Face Recognition Application Based on Convolutional Neural Network for Searching Someone’s Photo on External Storage
How to cite (IJASEIT) :
Z. Wei et al., “AutoPrivacy: Automatic privacy protection and tagging suggestion for mobile social photo,” Comput. Secur., vol. 76, pp. 341-353, 2018, doi: https://doi.org/10.1016/j.cose.2017.12.002.
Y. Lei, Y. Chen, L. Iida, B. Chen, H. Su, and W. H. Hsu, “Photo Search by Face Positions and Facial Attributes on Touch Devices,” in Proceedings of the 19th ACM international conference on Multimedia, 2011, pp. 651-654.
D. Wang, C. Otto, and A. K. Jain, “Face Search at Scale,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1122-1136, 2017, doi: 10.1109/TPAMI.2016.2582166.
H. Kang and B. Shneideman, “Visualization Methods for Personal Photo Collections : Browsing and Searching in the PhotoFinder,” in IEEE International Conference on Multimedia and Expo (ICME), 2000, vol. 03, pp. 1539-1542.
M. Wang and W. Deng, “Deep face recognition: A survey,” Neurocomputing, vol. 429, pp. 215-244, 2021, doi: https://doi.org/10.1016/j.neucom.2020.10.081.
G. Guo and N. Zhang, “A survey on deep learning based face recognition,” Comput. Vis. Image Underst., vol. 189, p. 102805, 2019, doi: 10.1016/j.cviu.2019.102805.
I. Masi, Y. Wu, T. Hassner, and P. Natarajan, “Deep Face Recognition: A Survey,” Proc. - 31st Conf. Graph. Patterns Images, SIBGRAPI 2018, pp. 471-478, 2018, doi: 10.1109/SIBGRAPI.2018.00067.
R. Jafri and H. R. Arabnia, “A survey of face recognition techniques,” J. Inf. Process. Syst., vol. 5, no. 2, pp. 41-68, 2009.
M. Wang and W. Deng, “Deep Face Recognition: A Survey,” CoRR, vol. abs/1804.0, 2018, doi: 10.1109/SIBGRAPI.2018.00067.
M. Lal, K. Kumar, R. H. Arain, A. Maitlo, S. A. Ruk, and H. Shaikh, “Study of Face Recognition Techniques: A survey,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 6, pp. 42-49, 2018, doi: 10.14569/IJACSA.2018.090606.
Q. Wang and G. Guo, “Benchmarking deep learning techniques for face recognition,” J. Vis. Commun. Image Represent., vol. 65, p. 102663, 2019, doi: 10.1016/j.jvcir.2019.102663.
Y. Taigman, M. A. Ranzato, T. Aviv, and M. Park, “DeepFace : Closing the Gap to Human-Level Performance in Face Verification,” 2014.
S. Z. Li and A. K. Jail, Handbook of Face Recognition. London: Springer, 2011.
M. P. Beham and S. M. M. Roomi, “A review of face recognition methods,” Int. J. Pattern Recognit. Artif. Intell., vol. 27, no. 4, pp. 13560051-135600535, 2013, doi: 10.1142/S0218001413560053.
S. Haykin, Neural Networks and Learning Machines Third Edition, vol. 3. New Jersey: Pearson Education, 2009.
A. Elmahmudi and H. Ugail, “Deep face recognition using imperfect facial data,” Futur. Gener. Comput. Syst., vol. 99, pp. 213-225, 2019, doi: 10.1016/j.future.2019.04.025.
H. Habibi, A. Elnaz, J. Heravi, P. Application, and T. Detection, Guide to Convolutional Neural Networks. Springer, 2017.
Y. Cai, Y. Lei, M. Yang, Z. You, and S. Shan, “A fast and robust 3D face recognition approach based on deeply learned face representation,” Neurocomputing, vol. 363, pp. 375-397, 2019, doi: 10.1016/j.neucom.2019.07.047.
N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human Detection,” 2005.
L. Boussaad and A. Boucetta, “Deep-learning based descriptors in application to aging problem in face recognition,” J. King Saud Univ. Comput. Inf. Sci., 2020, doi: 10.1016/j.jksuci.2020.10.002.
A. Geitgey, “Machine Learning is Fun! Part 4: Modern Face Recognition with Deep Learning,” Medium.com, 2016.
D. S. Trigueros, L. Meng, and M. Hartnett, “Face Recognition : From Traditional to Deep Learning Methods,” arXiv e-prints, p. arXiv:1811.00116, 2018.
F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet : A Unified Embedding for Face Recognition and Clustering,” 2015.
L. Shi, X. Wang, and Y. Shen, “Research on 3D face recognition method based on LBP and SVM,” Optik (Stuttg)., vol. 220, p. 165157, 2020, doi: https://doi.org/10.1016/j.ijleo.2020.165157.
D. E. King, “Dlib-ml : A Machine Learning Toolkit,” J. Mach. Learn. Res., vol. 10, pp. 1755-1758, 2009.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” CoRR, vol. abs/1512.0, 2015.
D. E. King, “dlib-models,” Github, 2018.
M. Junker, R. Hoch, and A. Dengel, “On the Evaluation of Document Analysis Components by Recall, Precision, and Accuracy,” Proc. Fifth Int. Conf. Doc. Anal. Recognition. ICDAR’99, pp. 713-716, 1999.
M. Taskiran, N. Kahraman, and C. E. Erdem, “Face recognition: Past, present and future (a review),” Digit. Signal Process. A Rev. J., vol. 106, p. 102809, 2020, doi: 10.1016/j.dsp.2020.102809.
L. Zhou, W. Li, Y. Du, B. Lei, and S. Liang, “Adaptive illumination-invariant face recognition via local nonlinear multi-layer contrast feature,” J. Vis. Commun. Image Represent., vol. 64, p. 102641, 2019, doi: 10.1016/j.jvcir.2019.102641.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).