. Jayaraman, A. Banerjee, D. Georgakopoulos, and R. Ranjan, “Evaluating Sensor Data Quality in Internet of Things Smart Agriculture Applications,” IEEE Micro, vol. 42, no. 1, pp. 51–60, Jan. 2022, doi: 10.1109/mm.2021.3137401.

G.-O. Meritxell, B. Sierra, and S. Ferreiro, “On the Evaluation, Management and Improvement of Data Quality in Streaming Time Series,” IEEE Access, vol. 10, pp. 81458–81475, 2022, doi:10.1109/access.2022.3195338.

L. Ehrlinger and W. Wöß, “A Survey of Data Quality Measurement and Monitoring Tools,” Frontiers in Big Data, vol. 5, Mar. 2022, doi:10.3389/fdata.2022.850611.

A. Goknil et al., “A Systematic Review of Data Quality in CPS and IoT for Industry 4.0,” ACM Computing Surveys, vol. 55, no. 14s, pp. 1–38, Jul. 2023, doi: 10.1145/3593043.

A. Sgora and P. Chatzimisios, “Defining and Assessing Quality in IoT Environments: A Survey,” IoT, vol. 3, no. 4, pp. 493–506, Dec. 2022, doi: 10.3390/iot3040026.

K. Kolomvatsos, “A distributed, proactive intelligent scheme for securing quality in large scale data processing,” Computing, vol. 101, no. 11, pp. 1687–1710, Dec. 2018, doi: 10.1007/s00607-018-0683-9.

M. Kara, O. Lamouchi, and A. Ramdane-Cherif, “A Quality Model for the Evaluation AAL Systems,” Procedia Computer Science, vol. 113, pp. 392–399, 2017, doi: 10.1016/j.procs.2017.08.354.

S. Fagúndez, J. Fleitas, and A. Marotta, “Data Stream Quality Evaluation for the Generation of Alarms in the Health Domain,” Journal of Intelligent Systems, vol. 24, no. 3, pp. 361–369, Aug. 2015, doi: 10.1515/jisys-2014-0166.

R. Abo and A. Even, “Sampling density and frequency as data quality determinants in smart grids,” 2017 Smart City Symposium Prague (SCSP), vol. 62, pp. 1–6, May 2017, doi: 10.1109/scsp.2017.7973349.

S. Sicari, A. Rizzardi, C. Cappiello, D. Miorandi, and A. Coen-Porisini, “Toward Data Governance in the Internet of Things,” New Advances in the Internet of Things, pp. 59–74, Jun. 2017, doi: 10.1007/978-3-319-58190-3_4.

C. C. G. Rodríguez and S. Servigne, “Managing Sensor Data Uncertainty,” International Journal of Agricultural and Environmental Information Systems, vol. 4, no. 1, pp. 35–54, Jan. 2013, doi: 10.4018/jaeis.2013010103.

L. Erazo-Garzon, J. Erraez, L. Illescas-Peña, and P. Cedillo, “A Data Quality Model for AAL Systems,” Information and Communication Technologies of Ecuador (TIC.EC), pp. 137–152, Nov. 2019, doi:10.1007/978-3-030-35740-5_10.

C. C. Castello, J. Sanyal, J. Rossiter, Z. Hensley and J. R. New, "Sensor data management validation correction and provenance for building technologies", ASHRAE Transactions, vol. 120, pp. 370-382, 2014.

J. Liono, P. P. Jayaraman, A. K. Qin, T. Nguyen, and F. D. Salim, “QDaS: Quality driven data summarisation for effective storage management in Internet of Things,” Journal of Parallel and Distributed Computing, vol. 127, pp. 196–208, May 2019, doi:10.1016/j.jpdc.2018.03.013.

G. Hendrik Haan, J. van Hillegersberg, E. de Jong, and K. Sikkel, “Adoption of Wireless Sensors in Supply Chains: A Process View Analysis of a Pharmaceutical Cold Chain,” Journal of theoretical and applied electronic commerce research, vol. 8, no. 2, pp. 21–22, 2013, doi: 10.4067/s0718-18762013000200011.

S. Sicari, A. Rizzardi, D. Miorandi, C. Cappiello, and A. Coen-Porisini, “A secure and quality-aware prototypical architecture for the Internet of Things,” Information Systems, vol. 58, pp. 43–55, Jun. 2016, doi:10.1016/j.is.2016.02.003.

L. Pravato and T. E. Doyle, "Iot for remote wireless electrophysiological monitoring: proof of concept", Conference of the Centre for Advanced Studies on Collaborative Research, 2017.

M. Bharti, S. Saxena, and R. Kumar, “Intelligent Resource Inquisition Framework on Internet-of-Things,” Computers & Electrical Engineering, vol. 58, pp. 265–281, Feb. 2017, doi:10.1016/j.compeleceng.2016.12.023.

A. Leonardi, H. Ziekow, M. Strohbach, and P. Kikiras, “Dealing with Data Quality in Smart Home Environments—Lessons Learned from a Smart Grid Pilot,” Journal of Sensor and Actuator Networks, vol. 5, no. 1, p. 5, Mar. 2016, doi: 10.3390/jsan5010005.

M. L. Lopes De Faria, C. E. Cugnasca, and J. R. A. Amazonas, “Insights Into IoT Data and an Innovative DWT-Based Technique to Denoise Sensor Signals,” IEEE Sensors Journal, vol. 18, no. 1, pp. 237–247, Jan. 2018, doi: 10.1109/jsen.2017.2767383.

J. E. Siegel, S. Kumar, and S. E. Sarma, “The Future Internet of Things: Secure, Efficient, and Model-Based,” IEEE Internet of Things Journal, vol. 5, no. 4, pp. 2386–2398, Aug. 2018, doi:10.1109/jiot.2017.2755620.

A. Karkouch, H. Mousannif, H. A. Moatassime, and T. Noel, “A model-driven architecture-based data quality management framework for the internet of Things,” 2016 2nd International Conference on Cloud Computing Technologies and Applications (CloudTech), vol. 3, pp. 252–259, May 2016, doi: 10.1109/cloudtech.2016.7847707.

H. B. Sta, “Quality and the efficiency of data in ‘Smart-Cities,’” Future Generation Computer Systems, vol. 74, pp. 409–416, Sep. 2017, doi: 10.1016/j.future.2016.12.021.

N. Nesa, T. Ghosh, and I. Banerjee, “Outlier detection in sensed data using statistical learning models for IoT,” 2018 IEEE Wireless Communications and Networking Conference (WCNC), vol. 29, pp. 1–6, Apr. 2018, doi: 10.1109/wcnc.2018.8376988.

N. A. M. Alduais, J. Abdullah, A. Jamil, L. Audah, and R. Alias, “Sensor node data validation techniques for realtime IoT/WSN application,” 2017 14th International Multi-Conference on Systems, Signals & Devices (SSD), vol. 47, pp. 760–765, Mar. 2017, doi:10.1109/ssd.2017.8166984.

S. Gill and B. Lee, “A Framework for Distributed Cleaning of Data Streams,” Procedia Computer Science, vol. 52, pp. 1186–1191, 2015, doi: 10.1016/j.procs.2015.05.156.

J. Borges Neto, T. Silva, R. Assunção, R. Mini, and A. Loureiro, “Sensing in the Collaborative Internet of Things,” Sensors, vol. 15, no. 3, pp. 6607–6632, Mar. 2015, doi: 10.3390/s150306607.

A. Kos, S. Tomažič, and A. Umek, “Evaluation of Smartphone Inertial Sensor Performance for Cross-Platform Mobile Applications,” Sensors, vol. 16, no. 4, p. 477, Apr. 2016, doi: 10.3390/s16040477.

P. Spachos, L. Song, and K. N. Plataniotis, “Wireless noise prevention for mobile agents in smart home,” 2017 IEEE International Conference on Communications (ICC), pp. 1–6, May 2017, doi:10.1109/icc.2017.7996993.

Z. C. M. Candra, H.-L. Truong, and S. Dustdar, “On Monitoring Cyber-Physical-Social Systems,” 2016 IEEE World Congress on Services (SERVICES), pp. 56–63, Jun. 2016, doi:10.1109/services.2016.14.

B. Jang, S. Park, J. Lee, and S.-G. Hahn, “Three Hierarchical Levels of Big-Data Market Model Over Multiple Data Sources for Internet of Things,” IEEE Access, vol. 6, pp. 31269–31280, 2018, doi:10.1109/access.2018.2845105.

A. Kothari, V. Boddula, L. Ramaswamy, and N. Abolhassani, “DQS-Cloud: A Data Quality-Aware Autonomic Cloud for Sensor Services,” Proceedings of the 10th IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing, 2014, doi: 10.4108/icst.collaboratecom.2014.257475.

F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia-Segui, and T. Watteyne, “Understanding the Limits of LoRaWAN,” IEEE Communications Magazine, vol. 55, no. 9, pp. 34–40, 2017, doi:10.1109/mcom.2017.1600613.

R. A. Atmoko, R. Riantini, and M. K. Hasin, “IoT real time data acquisition using MQTT protocol,” Journal of Physics: Conference Series, vol. 853, p. 012003, May 2017, doi: 10.1088/1742-6596/853/1/012003.

M. Gupta, C. Holloway, B. M. Heravi, and S. Hailes, “A comparison between smartphone sensors and bespoke sensor devices for wheelchair accessibility studies,” 2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), vol. 65, pp. 1–6, Apr. 2015, doi:10.1109/issnip.2015.7106900.

F. H. Bijarbooneh, W. Du, E. C.-H. Ngai, X. Fu, and J. Liu, “Cloud-Assisted Data Fusion and Sensor Selection for Internet of Things,” IEEE Internet of Things Journal, vol. 3, no. 3, pp. 257–268, Jun. 2016, doi: 10.1109/jiot.2015.2502182.

B. Fekade, T. Maksymyuk, M. Kyryk, and M. Jo, “Probabilistic Recovery of Incomplete Sensed Data in IoT,” IEEE Internet of Things Journal, vol. 5, no. 4, pp. 2282–2292, Aug. 2018, doi:10.1109/jiot.2017.2730360.

X. Yan, W. Xiong, L. Hu, F. Wang, and K. Zhao, “Missing Value Imputation Based on Gaussian Mixture Model for the Internet of Things,” Mathematical Problems in Engineering, vol. 2015, pp. 1–8, 2015, doi: 10.1155/2015/548605.

I. P. S. Mary and L. Arockiam, “Imputing the missing data in IoT based on the spatial and temporal correlation,” 2017 IEEE International Conference on Current Trends in Advanced Computing (ICCTAC), pp. 1–4, Mar. 2017, doi: 10.1109/icctac.2017.8249990.

P. Priller, A. Aldrian, and T. Ebner, “Case study: From legacy to connectivity migrating industrial devices into the world of smart services,” Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA), vol. 1, pp. 1–8, Sep. 2014, doi:10.1109/etfa.2014.7005136.

Y. Zhang, C. Szabo, and Q. Z. Sheng, “Cleaning Environmental Sensing Data Streams Based on Individual Sensor Reliability,” Web Information Systems Engineering – WISE 2014, pp. 405–414, 2014, doi: 10.1007/978-3-319-11746-1_29.

Y. Ma, J. Jin, Q. Huang, and F. Dan, “Data Preprocessing of Agricultural IoT Based on Time Series Analysis,” Intelligent Computing Theories and Application, pp. 219–230, 2018, doi:10.1007/978-3-319-95930-6_21.

A. S. Dmitriev, E. V. Efremova, and M. Yu. Gerasimov, “Multimedia sensor networks based on ultrawideband chaotic radio pulses,” Journal of Communications Technology and Electronics, vol. 60, no. 4, pp. 393–401, Apr. 2015, doi: 10.1134/s1064226915040051.

R. Dong, L. J. Ratliff, A. A. Cárdenas, H. Ohlsson, and S. S. Sastry, “Quantifying the Utility--Privacy Tradeoff in the Internet of Things,” ACM Transactions on Cyber-Physical Systems, vol. 2, no. 2, pp. 1–28, Apr. 2018, doi: 10.1145/3185511.

Z. Huang, T. Xie, T. Zhu, J. Wang, and Q. Zhang, “Application-driven sensing data reconstruction and selection based on correlation mining and dynamic feedback,” 2016 IEEE International Conference on Big Data (Big Data), pp. 1322–1327, Dec. 2016, doi:10.1109/bigdata.2016.7840737.

D. Pal, V. Vanijja, C. Arpnikanondt, X. Zhang, and B. Papasratorn, “A Quantitative Approach for Evaluating the Quality of Experience of Smart-Wearables From the Quality of Data and Quality of Information: An End User Perspective,” IEEE Access, vol. 7, pp. 64266–64278, 2019, doi: 10.1109/access.2019.2917061.

M. Kohbalan, M. HasanAli, M. A. Ismail, C. W. Howe, M. S. Mohamad, S.Deris, “An Evaluation of Machine Learning Algorithms for Missing Values Imputation,” International Journal of Innovative Technology and Exploring Engineering, vol. 8, pp. 415-420 2019.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).