High-Resolution Landslide Susceptibility Map Generation using Machine Learning (Case Study in Pacitan, Indonesia)
How to cite (IJASEIT) :
A. Arabameri, B. Pradhan, K. Rezaei, M. Sohrabi, and Z. Kalantari, “GIS-based landslide susceptibility mapping using numerical risk factor bivariate model and its ensemble with linear multivariate regression and boosted regression tree algorithms,” J. Mt. Sci., vol. 16, no. 3, pp. 595-618, 2019.
Y. Cui, D. Cheng, C. E. Choi, W. Jin, Y. Lei, and J. S. Kargel, “The cost of rapid and haphazard urbanization: lessons learned from the Freetown landslide disaster,” Landslides, no. March, pp. 1167-1176, 2019.
M. S. Rahman, B. Ahmed, and L. Di, “Landslide initiation and runout susceptibility modeling in the context of hill cutting and rapid urbanization: a combined approach of weights of evidence and spatial multi-criteria,” J. Mt. Sci., vol. 14, no. 10, pp. 1919-1937, 2017.
P. Aleotti and R. Chowdhury, “Landslide hazard assessment: summary review and new perspectives,” Bull. Eng. Geol. Environ., vol. 58, no. 1, pp. 21-44, 1999.
L.-J. Wang, M. Guo, K. Sawada, J. Lin, and J. Zhang, “Landslide susceptibility mapping in Mizunami City, Japan: A comparison between logistic regression, bivariate statistical analysis and multivariate adaptive regression spline models,” CATENA, vol. 135, pp. 271-282, 2015.
R. Fell, J. Corominas, C. Bonnard, L. Cascini, E. Leroi, and W. Z. Savage, “Guidelines for landslide susceptibility, hazard and risk zoning for land use planning,” Eng. Geol., vol. 102, no. 3, pp. 85-98, 2008.
S. Park and J. Kim, “Landslide susceptibility mapping based on random forest and boosted regression tree models, and a comparison of their performance,” Appl. Sci., vol. 9, no. 5, 2019.
H. Khan, M. Shafique, M. A. Khan, M. A. Bacha, S. U. Shah, and C. Calligaris, “Landslide susceptibility assessment using Frequency Ratio, a case study of northern Pakistan,” Egypt. J. Remote Sens. Sp. Sci., vol. 22, no. 1, pp. 11-24, 2019.
S. Razavizadeh, K. Solaimani, M. Massironi, and A. Kavian, “Mapping landslide susceptibility with frequency ratio, statistical index, and weights of evidence models: a case study in northern Iran,” Environ. Earth Sci., vol. 76, no. 14, p. 499, 2017.
S. Mandal and K. Mandal, “Bivariate statistical index for landslide susceptibility mapping in the Rorachu river basin of eastern Sikkim Himalaya, India,” Spat. Inf. Res., vol. 26, no. 1, pp. 59-75, 2018.
Z. Xie, G. Chen, X. Meng, Y. Zhang, L. Qiao, and L. Tan, “A comparative study of landslide susceptibility mapping using weight of evidence, logistic regression and support vector machine and evaluated by SBAS-InSAR monitoring: Zhouqu to Wudu segment in Bailong River Basin, China,” Environ. Earth Sci., vol. 76, no. 8, p. 313, 2017.
L. Lin, Q. Lin, and Y. Wang, “Landslide susceptibility mapping on a global scale using the method of logistic regression,” Nat. Hazards Earth Syst. Sci., vol. 17, no. 8, pp. 1411-1424, 2017.
B. Zeng, W. Xiang, J. Rohn, D. Ehret, and X. Chen, “Assessment of shallow landslide susceptibility using an artificial neural network in Enshi region, China,” Nat. Hazards Earth Syst. Sci. Discuss., no. 388, pp. 1-46, 2017.
D. Salcedo, O. P. Almeida, B. Morales, and T. Toulkeridis, “Landslide susceptibility mapping using fuzzy logic and multi-criteria evaluation techniques in the city of Quito, Ecuador,” Chinese J. Sensors Actuators, vol. 11, no. 11, pp. 45-55, 2018.
S. M. Fatemi Aghda, V. Bagheri, and M. Razifard, “Landslide Susceptibility Mapping Using Fuzzy Logic System and Its Influences on Mainlines in Lashgarak Region, Tehran, Iran,” Geotech. Geol. Eng., vol. 36, no. 2, pp. 915-937, 2018.
S. Lee, S. M. Hong, and H. S. Jung, “A support vector machine for landslide susceptibility mapping in Gangwon Province, Korea,” Sustain., vol. 9, no. 1, pp. 15-19, 2017.
J.-C. Kim, S. Lee, H.-S. Jung, and S. Lee, “Landslide susceptibility mapping using random forest and boosted tree models in Pyeong-Chang, Korea,” Geocarto Int., vol. 33, no. 9, pp. 1000-1015, Sep. 2018.
P. R. Kadavi, C.-W. Lee, and S. Lee, “Landslide-susceptibility mapping in Gangwon-do, South Korea, using logistic regression and decision tree models,” Environ. Earth Sci., vol. 78, no. 4, p. 116, 2019.
H. Hong et al., “Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China),” CATENA, vol. 163, pp. 399-413, 2018.
S. J. Park, C. W. Lee, S. Lee, and M. J. Lee, “Landslide susceptibility mapping and comparison using decision tree models: A case study of Jumunjin Area, Korea,” Remote Sens., vol. 10, no. 10, 2018.
BNPB, “Buku Saku Tanggap Tangkas Tangguh Menghadapi Bencana,” Badan Nas. Penanggulangan Bencana, p. 62, 2012.
R. Azgha and M. Mukminan, “Analysis of the influence of tropical cyclones on rainfall in Indonesia,” IOP Conf. Ser. Earth Environ. Sci., vol. 271, no. 1, 2019.
G. F. Wieczorek, “Preparing A Detailed Landslide-Inventory Map for Hazard Evaluation and Reduction.,” Bull. Assoc. Eng. Geol., vol. 21, no. 3, pp. 337-342, 1983.
F. Guzzetti, M. Cardinali, P. Reichenbach, and A. Carrara, “Comparing Landslide Maps: A Case Study in the Upper Tiber River Basin, Central Italy,” Environ. Manage., vol. 25, no. 3, pp. 247-263, 2000.
M. Alvioli, A. C. Mondini, F. Fiorucci, M. Cardinali, and I. Marchesini, “Topography-driven satellite imagery analysis for landslide mapping,” Geomatics, Nat. Hazards Risk, vol. 9, no. 1, pp. 544-567, 2018.
M. R. M. Salleh et al., “Geospatial approach for landslide activity assessment and mapping based on vegetation anomalies,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch., vol. 42, no. 4/W9, pp. 201-215, 2018.
N. Saleem, M. Enamul Huq, N. Y. D. Twumasi, A. Javed, and A. Sajjad, “Parameters derived from and/or used with digital elevation models (DEMs) for landslide susceptibility mapping and landslide risk assessment: A review,” ISPRS Int. J. Geo-Information, vol. 8, no. 12, 2019.
M. S. Alkhasawneh, U. K. Ngah, L. T. Tay, N. A. Mat Isa, and M. S. Al-batah, “Determination of Important Topographic Factors for Landslide Mapping Analysis Using MLP Network,” Sci. World J., vol. 2013, p. 415023, 2013.
M. Di Napoli, P. Marsiglia, D. Di Martire, M. Ramondini, S. L. Ullo, and D. Calcaterra, “Landslide susceptibility assessment of wildfire burnt areas through earth-observation techniques and a machine learning-based approach,” Remote Sens., vol. 12, no. 15, 2020.
Y. Goulamoussí¨ne, C. Bedeau, L. Descroix, L. Linguet, and B. Hí©rault, “Environmental control of natural gap size distribution in tropical forests,” Biogeosciences, vol. 14, no. 2, pp. 353-364, 2017.
L. Jiang, D. Ling, M. Zhao, C. Wang, Q. Liang, and K. Liu, “Effective identification of terrain positions from gridded DEM data using multimodal classification integration,” ISPRS Int. J. Geo-Information, vol. 7, no. 11, 2018.
M. Różycka, P. MigoÅ„, and A. Michniewicz, “Topographic Wetness Index and Terrain Ruggedness Index in geomorphic characterisation of landslide terrains, on examples from the Sudetes, SW Poland,” Zeitschrift fí¼r Geomorphol. Suppl. Issues, vol. 61, no. 2, pp. 61-80, 2017.
W. Chen et al., “GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method,” CATENA, vol. 164, pp. 135-149, 2018.
H. D. Skilodimou, G. D. Bathrellos, E. Koskeridou, K. Soukis, and D. Rozos, “Physical and anthropogenic factors related to landslide activity in the northern Peloponnese, Greece,” Land, vol. 7, no. 3, 2018.
L. Breiman, “Random Forests,” Mach. Learn., vol. 45, no. 1, pp. 5-32, 2001.
O. Rahmati et al., “Groundwater spring potential modelling: Comprising the capability and robustness of three different modeling approaches,” J. Hydrol., vol. 565, pp. 248-261, 2018.
D. Å ebalj, J. Franjković, and K. Hodak, “Shopping intention prediction using decision trees,” Millenium - J. Educ. Technol. Heal., no. No. 4 (2017): Series 2, n.o 4, 2017.
L. Rokach and O. Maimon, Data Mining With Decision Trees: Theory and Applications, 2nd ed. USA: World Scientific Publishing Co., Inc., 2014.
P. M. Atkinson and R. Massari, “Generalised Linear Modelling Of Susceptibility to Landsliding in the Central Apennines, Italy,” Comput. Geosci., vol. 24, no. 4, pp. 373-385, 1998.
F. Djeddaoui, M. Chadli, and R. Gloaguen, “Desertification susceptibility mapping using logistic regression analysis in the Djelfa Area, Algeria,” Remote Sens., vol. 9, no. 10, pp. 1-26, 2017.
M. Goldburd, D. Guller, A. Khare, and D. Tevet, Generalized Linear Models for Insurance Rating, Second Edi. Arlington, Virginia: Casualty Actuarial Society, 2020.
S. S. Rwanga and J. M. Ndambuki, “Accuracy Assessment of Land Use/Land Cover Classification Using Remote Sensing and GIS,” Int. J. Geosci., vol. 08, no. 04, pp. 611-622, 2017.
R. E. Alexander, “A Comparison of GLM , GAM , and GWR Modeling of Fish Distribution and Abundance in Lake Ontario,” University of Southern California, 2016.
J. E. McKenna Jr. and C. Castiglione, “Model distribution of Silver Chub (Macrhybopsis storeriana) in western Lake Erie,” Am. Midl. Nat., vol. 171, no. 2, pp. 301-310, 2014.
D. Tien Bui et al., “Spatial prediction of rainfall-induced landslides for the Lao Cai area (Vietnam) using a hybrid intelligent approach of least squares support vector machines inference model and artificial bee colony optimization,” Landslides, vol. 14, no. 2, pp. 447-458, 2017.
L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, “Classification and regression trees,” Classification and Regression Trees. pp. 1-358, 1984.
A. Arabameri, S. Saha, J. Roy, W. Chen, T. Blaschke, and D. T. Bui, “Landslide susceptibility evaluation and management using different machine learning methods in the Gallicash River Watershed, Iran,” Remote Sens., vol. 12, no. 3, 2020.
N. Dzakiya, R. A. Hidayah, and Larikiansyah, “Analisis Potensi Longsor Menggunakan Metode Geolistrik Konfigurasi Dipole-dipole di Desa Kasihan Kecamatan Tegalombo Kabupaten Pacitan Jawa Timur,” J. Mater. dan Pembelajaran Fis., vol. 2, no. 8, pp. 17-22, 2018.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).