Estimation of Spatial Autoregressive Model to Demonstrate the Spatial Dependence of Cancer Patients

Sarah Osama Saad (1), Haifa Taha Abd (2)
(1) Department of Statistics, College of Administration and Economics, Mustansiriyah University, Iraq
(2) Department of Statistics, College of Administration and Economics, Mustansiriyah University, Iraq
Fulltext View | Download
How to cite (IJASEIT) :
[1]
S. O. Saad and H. Taha Abd, “Estimation of Spatial Autoregressive Model to Demonstrate the Spatial Dependence of Cancer Patients”, Int. J. Adv. Sci. Eng. Inf. Technol., vol. 15, no. 2, pp. 515–523, Apr. 2025.
Recent years have seen a rise in interest among statisticians in spatial data analysis, which is unsurprising given the detrimental effects on results and information loss that can occur from ignoring the spatial dimension in statistical analyses.  Because the components of the phenomenon under study are spatially dependent, researchers have utilized spatial regression models to examine the impact of the explanatory variables on the dependent variable. The simulation method is used when challenges or difficulties are complex to address numerically. It entails creating a system for the actual model and then performing experiments on this model. Consequently, the researchers estimated the spatial autoregressive model (SAR) using the maximum likelihood (MLE) method. The SAR included the researchers' proposed weight matrix, which was built using the Rock adjacency criterion and the Euclidean distance, as well as a modified spatial weight matrix built using the Rock adjacency criterion.  The suggested weight matrix was appropriate for model estimation after comparing the spatial weight matrices using the mean absolute relative error (MAPE) criterion.  By utilizing the maximum likelihood approach (MLE) with the modified spatial weight matrix and the proposed spatial weight matrix, we were able to examine the relationship between the dependent variable, which represents the number of patients in each governorate, and the selected explanatory variables, which include tumor size, age average, and the number of areas contaminated with uranium in the governorate. This study utilized the spatial model to examine real-world cancer data. Based on the pollution levels caused by uranium and other pollutants from oil refineries and other industries, the governorates of Basra and Baghdad had the highest number of cancer patients, indicating a clear spatial dependence between the location of the governorate and the increase in cancer cases.

I. O. B. Al-Fahad, H. K. Sharaf, L. N. Bachache, and N. K. Bachache, “Identifying the mechanism of the fatigue behavior of the composite shaft subjected to variable load,” Eastern-European J. Enterp. Technol., vol. 3, no. 7 (123), pp. 37–44, Jun. 2023, doi:10.15587/1729-4061.2023.283078.

B. Fingleton and E. López‐Bazo, “Empirical growth models with spatial effects,” Pap. Reg. Sci., vol. 85, no. 2, pp. 177–198, Jun. 2006, doi: 10.1111/j.1435-5957.2006.00074.x.

T. Rüttenauer, “Spatial Regression Models: A Systematic Comparison of Different Model Specifications Using Monte Carlo Experiments,” Sociol. Methods Res., vol. 51, no. 2, pp. 728–759, May 2022, doi: 10.1177/0049124119882467.

L. T. Mouhmmd, M. A. Rahima, A. M. Mohammed, H. F. Hasan, A. S. Alwan, and H. K. Sharaf, “The effect of firm type on the relationship between accounting quality and trade credit in listed firms,” Corp. Bus. Strateg. Rev., vol. 4, no. 2, pp. 175–183, Apr. 2023, doi: 10.22495/cbsrv4i2art16.

H. A. Saleh, A. R. Ali, A. N. S. Almshabbak, H. K. Sharaf, H. F. Hasan, and A. S. Alwan, “The impact of auditor-client range on audit quality and timely auditor report,” Corp. Bus. Strateg. Rev., vol. 5, no. 1, special Issue, pp. 329–335, Feb. 2024, doi:10.22495/cbsrv5i1siart7.

B. A. Sadkhan et al., "Investigation of the impact response of plain weave E-glass composite structure based on the EN ISO 178 standard," J. Adv. Res. Appl. Mech., vol. 117, no. 1, pp. 118-127, Jun. 2024, doi: 10.37934/aram.117.1.118127.

A. T. Shomran, H. T. Shomran, E. K. Hussein, H. K. Sharaf, T. Santos, and C. Santos, “Computational Investigation on the Fatigue Behavior of Titanium Alloy Ti-6Al-2Sn-4Zr-2Mo under Dynamic Loads by Consideration of Ambient Temperature,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 15, no. 1, pp. 75–80, Feb. 2025, doi:10.18517/ijaseit.15.1.12417.

A. A. Adepoju, T. P. Ogundunmade, and G. O. Adenuga, “The Performance of Drought Indices on Maize Production in Northern Nigeria Using Artificial Neural Network Model,” Int. J. Data Sci., vol. 5, no. 1, pp. 19–32, Jun. 2024, doi: 10.18517/ijods.5.1.19-32.2024.

C. F. M. Foozy, M. A. I. Anuar, A. Maslan, H. A. M. Adam, and H. Mahdin, “Phishing URLs Detection Using Naives Baiyes, Random Forest and LightGBM Algorithms,” Int. J. Data Sci., vol. 5, no. 1, pp. 56–63, Jun. 2024, doi: 10.18517/ijods.5.1.56-63.2024.

E. W. Pujiharto, E. Tikasni, R. Lewu, S. Sudirman, and E. Utami, “Systematic Literature Review on Software requirement engineering in Industry 5.0: Current practices and future challenges,” Int. J. Adv. Sci. Comput. Eng., vol. 6, no. 3, pp. 105–110, 2024, doi:10.62527/ijasce.6.3.152.

H. Santoso, G. F. Soares, and C. M. Angelo, “Detection of Children’s Facial Expressions on The Effects of Playing Games Using CNN Algorithm,” Int. J. Adv. Sci. Comput. Eng., vol. 6, no. 3, pp. 152–157, 2024, doi: 10.62527/ijasce.6.3.213.

N. Nawghare and C. Pol, “Performance Analysis of Single and Double-Layer Barrel Vault Shells: Effects of Shell Thickness and Structural Behaviour,” Int. J. Comput. Eng., vol. 1, no. 4, pp. 100–107, 2024, doi: 10.62527/comien.1.4.24.

K. K. Jawad et al., “Contingency in Engineering Problem Solving Understanding its Role and Implications: Focusing on the sports Machine,” Rev. Iberoam. Psicol. del Ejerc. y el Deport., vol. 18, no. 3, pp. 334–337, 2023.

A. K. Hamzah, R. M. Abed, A. M. AL-Mushehdany, and H. J. M. Alalkawi, “Fatigue Life Estimation under High Temperature and Variable Loading of AA7001-T6 Using Shot Peening,” Tikrit J. Eng. Sci., vol. 31, no. 2, pp. 168–174, May 2024, doi:10.25130/tjes.31.2.16.

S. M. Abbas, J. S. Chiad, and A. M. Takhakh, “Mechanical Properties and Numerical Modelling for Prosthetic Foot,” J. Eng. Sustain. Dev., vol. 29, no. 1, pp. 79–88, Jan. 2025, doi:10.31272/jeasd.2112.

M. M. Yahya, A. M. Al-Mushehdany, and H. J. M. Alalkawi, “Evaluation of Buckling of 2024-T3 under High Temperatures,” Int. J. Heat Technol., vol. 40, no. 4, pp. 947–952, Aug. 2022, doi:10.18280/ijht.400411.

L. Anselin, Spatial econometrics: methods and models, vol. 4. Springer Science & Business Media, 1988.

N. J. Khalaf, S. Ben Amor, B. Louhichi, J. S. Chiad, and A. Seibi, “Experimental Investigation to Optimize the Manufacturing Parameters of Ankle–Foot Orthoses Using Composite and Titanium Nanoparticles,” J. Compos. Sci., vol. 8, no. 2, p. 45, Jan. 2024, doi:10.3390/jcs8020045.

K. Ord, “Estimation Methods for Models of Spatial Interaction,” J. Am. Stat. Assoc., vol. 70, no. 349, pp. 120–126, Mar. 1975, doi:10.1080/01621459.1975.10480272.

S. M. Abbas, J. S. Chiad, and A. M. T. Takhakh, “Study and Analysis of Below Knee Osseointegration Prosthesis,” J. Eng. Sustain. Dev., vol. 29, no. 2, pp. 190–197, Mar. 2025, doi: 10.31272/jeasd.2598.

J. P. Elhorst, Spatial Econometrics. in SpringerBriefs in Regional Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. doi: 10.1007/978-3-642-40340-8.

J. LeSage and R. K. Pace, Introduction to Spatial Econometrics. Chapman and Hall/CRC, 2009. doi: 10.1201/9781420064254.

X. Q. Wang et al., “Spatial predictors of immunotherapy response in triple-negative breast cancer,” Nature, vol. 621, no. 7980, pp. 868–876, Sep. 2023, doi: 10.1038/s41586-023-06498-3.

H. Bergholtz et al., “Best Practices for Spatial Profiling for Breast Cancer Research with the GeoMx® Digital Spatial Profiler,” Cancers (Basel)., vol. 13, no. 17, p. 4456, Sep. 2021, doi:10.3390/cancers13174456.

K. Ohashi et al., “Spatial-temporal analysis of cerebral infarction mortality in Hokkaido, Japan: an ecological study using a conditional autoregressive model,” Int. J. Health Geogr., vol. 21, no. 1, p. 16, Oct. 2022, doi: 10.1186/s12942-022-00316-1.

R. R. Bruno et al., “Virtual and augmented reality in critical care medicine: the patient’s, clinician’s, and researcher’s perspective,” Crit. Care, vol. 26, no. 1, p. 326, Oct. 2022, doi: 10.1186/s13054-022-04202-x.

Y. Li, Y. Liu, Y.-Z. Guo, X.-F. Liao, B. Hu, and T. Yu, “Spatio-Temporal-Spectral Hierarchical Graph Convolutional Network With Semisupervised Active Learning for Patient-Specific Seizure Prediction,” IEEE Trans. Cybern., vol. 52, no. 11, pp. 12189–12204, Nov. 2022, doi: 10.1109/TCYB.2021.3071860.

J. Wang, “Patient Flow Modeling and Optimal Staffing for Emergency Departments: A Petri Net Approach,” IEEE Trans. Comput. Soc. Syst., vol. 10, no. 4, pp. 2022–2032, Aug. 2023, doi:10.1109/TCSS.2022.3186249.

C. Zheng, S. Zhu, M. Mendieta, T. Yang, C. Chen, and Z. Ding, “3D Human Pose Estimation with Spatial and Temporal Transformers,” Proc. IEEE Int. Conf. Comput. Vis., vol. 1, pp. 11636–11645, 2021, doi: 10.1109/ICCV48922.2021.01145.

Y. Sun, X. Hu, and J. Xie, “Spatial inequalities of COVID-19 mortality rate in relation to socioeconomic and environmental factors across England,” Sci. Total Environ., vol. 758, p. 143595, Mar. 2021, doi: 10.1016/j.scitotenv.2020.143595.

Z. Li, “Extracting spatial effects from machine learning model using local interpretation method: An example of SHAP and XGBoost,” Comput. Environ. Urban Syst., vol. 96, p. 101845, Sep. 2022, doi:10.1016/j.compenvurbsys.2022.101845.

K. Zhou, J. Yang, T. Yang, and T. Ding, “Spatial and temporal evolution characteristics and spillover effects of China’s regional carbon emissions,” J. Environ. Manage., vol. 325, p. 116423, Jan. 2023, doi: 10.1016/j.jenvman.2022.116423.

D. Lee, C. Kim, S. Kim, M. Cho, and W.-S. Han, “Autoregressive image generation using residual quantization,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 11523–11532.

S. Bond-Taylor, A. Leach, Y. Long, and C. G. Willcocks, “Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 11, pp. 7327–7347, Nov. 2022, doi: 10.1109/TPAMI.2021.3116668.

K. Tian, Y. Jiang, Z. Yuan, B. Peng, and L. Wang, “Visual autoregressive modeling: Scalable image generation via next-scale prediction,” Adv. Neural Inf. Process. Syst., vol. 37, pp. 84839–84865, 2024.

H. Hong Hiep, B. N. Quang, and H. C. Minh, “The impact of FDI and regional factors on economic growth in Vietnamese provinces: A spatial econometric analysis,” Post-Communist Econ., vol. 35, no. 5, pp. 454–474, 2023.

H. D. Salman, A. Q. Saeed, E. K. Hussein, H. K. Sharaf, T. Santos, and C. Santos, “Comparative Study on the Creep Behavior of a Hybrid Composite Material Doped with Nano Material,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 14, no. 6, pp. 1951–1956, Dec. 2024, doi:10.18517/ijaseit.14.6.15958.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).